On the Daróczy-Kátai-Birthday expansion

By MIN-YOUNG LEE (Seoul)

Abstract

The recently introduced Daróczy-Kátai-Birthday (DKB) expansion is a special Oppenheim expansion with fundamental inequality $d_{n+1} \geq d_{n}^{3}-d_{n}^{2}+1$ for the denominators. We refer to expansions in which ultimately equation holds in the fundamental inequality as series with minimal growth rate. It is shown that the minimum growth rate is the same magnitude as the growth rate valid with probability one. Furthermore, we establish the surprising result that, for almost all x in $(0,1)$, $d_{n+1} \geq d_{n}^{3}+\frac{d_{n}^{3}}{\left(\log d_{n}\right)^{c}}$ with some constant $c>0$.

Introduction

The Oppenheim series expansion of real numbers $0<x \leq 1$ is defined by the algorithm: $d_{n}, n \geq 1$ are integers

$$
\begin{equation*}
x=x_{1}, \quad \frac{1}{d_{n}}<x_{n} \leq \frac{1}{d_{n}-1} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{n+1}=\left(x_{n}-\frac{1}{d_{n}}\right) \frac{1}{r_{n}\left(d_{n}\right)}, \tag{2}
\end{equation*}
$$

where $r_{n}(j)=\frac{h_{n}(j)}{j(j-1)}$, and $h_{n}(j) \geq 1$ is an integer valued function, $n \geq 1$, $j \geq 1$. The integers $d_{n}=d_{n}(x)$ are called the digits of the expansion, and they satisfy the fundamental inequality:

$$
\begin{equation*}
d_{n+1} \geq h_{n}\left(d_{n}\right)+1, \quad n \geq 1 \tag{3}
\end{equation*}
$$

Mathematics Subject Classification: 11J70, 11A67, 11K55.
Key words and phrases: series expansion, rational approximation, Oppenheim series, Daróczy-Kátai-Birthday expansion, growth rate of the denominator, metric results.

The theory of Oppenheim series was developed by J. Galambos in a series of papers, which is presented in a unified way in the book Galambos [1]; see particularly sections 1.3, 2.2, 5.3, and all sections of Chapter VI.

In a recent paper, Galambos [2] introduced and studied the special case $h_{n}(j)=j^{2}(j-1)$, and called the resulting algorithm and series expansion Daróczy-Kátai-Birthday expansion, or DKB-expansion. Repeated applications of (1) and (2) lead to the series representation.

$$
\begin{equation*}
x=\frac{1}{d_{1}}+\frac{d_{1}}{d_{2}}+\frac{d_{1} d_{2}}{d_{3}}+\cdots+\frac{d_{1} d_{2} \cdots d_{n}}{d_{n+1}}+\cdots \tag{4}
\end{equation*}
$$

in which (3) takes the form

$$
\begin{equation*}
d_{n+1} \geq d_{n}^{2}\left(d_{n}-1\right)+1=d_{n}^{3}-d_{n}^{2}+1 \tag{3a}
\end{equation*}
$$

It also follows from the cited general theory of Oppenheim series that if x is given by a series of the form of (4) satisfying (3a) then (4) is produced by the algorithm (1) and (2). In particular, if at (4) $d_{n}=V_{n}$ with $V_{n_{0}}$ fixed,

$$
\begin{equation*}
V_{n+1}=V_{n}^{3}-V_{n}^{2}+1 \quad \text { for all } n \geq n_{0} \tag{5}
\end{equation*}
$$

and (3a) holds for $n<n_{0}$, then (4) is a DKB-expansion.
The sequence generated in (5) will be referred to as a DKB-series with minimum growth rate. In the present paper I study the sequence V_{n} of minimal growth rate as defined at (5) and compare with the result

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\log d_{n}(x)}{3^{n}}=G(x), \quad G(x)>0 \text { finite } \tag{6}
\end{equation*}
$$

(see Galambos [1], Theorem 6.13).
In contrast to the minimal growth for d_{n}, one can consider the extent to which the fundamental inequality (3a) governs the growth rate for almost all x. In this direction I shall show that, for almost all x,

$$
\begin{equation*}
d_{n+1} \geq d_{n}^{3}+\frac{d_{n}^{3}}{\left(\log d_{n}\right)^{c}} \quad \text { for all } n \geq n_{0} \tag{7}
\end{equation*}
$$

with some constant $c=c(x)>0$. For proving (7), a general representation of d_{n+1}, as quoted in Galambos [2] at (12), p. 380, will be the major tool, together with a Borel-Cantelli-type of argument. In all statements, probability is Lebesgue measure on the Borel sets of $(0,1]$.

The results and proofs

Theorem 1. For the sequence V_{n} of integers, defined at (5) with $n_{0}=1$ and $V_{1}=2$, we have, as $n \rightarrow+\infty$

$$
0<\lim _{n \rightarrow \infty} 3^{-n} \log V_{n}<+\infty .
$$

Proof of Theorem 1. From

$$
3^{-(n+1)} \log V_{n+1}-3^{-n} \log V_{n}=3^{-(n+1)} \log \left(1-\frac{V_{n}^{2}-1}{V_{n}^{3}}\right)<0
$$

it follows that $3^{-n} \log V_{n}$ decreases for increasing n and converges to a positive limit V. Furthermore

$$
V_{n+1}-\frac{2}{3}>\left(V_{n}-\frac{2}{3}\right)^{3}
$$

so

$$
\log V_{n}>\log \left(V_{n}-\frac{2}{3}\right)>3^{n-k} \log \left(V_{k}-\frac{2}{3}\right) \quad \text { for } k=1,2, \ldots, n
$$

Applying this formula $k=1$ we obtain

$$
\log V_{n}>3^{n} \frac{1}{3} \log \frac{4}{3}
$$

so

$$
V=\lim _{n \rightarrow \infty} 3^{-n} \log V_{n} \geq \frac{1}{3} \log \frac{4}{3}>0 .
$$

This completes the proof.
For the next result I quote a representation of d_{n} from Galambos [2], p. 380. The sequence $d_{n}=d_{n}(x)$ has the same distributional properties as the stochastic sequence $D_{n}, n \geq 1$, defined as $D_{1}=\left[\exp \left(x_{1}\right)\right]+1$, and

$$
\begin{equation*}
D_{n+1}=\left[\left(D_{n}^{3}-D_{n}^{2}\right) \exp \left(x_{n+1}\right)\right]+1, \quad n \geq 1, \tag{8}
\end{equation*}
$$

where x_{1}, x_{2}, \ldots are independent unit exponential variables, that is, $F(x)=$ $P\left(x_{j} \leq x\right)=1-e^{-x}, x \geq 0$, where P is any probability measure on an arbitrary abstract probability space. The space, of course, can be chosen as Borel sets of $(0,1], P$ as Lebesgue measure and $x_{j}=-\log u_{j}$, where $0<u_{j} \leq 1$ are independent uniformly chosen points in (0,1$]$. So, we can use the same underlying probability space for (8) as for (1) and (2).

Theorem 2. For almost all x, there is an $n_{0}=n_{0}(x)$ such that

$$
d_{n+1} \geq d_{n}^{3}+\frac{d_{n}^{3}}{\left(\log d_{n}\right)^{c}}, \quad \text { for all } n \geq n_{0}
$$

with some constant $c>0$.
Proof of Theorem 2. In order to emphasize the role of the fundamental inequality (3a), we determine $c_{k}=c_{k}(x)$ such that c_{k} is of smaller magnitude than d_{n}^{3} and

$$
\begin{equation*}
d_{k+1} \leq d_{k}^{3}-d_{k}^{2}+c_{k}+1 \tag{9}
\end{equation*}
$$

should not hold for infinitely many k. We turn to (8), and calculate the probability of

$$
\begin{equation*}
D_{k+1}=\left[\left(D_{k}^{3}-D_{k}^{2}\right) \exp \left(x_{k+1}\right)\right]+1 \leq D_{k}^{3}-D_{k}^{2}+c_{k}+1 \tag{10}
\end{equation*}
$$

From the above inequality we obtain

$$
x_{k+1} \leq \log \left(1+\frac{c_{k}}{D_{k}^{3}-D_{k}^{2}}\right)
$$

Since D_{k} is defined through (8) by $x_{1}, x_{2}, \ldots, x_{k}$, the random variable D_{k} and x_{k+1} are independent. Consequently, upon conditioning on D_{k}, x_{k+1} remains exponential, and thus

$$
\begin{aligned}
& P\left(\left.x_{k+1} \leq \log \left(1+\frac{c_{k}}{D_{k}^{3}-D_{k}^{2}}\right) \right\rvert\, D_{k}=y\right) \\
& \quad=1-\exp \left\{-\log \left(1+\frac{c_{k}}{y^{3}-y^{2}}\right)\right\}=1-\frac{1}{1+\frac{c_{k}}{y^{3}-y^{2}}}
\end{aligned}
$$

Let us take expectations; we get

$$
P\left(x_{k+1} \leq \log \left(1+\frac{c_{k}}{D_{k}^{3}-D_{k}^{2}}\right)\right)=E\left(1-\frac{1}{1+\frac{c_{k}}{D_{k}^{3}-D_{k}^{2}}}\right)
$$

But D_{k} and d_{k} are identically distributed, which entails

$$
\begin{equation*}
P\left(x_{k+1} \leq \log \left(1+\frac{c_{k}}{D_{k}^{3}-D_{k}^{2}}\right)\right)=E\left(1-\frac{1}{1+\frac{c_{k}}{d_{k}^{3}-d_{k}^{2}}}\right) \tag{11}
\end{equation*}
$$

Let us choose $c_{k}=\frac{d_{k}^{3}}{\left(\log d_{k}\right)^{c}}$, with some $c>0$. Then (11) implies

$$
P\left(x_{k+1} \leq \log \left(1+\frac{c_{k}}{D_{k}^{3}-D_{k}^{2}}\right)\right)=E\left(\frac{c_{k}}{d_{k}^{3}-d_{k}^{2}}(1+o(1))\right),
$$

and thus

$$
\begin{equation*}
\sum_{k=1}^{+\infty} P\left(x_{k+1} \leq \log \left(1+\frac{c_{k}}{D_{k}^{3}-D_{k}^{2}}\right)\right)=E\left\{\sum_{k=1}^{+\infty} \frac{c_{k}}{d_{k}^{3}-d_{k}^{2}}(1+o(1))\right\} \tag{12}
\end{equation*}
$$

where we interchanged summation and taking expectation on the right hand side (allowed because the terms are positive) and we note that the error terms $o(1)$ are irrelevant for our purposes since our only aim with (12) is to establish that the right hand side of (12) is finite (so, the boundedness of $o(1)$ suffices for us). Now, if we put

$$
a_{k}=\frac{c_{k}}{d_{k}^{3}-d_{k}^{2}}=\frac{d_{k}^{3}}{\left(d_{k}^{3}-d_{k}^{2}\right)\left(\log d_{k}\right)^{c}},
$$

we apply the ratio test. We have from (6),

$$
\begin{aligned}
\frac{a_{k+1}}{a_{k}} & =\frac{c_{k+1}}{d_{k+1}^{3}-d_{k+1}^{2}} \frac{d_{k}^{3}-d_{k}^{2}}{c_{k}} \\
& =\frac{1-\frac{1}{d_{k}}}{1-\frac{1}{d_{k+1}}}\left(\frac{\frac{\log d_{k}}{3^{k}}}{\frac{\log d_{k+1}}{3^{k+1}}}\right)^{c}\left(\frac{1}{3}\right)^{c} \longrightarrow\left(\frac{1}{3}\right)^{c}<1 \quad \text { as } k \rightarrow+\infty .
\end{aligned}
$$

This rate of convergence guarantees not only that the sum on the right hand side of (12) converges but that its integral (expectation) is finite as well. We thus have that the left hand side of (12) is finite, implying via the Borel-Cantelli lemma that, with our choice of c_{k}, (10) can occur only a finite number of times with probability one. Since D_{k} and d_{k} are identically distributed, the theorem is established since

$$
d_{k+1} \geq d_{k}^{3}-d_{k}^{2}+c_{k}+1
$$

with some $c>0$ in $c_{k}=\frac{d_{k}^{3}}{\left(\log d_{k}\right)^{c}}$ implies that

$$
d_{k+1} \geq d_{k}^{3}+\frac{d_{k}^{3}}{\left(\log d_{k}\right)^{c}}
$$

with another $c>0$.

Acknowledgement. I wish to thank the referee for careful reading of the first version of the manuscript, and for his pointing out an error in that form.

References

[1] J. Galambos, Representations of real numbers by infinite series, Lecture Notes in Mathematics, vol. 502, Springer, Heidelberg, 1976.
[2] J. Galambos, Further metric results on series expension, Publicationes Mathematicae Debrecen 52 (1998), 377-384.

MIN-YOUNG LEE
DEPARTMENT OF MATHEMATICS
DANKOOK UNIVERSITY
CHEONAN 330-714, CHUNGNAM
KOREA
E-mail: mylee@anseo.dankook.ac.kr
(Received April 2, 1999; revised October 18, 1999)

