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Projection onto the indicatrix bundle
of a Finsler manifold

By SZ. VATTAMÁNY (Debrecen)

Abstract. We present a simple geometric description of the process “projection
onto the indicatrix bundle” of a Finsler manifold originally introduced by H. Izumi, in
the framework of the theory whose foundations were laid by J. Grifone [7], [8]. Next
we derive an intrinsic expression for the projection of the Douglas tensor and give a
new proof of Sakaguchi’s important observation that the projected Douglas tensor
and the Douglas tensor vanish together. Finally we deduce a concise coordinate-free
form for the mixed curvature of the “Landsberg–Douglas manifolds”, and conlude that
in n > 2 dimensions these manifolds are just the Berwald manifolds.

Introduction

In the third part [3] of his famous series on Finsler and Cartan geome-
tries L. Berwald showed that (in our terminology) any two-dimensional
Landsberg manifold with vanishing Douglas tensor is a Berwald manifold .
More than 40 years later it was announced by H. Izumi [10] that this
is also true in higher dimensions. Izumi’s statement was proved by the
group S. Bácsó, F. Ilosvay and B. Kis in [1], using the machinery
of classical tensor calculus and utilizing an important observation of T.
Sakaguchi [13] on the projected Douglas tensor. Finsler manifolds with
vanishing Douglas tensor were baptized Douglas manifolds by M. Mat-
sumoto and S. Bácsó [2]. Thus, briefly speaking, any Landsberg–Douglas
manifold is a Berwald manifold.

In a recent paper [15] J. Szilasi and the present author elaborated
an intrinsic approach to the projective geometry of sprays and obtained
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compact, coordinate – free representations for the projectively invariant
Douglas tensor. These results having been obtained, there arises an ex-
citing question: possible to derive the above theorem intrinsically , using
the technique developed in [15] and if so, how? The present paper is the
outgrowth of attempts to solve this problem.

It was not too difficult to make a promising plan of attack. The
idea of projection onto the indicatrix bundle initiated by H. Izumi and
systematized by M. Matsumoto (see e.g. [11]) seemed to be a suitable
starting point. It can be formulated intrinsically straightaway. One of the
canonical geometrical objects on the tangent bundle, the Liouville vector
field C, is a normal vector field to the “unit sphere bundle” or “indicatrix
bundle” U(M) of any Finsler manifold (M, E). It follows that orthogonal
projection into U(M) is given by the operator

τ := I − 1
2E

dE ⊗ C.

(This operator was first introduced by J. Grifone [9].) The operator

κ := J∗ ◦ τ = J − 1
2E

dJE ⊗ C,

where J is the vertical endomorphism, and its lowered tensor κ[, will also
play an important role in our approach. If TM is the deleted tangent
manifold of M , then, suggested by J. Szilasi, we define the projected
tensor A∗ of a tensor A ∈ T 1

r (TM) as follows:

A∗ := τ ◦ τ∗A.

The behavior of the Douglas tensor becomes much more transparent after
it has been projected onto the indicatrix bundle; this is the main point
of the paper. Notice that this process does not give anything in the two-
dimensional case, which is – for this reason – a completely different story.

Despite the simplicity of the underlying ideas, we had to face a lot of
nontrivial technical difficulties when we tried to carry out our programme.
In the course of overcoming them we have deduced a number of useful
tensorial relations for the special Finsler manifolds studied; these relations
are of interest in their own right.

The paper is organized as follows. In Section 1 we have collected back-
ground material concerning the applied technical tools, Finsler manifolds,
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and distinguished Finsler connections (including basic curvature identi-
ties), in a form which best fits our subsequent requirements. Section 2
provides different characterizations of Landsberg and Berwald manifolds
in the spirit of the approach presented in [16]. Section 3 is devoted to an
intrinsic treatment of the projection onto the indicatrix bundle, especially
to the projection of the Douglas tensor D. It is shown that its projected
tensor D∗ can be represented in the form

D∗ =
◦
P− 1

n + 1

e◦
P¯ κ +

1
E
C′[ ⊗ C,

where
◦
P is the mixed curvature of the Berwald connection, C′[ is the type

(0, 3) second Cartan tensor, and the sign ∼ means semibasic trace. Then
we give a new, intrinsic proof of Sakaguchi’s important observation that
D∗ = 0 if and only if D = 0. We note that in local coordinates our formu-
las, including the coordinate expression of D∗ do not coincide with those of
Sakaguchi. The reason for this is the difference in the underlying bundle
structures, which implies that the notions of “Finsler tensor fields” are
also different. Most of the ”essential” tensors are semibasic in our frame-
work, while the vector field variables of Matsumoto’s theory [12] used by
Sakaguchi correspond to the vertical vector fields in our approach.

In the concluding section the reader will find the deduction of the
main result. We show that in any “Landsberg–Douglas manifold” the
mixed curvature of the Berwald connection has the form

◦
P =

1
n2 − 1

ẽ◦
P

#

κ[ ¯ κ,

where # and [ are the musical isomorphisms with respect to the metric
tensor arising from the Finsler structure; and the relation

(n− 2)
ẽ◦
P

#

C̃ = 0

holds. The theorem follows immediately from these results.
Unfortunately, this elegant method fails in two dimensions. Then the

Douglas tensor has components only along the Liouville vector field. Since
the Liouville vector field is orthogonal to the unit sphere bundle, it fol-
lows immediately that the projected Douglas tensor of a two-dimensional
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Finsler manifold vanishes identically . However, after this work was fin-
sished, we felt that it would be worthwile to complete the story discussing
the previously cited paper of Berwald on the two-dimensional Finsler
manifolds from our present day standpoint. We have done this jointly
with Cs. Vincze, and a forthcoming paper of us will be devoted to a
modern exposition of the two-dimensional case.

1. Preliminaries

1.1. Throughout the paper we shall freely use the terminology and
results of [14] and [15]. However, we collect some of the notations and
definitions at this point for easy reference.

1.1.1. The letter M shall stand for an n(= 2)-dimensional, connected,
paracompact, smooth manifold; C∞(M) denotes the ring of the real-valued
C∞ functions on M .

1.1.2. π : TM → M is the tangent bundle of M , π0 : TM → M is
the bundle of the nonzero tangent vectors. X(M) denotes the C∞(M)-
module of vector fields on M , T r

s (M) stands for the C∞(M)-module of
tensor fields of type (r, s), Ωk(M) is the C∞(M)-module of k-forms on M .

1.1.3. iX , LX (X ∈ X(M)) and d are the insertion operator, the Lie
derivative (with respect to X) and the exterior derivative, respectively.

1.1.4. Xv(TM) denotes the C∞(TM)-module of vertical vector fields
on TM . C ∈ Xv(TM) is the Liouville vector field ; Xv and Xc stand for
the vertical and the complete lift of a vector field X ∈ X(M).

1.1.5. J ∈ T 1
1 (TM) ∼= End X(TM) is the vertical endomorphism (or

the canonical almost tangent structure) on TM . We recall, that

(1) Im J = Ker J = Xv(TM), J2 = 0.

The adjoint operator J∗ of J is introduced as follows:

∀f ∈ C∞(TM) : J∗f := f ;(2a)

∀ω ∈ Ωk(TM) : J∗ω(X1, . . . , Xk) := ω(JX1, . . . , JXk)(2b)

(X1, . . . , Xk ∈ X(TM); k ∈ N+).
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1.1.6. The vertical derivation iJ is defined by the formulas

∀f ∈ C∞(TM) : iJf := 0;(3a)

∀ω ∈ Ωk(TM) : iJω(X1, . . . , Xk) :=
k∑

i=1

ω(X1, . . . , JXi, . . . , Xk)(3b)

(Xi ∈ X(TM); 1 5 i 5 k).

The operator

(4) dJ := iJ ◦ d− d ◦ iJ

is called the vertical differentiation. We have

(5) ∀f ∈ C∞(TM) : dJf = iJdf = J∗(df).

(For details, see [5], 4.1.)

1.1.7. Ψk(TM) is the module of vector k-forms on TM , constituted
by the skew-symmetric C∞(TM)-multilinear maps

X(T M)× · · · × X︸ ︷︷ ︸
k times

(TM) → X(TM)

if k = 1, and Ψ0(TM) := X(TM). A priori , the differentiability of vector
k-forms will be required only over TM .

1.1.8. We shall employ the Frölicher–Nijenhuis bracket [ , ] of vector
forms in the following simplest, but non-trivial cases:
(i) K ∈ Ψ1(TM), Y ∈ Ψ0(TM). Then [K, Y ] ∈ Ψ1(TM), and for any

vector field X ∈ X(TM)

(6) [K, Y ](X) = [K(X), Y ]−K[X, Y ].

(ii) K ∈ Ψ1(TM), L ∈ Ψ1(TM). Then [K, L] ∈ Ψ2(TM) is given by the
famous 8-terms formula

[K,L](X,Y ) = [K(X), L(Y )] + [L(X),K(Y )] + K ◦ L[X, Y ](7)
+ L ◦K[X, Y ]−K[L(X), Y ]−K[X,L(Y )]

− L[X, K(Y )]− L[K(X), Y ] (X, Y ∈ X(TM)).
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1.2 Horizontal endomorphisms. A (1, 1) tensor h ∈ T 1
1 (TM) ∼=

Ψ1(TM), smooth only over TM (1.1.7), is said to be a horizontal en-
domorphism on M if it is a projector (i.e., h2 = h) and Ker h = Xv(TM).
The mapping

(8) X ∈ X(M) 7→ Xh := hXc ∈ X(TM)

is called horizontal lifting by h.
Any horizontal endomorphism h determines a unique (1, 1) tensor

F ∈ T 1
1 (TM) such that

(9) F ◦ h = −J, F ◦ J = h.

Then F is an almost complex structure on TM , called the almost complex
structure associated with h. Note that

(10) ∀X ∈ X(M) : FXv = Xh.

1.3 Local basis properties. Most of our local calculations will be based
on the following simple observation: If (X1, . . . , Xn) is a local basis of the
module X(M), then

(Xv
1 , . . . , Xv

n, Xc
1 , . . . , Xc

n) or (Xv
1 , . . . , Xv

n, Xh
1 , . . . , Xh

n)

(where Xh
i , 1 5 i ≤ n, are horizontal lifts by a horizontal endomorphism)

are local bases for the module X(TM).

1.4 Semibasic tensors, semibasic trace. A symmetric or skew-symme-
tric tensor A∈T 0

s (TM) (s∈N+) is said to be semibasic if for any vector
fields X ∈X(TM) we have iJXA =0. Analogously, a symmetric or skew-
symmetric tensor L∈T 1

s (TM) is called semibasic if

J ◦ L = 0 and ∀X ∈ X(TM) : iJXL = 0.

The semibasic trace L̃ ∈ T 0
s−1(TM) of a semibasic tensor L ∈ T 1

s (TM) is
defined by recurrence as follows:

(i) if s = 1, then L̃ := tr (F ◦ L), where F is the associated almost
complex structure of an arbitrarily chosen horizontal endomorphism;

(ii) if s > 1, then for any vector field X ∈ X(TM) iX L̃ := ĩXL.
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1.4.1 Lemma. Let A ∈ T 0
s (TM), L ∈ T 1

1 (TM), K ∈ T 1
2 (TM) be

semibasic tensors, and suppose that A is symmetric. Then

Ã⊗ L = L̃A,(11)

∀X ∈ X(TM) : iX L̃⊗A = iFL(X)A,(12)

Ã⊗K = A⊗ K̃,(13)

∀X, Y ∈ X(TM) : iY iXK̃ ⊗A = iFK(X,Y )A.(14)

The proof is straightforward and we omit it.

1.5 Finsler manifolds. Let a function E : TM → R be given. The
pair (M, E) is said to be a Finsler manifold if the following conditions are
satisfied:

(i) ∀v ∈ TM : E(v) > 0, E(0) = 0;

(ii) E is of class C1 on TM and smooth on TM ;

(iii) CE = 2E, i.e., E is homogeneous of degree 2;

(iv) the fundamental 2-form ω := ddJE is symplectic.

Then the function E is called the energy function of the Finsler man-
ifold. It follows at once that

(15) iCω = dJE.

1.5.1 The canonical spray. On any Finsler manifold (M, E) there is
a spray S : TM → TTM uniquely determined on TM by the relation

(16) iSω = −dE

and prolonged to a C1 mapping of TM such that S ¹ TM \ TM = 0. The
spray S in called the canonical spray of the Finsler manifold.

1.5.2 The Barthel endomorphism. Let (M,E) be a Finsler manifold
with canonical spray S. The (1, 1) tensor

h :=
1
2

(
1X(TM) + [J, S]

)
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is a horizontal endomorphism on M which we call the Barthel endomor-
phism. It has the following characteristic properties:

dhE = 0 (“h is conservative”),(17)

[h,C] = 0 (“h is homogeneous”),(18)

[J, h] = 0 (“the weak torsion of h vanishes”).(19)

This fundamental result is due to J. Grifone [7].

1.5.3 Metric. Cartan tensors. Let F be the almost complex structure
associated to the Barthel endomorphism. Then the mapping

(20)
g : X(TM)× X(TM) → C∞(TM),

(X, Y ) 7→ g(X, Y ) := ω(X, FY )

is a well-defined pseudo-Riemannian metric on TM . We introduce the
first Cartan tensors C and C[ by the relations

g(C(X, Y ), JZ) :=
1
2
LJX(J∗g)(Y,Z) and J ◦ C = 0,(21)

C[(X, Y, Z) := g(C(X, Y ), JZ); X,Y, Z ∈ X(TM).(22)

The second Cartan tensors C′, C′[ are defined as follows: for any vector
fields X, Y, Z ∈ X(TM)

g(C′(X, Y ), JZ) :=
1
2

(LhXg) (JY, JZ) and J ◦ C′ = 0,(23)

C′[(X, Y, Z) := g(C′(X,Y ), JZ).(24)

We now summarize the basic properties of the Cartan tensors.

C and C′ are semibasic.(25)

C[ and C′[ are totally symmetric.(26)

For any semispray S0,

(27) iS0C = iS0C[ = 0, iS0C′ = iS0C′[ = 0.
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We have the following computational formulas:

∀X, Y, Z ∈ X(M) : 2C[(Xc, Y c, Zc) = Xv[Y v(ZvE)];(28)

∀X, Y, Z ∈ X(M) : 2C′[(Xc, Y c, Zc) = [Y v, [Xh, Zv]]E.(29)

For details and a somewhat more general approach we refer to [16].

1.6 The Berwald and the Cartan connection. As it is well-known,
there exist a number of notable connections (more precisely, Finsler con-
nections) on a Finsler manifold [14]. In our subsequent considerations we

shall employ only the Berwald connection
◦
D and the Cartan connection

D. The rules for calculation with respect to these connections can be
summarized in the following table:

Berwald connection Cartan connection
◦
DJXJY = J [JX, Y ] DJXJY = J [JX, Y ] + C(X,Y )
◦
DhXJY = v[hX, JY ] DhXJY = v[hX, JY ] + C′(X, Y )
◦
DJXhY = h[JX, Y ] DJXhY = h[JX, Y ] + FC(X, Y )
◦
DhXhY = hF [hX, JY ] DhXhY = hF [hX, JY ] + FC′(X, Y )

(X,Y ∈ X(TM)).
Using vertically and horizontally lifted vector fields, these formulas

take the following more convenient form:

Berwald connection Cartan connection
◦
DXvY v = 0 DXvY v = C(Xh, Y h)
◦
DXhY v = [Xh, Y v] DXhY v = [Xh, Y v] + C′(Xh, Y h)
◦
DXvY h = 0 DXvY h = FC(Xh, Y h)
◦
DXhY h = F [Xh, Y v] DXhY h = F [Xh, Y v] + FC′(Xh, Y h)

(X,Y ∈ X(M) are arbitrary vector fields).

Let D̃ ∈ {
◦
D, D}. It will be convenient to introduce the operators

D̃J , D̃h : T r
s (TM) → T r

s+1(TM)

as follows: for any tensor A ∈ T r
s (TM) and any vector field X ∈ X(TM)

(30) iXD̃JA := D̃JXA, iXD̃hA := D̃hXA.
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1.7 Torsion and curvature. The classical torsion and curvature tensor
of a Finsler connection can be decomposed into five “partial” torsions and
three partial curvatures. As for the Berwald and the Cartan connection,
we have the following data ([8], [14]):

Berwald connection Cartan connection

h-horizontal torsion
◦A = 0 A = 0

h-mixed torsion
◦B = 0 B = −F ◦ C

v-horizontal torsion
◦R1 = − 1

2
[h, h] R1 = − 1

2
[h, h]

v-mixed torsion
◦P1 = 0 P1 = C′

v-vertical torsion
◦S1 = 0 S1 = 0

horizontal curvature
◦R =

◦
DJ

◦R1 R
mixed curvature

◦P(Xh, Y h)Zh =
�
[Xh, Y v ], Zv

� P
vertical curvature

◦Q = 0 Q(Xh, Y h)Zh

= C(Y h, FC(Xh, Zh))
−C(Xh, FC(Y h, Zh))

(X,Y, Z ∈ X(M)). R and P can be expressed explicitly with the help

of
◦
R and

◦
P respectively, but we shall not need these quite complicated

expressions.

1.7.1 Lemma. The mixed curvature
◦
P of the Berwald connection has

the following properties:

it is totally symmetric;(31)

it is homogeneous of degree −1, i.e., LC

◦
P = −2

◦
P;(32)

for any semispray S0, iS0

◦
P = 0;(33)

◦
DJ

◦
P is totally symmetric.(34)

Proof. See [15], 4.3, 4.4. ¤
1.7.2 Lemma (the fifth Bianchi identity). For any vector fields

X, Y, Z ∈ X(TM),

(DhXQ) (Y,Z)− (DJY P) (X, Z) + (DJZP) (X,Y )

= P(FC(X, Y ), Z)− P(FC(Z,X), Y )

−Q(FC′(X,Y ), Z) +Q(FC′(Z,X), Y ).
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Prrof. See [8], A.26. ¤

1.7.3 Lemma. For any vector fields X,Y, Z, U ∈ X(M),

(DhQ)(Xh, Y h, Zh, Uh) = (DXhC) (Zh, FC(Y h, Uh))

+ (DXhC) (Y h, FC(Zh, Uh)) + C (
Zh, F (DXhC) (Y h, Uh)

)

− C (
Y h, F (DXhC) (Zh, Uh)

)
.

The proof is a routine but little lengthy calculation so we omit it.

2. General remarks on Landsberg and Berwald manifolds

2.1 Proposition and definition (J.-G. Diaz). Keeping the notation

introduced in Section 1, let (M, E) be a Finsler manifold. The following

assertions are equivalent:

(i) The mixed curvature P of the Cartan connection vanishes.

(ii) The second Cartan tensor C′ vanishes.

(iii) The tensor DhC is totally symmetric.

(iv)
◦
P = −DhC.
If one, and therefore all, of the conditions (i)–(iv) are satisfied, then

(M, E) is called a Landsberg manifold.

An intrinsic proof of this important result (presented in the language
of Dazord’s formalism) can be found in Diaz’s thesis [6]. As for the tradi-
tional treatment, we refer to [12].

2.2 Further characterizations of a Landsberg manifold.

2.2.1. (M,E) is a Landsberg manifold if and only if
◦
Dh = Dh.

Proof. It can be seen immediately from the table in 1.6 that the

properties C′ = 0 and
◦
Dh = Dh are equivalent. ¤

2.2.2. Since P1 = C′ (1.7), the vanishing of the v-mixed torsion of the
Cartan connection characterizes the Landsberg manifolds.
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2.2.3. A Finsler manifold is a Landsberg manifold if and only if the

Berwald connection is h-metrical, i.e.,
◦
Dhg = 0.

Proof. For any vector fields X, Y, Z ∈ X(M),

C′[(Xh, Y h, Zh)
(24)
:= g(C′(Xh, Y h), Zv)

(23)
:=

1
2

(LXhg) (JY h, JZh) =
1
2

(LXhg) (Y v, Zv)

=
1
2

[
Xhg(Y v, Zv)− g([Xh, Y v], Zv)− g(Y v, [Xh, Zv])

]

1.6=
1
2

[
Xhg(Y v, Zv)− g

( ◦
DXhY v, Zv

)
− g

(
Y v,

◦
DXhZv

)]

=
1
2

( ◦
DXhg

)
(Y v, Zv).

Hence

(35) 2C′[ =
◦
Dhg,

which proves our assertion. ¤

Remark that in Matsumoto’s monograph [12] Landsberg manifolds

are defined by the property
◦
Dhg = 0.

2.3 Corollary. In any Landsberg manifold

(36)
◦
DhQ = DhQ = 0.

Proof. This follows from the fifth Bianchi identity (1.7.2), since –

as we have just seen – in Landsberg manifolds P = 0, C′ = 0 and
◦
Dh = Dh.

¤

2.4 Corollary. The mixed curvature of the Berwald connection in a

Landsberg manifold satisfies the identity

◦
P(Xh, Y h)FC(Zh, Uh) + C

(
Y h, F

(◦
P(Xh, Zh)Uh

))
(37)

=
◦
P(Zh, Xh)FC(Y h, Uh) + C

(
Zh, F

(◦
P(Xh, Y h)Uh

))

(X, Y, Z, U ∈ X(M)).
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Proof. This is an immediate consequence of 1.7.3, taking into ac-

count the fact that in Landsberg manifolds DhQ = 0 and DhC = −
◦
P.
¤

2.5 Proposition. The lowered mixed curvature tensor
◦
P[ of the Ber-

wald connection defined by

◦
P[(Xh, Y h, Zh, Uh) := g

(◦
P(Xh, Y h)Zh, JUh

)
(38)

(X, Y, Z, U ∈ X(M))

is totally symmetric in any Landsberg manifold.

Proof. Starting with the definition, we obtain

◦
P[(Xh, Y h, Zh, Uh)=g

(◦
P(Xh, Y h)Zh, JUh

)
(20),(9)

= ω
(◦
P(Xh, Y h)Zh, Uh

)

= d(dJE)
(◦
P(Xh, Y h)Zh, Uh

)
=

◦
P(Xh, Y h)Zh(dJE)(Uh)

− Uh(dJE)
(◦
P(Xh, Y h)Zh

)
− dJE

([◦
P(Xh, Y h)Zh, Uh

])
.

Since
◦
P(Xh, Y h)Zh ∈ Xv(TM), the second and the third term of the last

expression vanish by (1) and (5). The first term can be formed as follows:

◦
P(Xh, Y h)Zh(dJE)(Uh) =

◦
P(Xh, Y h)Zh(UvE)

=
[◦
P(Xh, Y h)Zh, Uv

]
E − Uv

(◦
P(Xh, Y h)Zh(E)

)
.

Applying Lemma 3.7 of [15], it follows that here the first term is

[
◦
DJ

◦
P(Xh, Y h, Zh, Uh)]E, while

Uv
(◦
P(Xh, Y h)Zh(E)

)
1.7= Uv([Xh, Y v], Zv]E)

(29)
= −2Uv(C′[(Xh, Y h, Zh)) = 0,

since the underlying manifold is Landsberg. Thus we obtain the relation

◦
P[(Xh, Y h, Zh, Uh) =

[ ◦
DJ

◦
P(Xh, Y h, Zh, Uh)

]
E.

In view of (34) this shows that
◦
P[ is totally symmetric. ¤
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2.6 Definition [16]. A Finsler manifold (M, E) is said to be a Berwald
manifold if there is a linear connection ∇ on M such that for any vector
fields X, Y ∈ X(M), (∇XY )v = [Xh, Y v].

2.7 Remark. The linear connection ∇ in the previous definition is
clearly unique, so it can be mentioned as the linear connection of the
Berwald manifold. It is readily seen that the horizontal endomorphism
induced by ∇ is just the Barthel endomorphism, therefore the canonical
spray of a Berwald manifold is smooth on the whole tangent manifold TM .
The converse of the last statement is also true. Let us note finally that the
Berwald connection of a Berwald manifold is just the horizontal lift ([5],
p. 134) of the linear connection ∇.

2.8 Lemma. A Finsler manifold (M, E) is a Berwald manifold if and
only if the condition

(39) ∀X, Y ∈ X(M) : [Xh, Y v] is a vertical lift

is fulfilled.

Proof. The necessity of (39) is evident. To see the sufficiency, let us
consider the mapping

∇ : (X, Y ) ∈ X(M)× X(M) 7→ ∇XY ∈ X(M), (∇XY )v = [Xh, Y v],

where Xh is the horizontal lift of X by the Barthel endomorphism. Then
an easy calculation shows that ∇ is a well-defined linear connection on M .

¤
2.9 Corollary. A Finsler manifold is a Berwald manifold if and only

if the mixed curvature of the Berwald connection vanishes.

Proof. If (M,E) is a Berwald manifold, then for any vector fields
X, Y, Z ∈ X(M),

◦
P(Xh, Y h)Zh 1.7= [[Xh, Y v], Zv] = [(∇XY )v

, Zv] = 0.

Conversely, if
◦
P vanishes, then

∀X,Y, Z ∈ X(M) : 0 = [[Xh, Y v], Zv] ⇒ ∀X, Y ∈ X(M) : [Xh, Y v] is a
vertical lift , and it follows (2.8) that (M, E) is a Berwald manifold. ¤

2.10 Remark. This is a well-known observation, of course. As for the
usual “coordinate-proof”, we also refer to [12].
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3. Projection onto the indicatrix bundle

3.1. Suppose that (M, E) is a Finsler manifold. Let L :=
√

2E and

U(M) := {v ∈ TM | L(v) = 1}.

By abuse of language, we shall call the (2n−1)-dimensional manifold U(M)
the indicatrix bundle of (M, E).

3.2 Lemma [9]. Let us denote by C∞0 (TM) the ring of those smooth

functions on TM which are homogeneous of degree 0. The module X[U(M)]
is canonically isomorphic to the C∞0 (TM)-module

(40) X0(TM) := {X ∈ X(TM) | [C, X] = −X and XE = 0}. ¤

3.3 Lemma. With respect to the metric g given by (20), the Liou-

ville vector field is everywhere orthogonal to the indicatrix bundle, i.e.,

g(C,X) = 0 for any vector fields X ∈ X[U(M)]. The vector field 1√
2E

C is

a unit normal vector field of the indicatrix bundle.

Proof. In view of Lemma 3.2 it is enough to show that for any vector
field X ∈ X0(TM), we have g(C, X) = 0. This can be seen by an easy
calculation:

g(C, X)
(20)
:= ω(C, FX) = iCω(FX)

(15)
= dJE(FX)

= dE(J ◦ F (X))=dE(X − hX)
(17)
= dE(X) = XE

(40)
= 0. ¤

3.4 Lemma. Suppose that (M, E) is a Finsler manifold. The mapping

τ := I − 1
2E

dE ⊗ C

is a projector. For any vector field X ∈ X(TM), τ(X) ¹ U(M) is a tangent

vector field to the indicatrix bundle.
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Proof.

∀X ∈ X(TM) : τ(X) = X − 1
2E

dE(X)C
(16)
= X +

1
2E

iSω(X)C

= X − 1
2E

ω(X, S)C = X − 1
2E

ω(X,hS)C
(9)
= X − 1

2E
ω(X,FC)C

(20)
= X − 1

2E
g(X, C)C = X − g(X, C)

g(C,C)
C.

Thus we have

(41) ∀X ∈ X(TM) : τ(X) = X − g(X, C)
g(C, C)

C.

In particular, for any vector field X ∈ X(TM),

τ(τ(X)) = τ(X)− g(τ(X), C)
g(C, C)

C.

Since g(τ(X), C) = g(X, C)− g(X,C)
g(C,C) g(C, C) = 0, τ(X) ¹ U(M) is tangent

to U(M) and τ(τ(X)) = τ(X). ¤
3.5 Proposition. Using the above notation, let κ := J∗ ◦ τ . Then

(42) κ = J − 1
2E

dJE ⊗ C.

The semibasic trace of κ is

(43) κ̃ = n− 1.

The lowered tensor κ[ of κ defined by

(44) κ[(X,Y ) := g(κX, JY ) (X,Y ∈ X(TM))

is symmetric.

Proof. The relation (42) is trivial from the definition. It is also clear
that κ is semibasic. Since

F ◦ κ
(9)
= h− 1

2E
F ◦ (dJE ⊗ C),

in view of definition 1.4 (i), we have

κ̃ := tr(F ◦ κ) = tr(h)− 1
2E

tr [F ◦ (dJE ⊗ C)] = tr(h)− 1
2E

˜dJE ⊗ C.
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An easy calculation shows that tr(h) = n, while, using formula (26)
of [17],

˜dJE ⊗ C = iSdJE = dE(C) = CE = 2E,

thus (43) is proved. Finally, for any vector fields X, Y ∈ X(M), we have

κ[(Xh, Y h) := g(κXh, JY h)
(42)
= g(Xv − 1

2E
(XvE)C, Y v)

= g(Xv, Y v)− 1
2E

(XvE)ω(Y v, S)

= g(Xv, Y v) +
1

2E
(XvE)iSω(Y v)

(16)
= g(Xv, Y v)− 1

2E
(XvE)dE(Y v)

= g(Xv, Y v)− 1
2E

(XvE)(Y vE),

showing the symmetry of κ[. ¤

3.6 Lemma. Consider the operator κ given by (42). For any vector

fields

X, Y ∈ X(M), we have

(45) κFC(Xh, Y h) = C(Xh, Y h) = C(Xh, FκY h).

Proof.

κFC(Xh, Y h) = C(Xh, Y h)− 1
2E

dJE(FC(Xh, Y h))C
(15)
= C(Xh, Y h)

− 1
2E

iCω(FC(Xh, Y h))C = C(Xh, Y h)− 1
2E

g(C, C(Xh, Y h))C

(22)
= C(Xh, Y h)− 1

2E
C[(Xh, Y h, S)C

(27)
= C(Xh, Y h);

C(Xh, FκY h) = C
(

Xh, F

(
Y v − 1

2E
(Y vE)C

))

= C(Xh, Y h)− 1
2E

(Y vE)C(Xh, S) = C(Xh, Y h). ¤
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3.7 Corollary. For any vector fields X, Y, Z ∈ X(M), we have

(46) κ[(Xh, FC(Y h, Zh)) = C[(Xh, Y h, Zh).

Proof. κ[(Xh, FC(Y h, Zh)) 3.5= κ[(FC(Y h, Zh), Xh)
(44)
:=

g(κFC(Y h, Zh), JXh)
(45)
= g(C(Y h, Zh), JXh)

(22)
= C[(Y h, Zh, Xh)

(26)
=

C[(Xh, Y h, Zh). ¤

3.8 Definition. Let (M, E) be a Finsler manifold, A ∈ T 0
r (TM),

K ∈ T 1
r (TM) (r ∈ N+); and let us consider the operator τ = I− 1

2E dE⊗C.

The tensors A∗ and K∗, given by

A∗(X1, . . . , Xr) := A(τ(X1), . . . , τ(Xr))

and

K∗(X1, . . . , Xr) := τ [K(τ(X1), . . . , τ(Xr))]

(Xi ∈ X(TM), 1 5 i 5 r) are called the projected tensors of A and K,

respectively.

3.9 Remark. Since for any vector field X ∈ X(M)

τ(Xh) = Xh − 1
2E

(XhE)C
(17)
= Xh,

it follows that in case of semibasic tensors A ∈ T 0
r (TM) and K ∈ T 1

r (TM)

A∗ = A, K∗ = τ ◦K.

3.10 Proposition. Consider the Douglas tensor

(47) D =
◦
P− 1

n + 1

( ◦
DJ

e◦
P⊗ C +

e◦
P¯ J

)
∈ T 1

3 (TM)

of the Finsler manifold (M,E) ([15]/6.1; the symbol ¯ means symmetric

product). The projected tensor of D is

(48) D∗ =
◦
P− 1

n + 1

e◦
P¯ κ +

1
E
C′[ ⊗ C.
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Proof. Since D is semibasic, by the preceding remark D∗ = τ ◦ D.
So, for any vector fields X,Y, Z ∈ X(M), we have

D∗(Xh, Y h, Zh) = D(Xh, Y h, Zh)− 1
2E
D(Xh, Y h, Zh)(E)C

(47)
=

◦
P(Xh, Y h, Zh)− 1

n + 1

◦
DJ

e◦
P(Xh, Y h, Zh)C

− 1
n + 1

e◦
P¯ J(Xh, Y h, Zh)− 1

2E

◦
P(Xh, Y h, Zh)(E)C

+
1

n + 1
1

2E

◦
DJ

e◦
P(Xh, Y h, Zh)(CE)C

+
1

n + 1
1

2E

[e◦
P¯ J(Xh, Y h, Zh)

]
(E)C.

The second and the fifth term on the left hand side cancel. Applying (29)
and 1.7 we obtain that

[◦
P(Xh, Y h)Zh

]
E =

[
[Xh, Y v], Zv

]
E = − [

Zv, [Xh, Y v]
]
E

= −2C′[(Xh, Zh, Y h) = −2C′[(Xh, Y h, Zh),

hence the fourth term is

1
E
C′[ ⊗ C(Xh, Y h, Zh).

It is also easy to check that the sixth term can be written in the form

1
n + 1

1
2E

(e◦
P¯ dJE

)
⊗ C(Xh, Y h, Zh),

which, together with the third term, yields the second term of (48). ¤

3.11 Corollary. The Douglas tensor and its projected tensor are re-

lated as follows:

(49) D∗ = D+
[

1
E
C′[ +

1
n + 1

( ◦
DJ

e◦
P+

1
2E

e◦
P¯ dJE

)]
⊗ C. ¤

3.12 Theorem. If (M, E) is a Finsler manifold of dimension n > 2,

then the vanishing of the projected Douglas tensor is equivalent with the

vanishing of the Douglas tensor.
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Proof. Let us consider the Douglas tensor D and the projected Dou-
glas tensor D∗ of (M,E). Since D∗ = τ ◦D, if D = 0, then D∗ also vanishes.

Conversely, assume that D∗ = 0. Then, from (48) we obtain

◦
P =

1
n + 1

e◦
P¯ κ− 1

E
C′[ ⊗ C,

and hence

(50)
( ◦
DJ

◦
P
)∗

=
1

n + 1

[ ◦
DJ

(e◦
P¯ κ

)]∗
−

[ ◦
DJ

(
1
E
C′[ ⊗ C

)]∗
.

Step 1. We evaluate the left hand side of (50) term by term. Let
X, Y, Z, U ∈ X(M) be arbitrary vector fields.

[ ◦
DJ

(e◦
P¯ κ

)]∗
(Xh, Y h, Zh, Uh) =

[ ◦
DJ

(e◦
P¯ κ

)]
(Xh, Y h, Zh, Uh)(a)

− 1
2E

[( ◦
DJ

(e◦
P¯ κ

))
(Xh, Y h, Zh, Uh)

]
(E)C =

[ ◦
DXv

(e◦
P¯ κ

)]

× (Y h, Zh, Uh)− 1
2E

[( ◦
DXv

(e◦
P¯ κ

))
(Y h, Zh, Uh)

]
(E)C.

Using the product rule and taking into account the facts that

(i)
◦
DXvκY h (42)

=
◦
DXv

(
Y v − 1

2E
(Y vE)C

)
1.6= −Xv

( 1
2E

Y vE
)
C

− 1
2E

(Y vE)
◦
DXvC = −Xv

( 1
2E

Y vE
)
C − 1

2E
(Y vE)Xv (since

◦
DXvC =

◦
DJXhJS

[14]/(27)
= J [JXh, S]

[7], Prop. I.7
= JXh = Xv);

(ii) (κY h)E = Y vE − 1
2E

(Y vE)(CE) = Y vE − Y vE = 0;

(iii)
( ◦
DXvκY h

)
E

(i)
= −2E ·Xv

( 1
2E

Y vE
)
− 1

2E
(XvE)(Y vE), after a

somewhat lengthy but quite straightforward calculation we ob-
tain

[ ◦
DJ

(e◦
P¯ κ

)]∗
(Xh, Y h, Zh, Uh)(51)

=
[( ◦

DXv

e◦
P
)
¯ κ− 1

2E

(e◦
P¯ dJE

)
⊗ κXh

]
(Y h, Zh, Uh).
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[ ◦
DJ

( 1
E
C′[ ⊗ C

)]∗
(Xh, Y h, Zh, Uh) =

[ ◦
DJ

( 1
E
C′[ ⊗ C

)]
(b)

× (Xh, Y h, Zh, Uh)− 1
2E

[( ◦
DJ

( 1
E
C′[ ⊗ C

))

× (Xh, Y h, Zh, Uh)
]
(E)C =

[ ◦
DXv

( 1
E
C′[ ⊗ C

)]
(Y h, Zh, Uh)

− 1
2E

[( ◦
DXv

( 1
E
C′[ ⊗ C

))
(Y h, Zh, Uh)

]
(E)C

1.6= Xv
[ 1
E
C′[(Y h, Zh, Uh)

]
C +

1
E
C′[(Y h, Zh, Uh)

◦
DXvC

− 1
2E

Xv
[ 1
E
C′[(Y h, Zh, Uh)

]
(CE)C

− 1
2E2

C′[(Y h, Zh, Uh)
( ◦
DXvC

)
(E)C

(i)
=

1
E
C′[(Y h, Zh, Uh)Xv

− 1
2E

1
E
C′[(Y h, Zh, Uh)(XvE)C =

1
E
C′[(Y h, Zh, Uh)κ(Xh).

This result and (51) yield the formula

( ◦
DJ

◦
P
)∗

(Xh, Y h, Zh, Uh) =
1

n + 1

[( ◦
DXv

e◦
P
)
¯ κ

]
(Y h, Zh, Uh)(52)

− κ(Xh)
( 1

2E

1
n + 1

e◦
P¯ dJE +

1
E
C′

)
(Y h, Zh, Uh).

Step 2. Since the tensor
◦
DJ

◦
P is totally symmetric (1.7.1) and (

◦
DJ

◦
P)∗ =

τ ◦
◦
DJ

◦
P, the projected tensor (

◦
DJ

◦
P)∗ is also totally symmetric. Hence the

semibasic (1,4) tensor A defined by

A(Xh, Y h, Zh, Uh):=
(◦
DJ

◦
P
)∗

(Xh, Y h, Zh, Uh)−
(◦
DJ

◦
P
)∗

(Uh, Y h, Zh, Xh)

vanishes identically. On the other hand, in view of (52), for any vector
fields X, Y, Z, U ∈ X(M) we have

A(Xh, Y h, Zh, Uh) =
1

n + 1

[( ◦
DXv

e◦
P
)
¯ κ

]
(Y h, Zh, Uh)

− κ(Xh)
( 1

E
C′[ +

1
2E

1
n + 1

e◦
P¯ dJE

)
(Y h, Zh, Uh)
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− 1
n + 1

( ◦
DUv

e◦
P¯ κ

)
(Y h, Zh, Xh)

+ κ(Uh)
( 1

E
C′[ +

1
2E

1
n + 1

e◦
P¯ dJE

)
(Y h, Zh, Xh).

Introducing the symmetric semibasic (0,3) tensor

(53) α :=
1
E
C′[ +

1
2E

1
n + 1

e◦
P¯ dJE +

1
n + 1

◦
DJ

e◦
P,

and taking into account that
◦
DXv

e◦
P = iXh

◦
DJ

e◦
P (X ∈ X(M)), where

◦
DJ

e◦
P

is also totally symmetric by Corollary 4.5 of [15], we finally obtain that

A = α⊗ κ− κ⊗ α.

Since the semibasic trace of A clearly vanishes, it follows that

α̃⊗ κ− κ̃⊗ α = 0.

Here

α̃⊗ κ
(11)
= κ̃α

(43)
= (n− 1)α,

iX κ̃⊗ α
(12)
= iFκ(X)α (X ∈ X(TM)),

and therefore for any vector fields X,Y, Z ∈ X(M),

(54) (n− 1)α(Xh, Y h, Zh)− α(Fκ(Xh), Y h, Zh) = 0.

To complete the proof, we show that

(55) α(Fκ(Xh), Y h, Zh) = α(Xh, Y h, Zh).

We evaluate the right side of (53) on the triplet (Fκ(Xh), Y h, Zh) term
by term.

(i)
1
E
C′[(Fκ(Xh), Y h, Zh) =

1
E
C′[(Xh, Y h, Zh)

− 1
E
C′[

( 1
2E

(XvE)S, Y h, Zh
)

(27)
=

1
E
C′[(Xh, Y h, Zh);
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(ii)
1

n + 1
1

2E

(e◦
P¯ dJE

)
(Fκ(Xh), Y h, Zh) =

1
n + 1

1
2E

(e◦
P¯ dJE

)

×(Xh, Y h, Zh)− 1
n + 1

1
4E2

(XvE)
(e◦
P¯ dJE

)
(S, Y h, Zh)

=
1

n+1
1

2E

(e◦
P¯dJE

)
(Xh, Y h, Zh)− 1

n+1
1

4E2
(XvE)

e◦
P(Y h, Zh)C(E)

=
1

n + 1
1

2E

(e◦
P¯ dJE

)
(Xh, Y h, Zh)− 1

n + 1
1

2E
(XvE)

e◦
P(Y h, Zh),

using the fact that iS
e◦
P :=

˜
iS
◦
P (33)

= 0;

(iii)
1

n + 1

◦
DJ

e◦
P(Fκ(Xh), Y h, Zh) =

1
n + 1

◦
DJ

e◦
P(Xh, Y h, Zh)

− 1
n + 1

1
2E

(XvE)
◦
DJ

e◦
P(S, Y h, Zh) =

1
n + 1

◦
DJ

e◦
P(Xh, Y h, Zh)

− 1
n + 1

1
2E

(XvE)
◦
DC

e◦
P(Y h, Zh) =

1
n + 1

◦
DJ

e◦
P(Xh, Y h, Zh)

+
1

n + 1
1

2E
(XvE)

e◦
P(Y h, Zh), since

◦
DC

e◦
P = −

e◦
P by (4.5a) of [15].

Adding the corresponding sides of (i)–(iii) we obtain the desired relation
(55). (54) and (55) imply that

(n− 2)α = 0,

from which we see, by the assumption n > 2, that α = 0. Owing to (49)
and (53) this means that D = 0, concluding the proof. ¤

4. Landsberg manifolds with vanishing Douglas tensor

4.1 Lemma. Suppose that (M, E) is a Landsberg manifold whose

Douglas tensor vanishes. Then the mixed curvature of the Berwald con-

nection can be represented in the form

(56)
◦
P =

1
n + 1

e◦
P¯ κ.

Proof. This is an immediate consequence of (48), the trivial impli-
cation D = 0 ⇒ D∗ = 0, and the Proposition 2.1. ¤
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4.2 Proposition. Let (M,E) be a Landsberg manifold with vanishing
Douglas tensor. Then the semibasic trace of the mixed curvature of the
Berwald connection can be expressed in the form

(57)
e◦
P =

1
n− 1

ẽ◦
P

#

κ[,

where
e◦
P

#

is the (1,1) tensor metrically equivalent to the (0,2) tensor
e◦
P:

for any vector fields X,Y ∈ X(TM),

g
(e◦
P

#

(X), JY
)

=
e◦
P(X, Y ).

Proof. Let X, Y, Z, U ∈ X(M) be arbitrary vector fields. We set

out from the fact that the tensor
◦
P[ defined by (38) is totally symmetric,

whence

0 =
◦
P[(Xh, Y h, Zh, Uh)−

◦
P[(Xh, Y h, Uh, Zh)

(38)
= g

(◦
P(Xh, Y h)Zh, JUh

)

− g
(◦
P(Xh, Y h)Uh, JZh

)
(56)
=

1
n + 1

[
g
(e◦
P(Xh, Y h)κ(Zh), Uv)

+ g
(e◦
P(Y h, Zh)κ(Xh), Uv

)
+ g

(e◦
P(Zh, Xh)κ(Y h), Uv

)

− g
(e◦
P(Xh, Y h)κ(Uh), Zv

)
− g

(e◦
P(Y h, Uh)κ(Xh), Zv

)

− g
(e◦
P(Uh, Xh)κ(Y h), Zv

)]
(44)
=

1
n + 1

[e◦
P(Xh, Y h)κ[(Zh, Uh)

+
e◦
P(Y h, Zh)κ[(Xh, Uh)+

e◦
P(Zh, Xh)κ[(Y h, Uh)−

e◦
P(Xh, Y h)κ[(Uh, Zh)

−
e◦
P(Y h, Uh)κ[(Xh, Zh)−

e◦
P(Uh, Xh)κ[(Y h, Zh)

]

=
1

n + 1

[e◦
P(Y h, Zh)κ[(Xh, Uh) +

e◦
P(Zh, Xh)κ[(Y h, Uh)

−
e◦
P(Y h, Uh)κ[(Xh, Zh)−

e◦
P(Uh, Xh)κ[(Y h, Zh)

]
,

using the symmetry of κ[ in the last step. In view of the definition of the

tensors
e◦
P

#

and κ[, we finally obtain the relation
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g
(e◦
P

#

(Zh), Y v
)
κ[(Xh, Uh) +

e◦
P(Zh, Xh)g(κ(Uh), Y v)

−g
(e◦
P

#

(Uh), Y v
)
κ[(Xh, Zh)−

e◦
P(Uh, Xh)g(κ(Zh), Y v) = 0.

Since the vector field Y ∈ X(M) is arbitrary and the tensor g is nondegen-
erate, this implies

e◦
P

#

(Zh)κ[(Xh, Uh) +
e◦
P(Zh, Xh)κ(Uh)−

e◦
P

#

(Uh)κ[(Xh, Zh)(58)

−
e◦
P(Uh, Xh)κ(Zh) = 0.

Now let us define the semibasic (1,3) tensors B and B as follows: for any
vector fields X, Y, Z ∈ X(M),

B(Xh, Y h, Zh) :=
e◦
P

#

(Y h)κ[(Xh, Zh) +
e◦
P(Y h, Xh)κ(Zh)

−
e◦
P

#

(Zh)κ[(Xh, Y h)−
e◦
P(Zh, Xh)κ(Y h);

B(Xh, Y h, Zh) := B(Y h, Xh, Zh).

From (58) it is trivial that B = B = 0, whence B̃ = B̃ = 0. Let us observe
that

B =
e◦
P

#

⊗ κ[ +
e◦
P⊗ κ− κ[ ⊗

e◦
P

#

− κ⊗
e◦
P.

Thus, applying (11), (12) and (43), it follows that for any vector fields
X, Y ∈ X(M),

B̃(Xh, Y h) = κ[

(
F
e◦
P

#

(Xh), Y h
)

+ (n− 1)
e◦
P(Xh, Y h)(59)

−
ẽ◦
P

#

κ[(Xh, Y h)−
e◦
P(Fκ(Xh), Y h) = 0.
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In this formula

κ[

(
F
e◦
P

#

(Xh), Y h
)

= g
(
κF

e◦
P

#

(Xh), Y v
)

(i)

= g
(e◦
P

#

(Xh), Y v
)
− 1

2E
dJE

(
F
e◦
P

#

(Xh)
)
g(C, Y v)

=
e◦
P(Xh, Y h)− 1

2E
g
(
C,
e◦
P

#

(Xh)
)
g(C, Y v)

=
e◦
P(Xh, Y h)− 1

2E

e◦
P(Xh, S)g(C, Y v)

(33)
=

e◦
P(Xh, Y h);

(ii)
e◦
P(Fκ(Xh), Y h) =

e◦
P(Xh, Y h)− 1

2E
(XvE)

e◦
P(S, Y h) =

e◦
P(Xh, Y h),

whence

e◦
P(Xh, Y h) + (n− 1)

e◦
P(Xh, Y h)−

ẽ◦
P

#

κ[(Xh, Y h)−
e◦
P(Xh, Y h) = 0,

which proves the relation (57). ¤

4.3 Corollary. If (M, E) is a Landsberg manifold with vanishing Dou-

glas tensor, then the mixed curvature of the Berwald connection can be

expressed as follows:

(60)
◦
P =

1
n2 − 1

ẽ◦
P

#

κ[ ¯ κ.

Proof. Immediate from (56) and (57). ¤

4.4 Corollary. With the hypothesis as above, for any vector fields

X, Y, Z, U ∈ X(M), we have

ẽ◦
P

# [C[(Xh, Zh, Uh)κ(Y h) + κ[(Zh, Uh)C(Xh, Y h)(61)

−C[(Xh, Y h, Uh)κ(Zh)− κ[(Y h, Uh)C(Xh, Zh)
]

= 0.

Proof. Easy calculation, applying (37) and (60). ¤
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4.5 Theorem. Suppose that (M, E) is an n > 2 dimensional Lands-

berg manifold. If the Douglas tensor of (M, E) vanishes, then (M, E) is a

Berwald manifold.

Proof. Let us introduce the semibasic (1, 4) tensors β and β defined
by

β(Xh, Y h, Zh, Uh) := left hand side of (61),

β(Xh, Y h, Zh, Uh) := β(Y h, Xh, Uh, Zh) (X,Y, Z, U ∈ X(M)).

Then β, β and their semibasic traces vanish identically. It is immediate
that for any vector fields X,Y, Z, U ∈ X(M),

β(Xh, Y h, Zh, Uh) =
ẽ◦
P

#

(κ⊗ C[ + C ⊗ κ[ − C[ ⊗ κ)(Xh, Y h, Zh, Uh)

−
ẽ◦
P

#

(κ[ ⊗ C)(Xh, Zh, Y h, Uh).

Applying (11)–(14) and (43), the relation β̃ = 0 yields

ẽ◦
P

# [C[(Fκ(Xh), Y h, Zh) + κ[(FC(Xh, Y h), Zh)(62)

−(n− 1)C[(Xh, Y h, Zh)− κ[(Xh, Zh)C̃(Y h)
]

= 0.

In this formula

C[(Fκ(Xh), Y h, Zh) = C[(Xh, Y h, Zh)(i)

− 1
2E

(XvE)C[(S, Y h, Zh) = C[(Xh, Y h, Zh),

(ii) κ[(FC(Xh, Y h), Zh)
(45)
= C[(Xh, Y h, Zh),

whence

ẽ◦
P

# [
(n− 3)C[(Xh, Y h, Zh) + κ[(Xh, Zh)C̃(Y h)

]
= 0.
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This can also be written in the form

ẽ◦
P

# [
(n− 3)g(C(Xh, Y h), Zv) + g(C̃(Y h)κ(Xh), Zv)

]
= 0.

This implies

(63)
ẽ◦
P

# [
(n− 3)C(Xh, Y h) + κ(Xh)C̃(Y h)

]
= 0.

Finally let us consider the semibasic (1, 2) tensor

γ :=
ẽ◦
P

# [
(n− 3)C + κ⊗ C̃

]
.

In view of (63) γ and, at the same time, γ̃ vanish identically. Applying
(12) it follows that for any vector field X ∈ X(M),

0 = γ̃(Xh) =
ẽ◦
P

# [
(n− 3)C̃(Xh) + C̃(Fκ(Xh))

]
.

In this formula

C̃(Fκ(Xh)) = C̃(Xh)− 1
2E

(XvE)C̃(S)

= C̃(Xh)− 1
2E

(XvE)ĩSC (27)
= C̃(Xh),

so we obtain the relation

(n− 2)
ẽ◦
P

#

C̃ = 0.

Since n > 2, from this it follows that
ẽ◦
P

#

= 0 or C̃ = 0. In the first case

(60) implies that
◦
P = 0. Then, according to Corollary 2.9, (M,E) is a

Berwald manifold. In the second case taking the semibasic trace of both

sides of the relation
◦
P = −DhC (2.1 (iv)) we obtain that 0 = DhC̃ = −

e◦
P,

and then (56) yields the desired conclusion
◦
P = 0. ¤
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