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Commutativity of rings with variable constraints

By MOHARRAM A. KHAN (Jeddah)

Abstract. Let m > 1, r ≥ 0 be fixed non-negative integers and R a ring with
unity 1 in which for each x ∈ R, there exists a polynomial f(X, Y ) = fx(X, Y ) in
R〈X, Y 〉 satisfying the condition that for all y in R f(x, y) = f(x, y + 1) = f(x, x + y)
so that either of the properties yr[x, ym] = f(x, y) or [x, ym]yr = f(x, y) for all y in R.
The main result of the present paper asserts that R is commutative if it satisfies the
property Q(m) (for all x, y ∈ R, m[x, y] = 0 implies [x, y] = 0). Finally, some results
have been extended to one-sided s-unital rings.

1. Introduction

Throughout, R will be an associative ring (maybe without unity 1),
Z(R) the center of R, C(R) the commutator ideal of R, N(R) the set of all
nilpotent elements of R, N ′(R) the set of all zero-divisors in R. The symbol
[x, y] stands for the commutator xy−yx of two elements x and y in R. As
usual, Z[X, Y ] the ring of polynomials in two commuting indeterminates
and Z〈X, Y 〉 the ring of polynomials in two non-commuting indeterminates
over the ring Z of integers. For a ring R and a positive integer m we say
that R has the property Q(m) if m[x, y] = 0 implies that [x, y] = 0 for all
x, y ∈ R.

Obviously, any m-torsion-free ring R has the property Q(m) and if R

has the property Q(m), then R has the property Q(n) for any factor m

of n.

For fixed integers m > 1 and r ≥ 0, consider the following ring prop-
erties.
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(P) For each x ∈ R, there exists a polynomial f(X,Y ) = fx(X,Y )
in R〈X,Y 〉 satisfying the condition that for all y in R f(x, y) =
f(x, y + 1) = f(x, x + y) so that

yr[x, ym] = f(x, y) for all y in R.

(P1) For each x ∈ R, there exists a polynomial f(X,Y ) = fx(X,Y )
in R〈X,Y 〉 satisfying the condition that for all y in R f(x, y) =
f(x, y + 1) = f(x, x + y) so that

[x, ym]yr = f(x, y) for all y in R.

(P2) For each x in R, there exist polynomials (depending on x) n(X) =
nx(X), p(X) = px(X), q(X) = qx(X) in Z(R)[X] so that

yr[x, ym] = p(x)[n(x), y]q(x), for all y in R.

(P3) For each x in R, there exist polynomials (depending on x) n(X) =
nx(X), p(X) = px(X), q(X) = qx(X) in Z(R)[X] so that

[x, ym]yr = p(x)[n(x), y]q(x), for all y in R.

(P4) For each x in R, there exist integers n = n(x) ≥ 0, p = p(x) ≥ 0
and q = q(x) ≥ 0 such that

yr[x, ym] = ±xp[xn, y]xq, for all y in R.

(P5) For each x in R, there exist integers n = n(x) ≥ 0, p = p(x) ≥ 0
and q = q(x) ≥ 0 such that

[x, ym]yr = ±xp[xn, y]xq, for all y in R.

Q(m) For all x, y ∈ R, m[x, y] = 0 implies that [x, y] = 0, where m is some
positive integer.

Properties (P2) and (P3), as well as the properties (P4) and (P5)
all follow from (P) and (P1). There are several results in the existing
literature concerning the commutativity of rings satisfying special cases of
the properties (P) and (P1).

In [3, Theorems 2 and 4], Abujabal has shown that a ring with
unity 1 is commutative if, for every x, y in R, R satisfies any one of the
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polynomial identities ys[x, ym] = ±xt[xn, y] and [x, ym]ys = ±xt[xn, y],
where m > 1, n ≥ 1 and s, t are fixed non-negative integers with the
property Q(m).

In most of the cases, the underlying polynomials in (P) and (P1)
are particularly assumed to be monomials [1], [2], [4]–[8], [10]–[14], [16]–
[18]. The object of the present paper is to investigate commutativity of
rings satisfying one of the properties (P) and (P1) together with the prop-
erty Q(m).

2. Main result

The main result of the present paper is the following:

Theorem 1. Let R be a ring with unity 1 satisfying either of the

properties (P) or (P1). If R satisfies the property Q(m), then R is com-

mutative.

In the preparation for the proof of the above theorem, we start by
stating without proof the following well-known results.

Lemma 1 [9, p. 221]. If [[x, y], x] = 0 and p(X) in Z(R)[X], then

[p(x), y] = p′(x)[x, y] for all x, y in R.

Lemma 2 [10, Theorem]. Let f be a polynomial in n non-commuting

indeterminates x1, x2, . . . , xn with relatively prime integral coefficients.

Then the following are equivalent:

(a) For any ring satisfying the polynomial identity f = 0, C(R) is a nil

ideal.

(b) For every prime p, (GF (p))2 the ring of all 2×2 matrices over GF (p),
fails to satisfy f = 0.

Following is a special case of a result which was proved by Streb [19,
Hauptsatz 3].

Lemma 3. Let R satisfy a polynomial identity of the form [x, y] =
p(x, y), where p(X, Y ) in Z〈X, Y 〉 has the following properties:

(i) p(X,Y ) is in the kernel of the natural homomorphism from Z〈X,Y 〉
to Z[X, Y ];

(ii) each monomial of p(X,Y ) has total degree at least 3;
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(iii) each monomial of p(X,Y ) has X-degree at least 2, or each monomial

of p(X, Y ) has Y -degree at least 2.

Then R is commutative.

Here, we shall prove the following lemma, which is proved in [15,
Lemma 4] for a fixed exponent n, but with a slight modification in the
proof it can be obtained for variable exponent n.

Lemma 4. Let R be a ring with unity 1 and let f : R → R be

any polynomial function of two variables with the property f(x + 1, y) =
f(x, y), for all x, y in R. If for all x, y in R there exists an integer n =
n(x, y) ≥ 1 such that xnf(x, y) = 0, then necessarily f(x, y) = 0.

Proof. Given that xnf(x, y) = 0, n = n(x, y) ≥ 1. Choose an integer
n1 = n(1 + x, y) such that (1 + x)n1f(x, y) = 0. If k = max{n, n1}, then
xkf(x, y) = 0 and (1 + x)kf(x, y) = 0. We have,

f(x, y) = {(1 + x)− x}2k+1f(x, y).

Expanding the expression on the right-hand side by the binomial theorem
gives that f(x, y) = 0. ¤

We establish the following steps to prove Theorem 1.

Step 1. Let R be a ring satisfying either of the properties (P) or (P1).
Then C(R) ⊆ N(R).

Proof. Let R satisfy the property (P), that is,

(1) yr[x, ym] = f(x, y).

Replace y by y + x in (1) to get

(2) (y + x)r[x, (y + x)m] = f(x, x + y) = f(x, y).

Combining (1) and (2), we get

(3) (y + x)r[x, (y + x)m]− yr[x, ym] = 0 for all x, y ∈ R

and some fixed integers r ≥ 0, m > 1. Equation (3) is a polynomial
identity and we see that x = e11 + e12 and y = −e12 fail to satisfy this
equality in (GF (p))2, p a prime. Hence by Lemma 2, C(R) ⊆ N(R).
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On the other hand, if R satisfies the property (P1), then by using
a similar technique of replacing y by y + x, we find that R satisfies the
polynomial identity [x, (y + x)m](y + x)r = [x, ym]yr for all x, y ∈ R and
some fixed integers r ≥ 0, m > 1. But x = e22 + e12 and y = −e12 fail
to satisfy this equality in (GF (p))2, p a prime. Hence, Lemma 2 gives
C(R) ⊆ N(R). ¤

Step 2. Let R be a ring with unity 1 satisfying either of the properties
(P) or (P1). If R has the property Q(m), then N(R) ⊆ Z(R).

Proof. Let R satisfy the property (P) and a ∈ N(R). Then there
exists an integer t ≥ 1 such that

(4) ak ∈ Z(R), for all k ≥ t, t minimal.

Suppose that t > 1. Replacing y by at−1 in (P), we get

ar(t−1)
[
x, am(t−1)

]
= f(x, at−1).

In view of (4) and the fact that m(t− 1) ≥ t, for m > 1, we get

(5) f
(
x, at−1

)
= 0.

Replacing y by 1 + at−1 in (P), we get
(
1 + a(t−1)

)r[
x, (1 + a(t−1))m

]
= f

(
x, 1 + at−1

)
= f

(
x, at−1

)
.

Using (5) gives (1 + a(t−1))r[x, (1 + a(t−1))m] = 0, for all x in R. Since
(1 + at−1) is invertible, the last equation implies that

(6)
[
x, (1 + a(t−1))m

]
= 0 for all x in R.

Combining (4) and (6), we get

0 =
[
x, (1 + a(t−1))m

]
=

[
x, 1 + mat−1

]
= m

[
x, at−1

]
.

Applying the property Q(m), it follows that [x, at−1] = 0 for all x ∈ R,
i.e., at−1 ∈ Z(R). This contradicts the minimality of t in (4). Hence t = 1
and a ∈ Z(R). So N(R) ⊆ Z(R). ¤

Similar arguments may be used if R satisfies the property (P1).
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Proof of Theorem 1. In view of Step 1 and Step 2, we have

(7) C(R) ⊆ N(R) ⊆ Z(R).

Properties (P) and (P1) are equivalent and by Lemma 1 both can be
written as

(8) m[x, y]ym+r−1 = f(x, y).

Replacing 1 + y for y in (8),we get

(9) m[x, y](1 + y)m+r−1 = f(x, 1 + y) = f(x, y).

From (8) and (9), we get

m[x, y]{(1 + y)m+r−1 − ym+r−1} = 0 for all x, y in R.

Now, by using the property Q(m) in the last equation, we get

(10) [x, y]
{
(1 + y)m+r−1 − ym+r−1

}
= 0.

For m + r = 2 in (10), we get the commutativity of R.
For m+r > 2, (10) implies that [x, y] = [x, y]f(y) for all x, y in R and

for some polynomial f(Y ) in Z[Y ] is a polynomial such that all monomials
of f have degree at least one. Hence R is commutative by Lemma 3. ¤

The following results are immediate consequences of Theorem 1.

Corollary 1. Let R be a ring with unity 1 satisfying one of the prop-

erties (P2) and (P3). If R satisfies the property Q(m), then R is commu-

tative.

Corollary 2. Let R be a ring with unity 1 satisfying one of the prop-

erties (P4) and (P5). If R satisfies the property Q(m), then R is commu-

tative.

Corollary 3 [3, Theorem 3]. Suppose that n > 1 and m are positive

integers and let s, t be non-negative integers. Let R be a ring with unity 1

satisfying the polynomial identity [x, ym]ys = ±[y, xn]xt for all x, y in R.

If R has the property Q(m), then R is commutative.
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Corollary 4 [17, Theorem 1]. Let n > 1, m > 1 and let p, q be non-

negative integers. Let R be a ring with unity 1 satisfying the polynomial

identity [x, ym]yq = xp[xn, y] for all x, y in R. If R is n-torsion-free, then

R is commutative.

Corollary 5 [1, Lemma 2(2)]. Let R be a ring with unity 1 and n > 1
a fixed positive integer. If R is n-torsion-free and satisfies the identity

[xn, y] = [x, yn] for all x, y in R, then R is commutative.

Remark 1. The following example strengthens the existence of the
property Q(m) in Theorem 1 and Corollaries 1, 2, 3, 4, 5.

Example 1. Let R =
[

α β γ

0 α2 0

0 0 α

]
, where α, β, γ ∈ GF (4), the finite

Galois field, be the set of all matrices. It is readily verified that R (with
the usual matrix addition and multiplication) is a non-commutative local
ring with unity I, the identity matrix. Further, R satisfies

(11) x48 ∈ Z(R) for all x ∈ R.

Since N ′(R) consists of all matrices x in R with zero diagonal elements,
and thus, contains exactly 16 elements. For any x ∈ N ′(R), x2 = 0 and
hence x48 = 0 ∈ Z(R). The set R \ N ′(R) is a multiplicative group of
order 48 and hence x48 = I ∈ Z(R) for all x ∈ R \ N ′(R). In view of
(11) it follows that R satisfies the properties (P) or (P1). This shows that
the assumption that R has the property Q(m) in Theorem 1 and above
corollaries cannot be eliminated.

The following result demonstrates that Corollary 2 is still valid if the
property “Q(m)” is replaced by the condition that “m and n are relatively
prime positive integers”.

Theorem 2. Let m > 1 and r ≥ 0 be fixed integers and let R be a ring

with unity 1 in which for every x in R there exist integers n = n(x) > 1,

p = p(x) ≥ 0 and q = q(x) ≥ 0 such that m and n are relatively prime and

R satisfies one of the properties (P4) and (P5). Then R is commutative.

Proof. Let R satisfy the property (P4) and let a be an arbitrary
element in N(R). Then there exists a positive integer t such that ak ∈
Z(R), for all k ≥ t, t minimal.
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Using the same arguments as used to prove Step 2, we have

(12) m[x, at−1] = 0 for all x in R.

Further, choose integers n′ = n(at−1) > 1 relatively prime to m and
p′ = p(at−1) ≥ 0 and q′ = q(at−1) ≥ 0 such that
yr[at−1, ym] = ±ap′(t−1)[an′(t−1), y]aq′(t−1). Using (12) and the fact that
n′(t− 1) ≥ t for n′ > 1, we have

(13) yr[at−1, ym] = 0, for all y in R.

Again, choose integer n′′ = n(1 + at−1) > 1 relatively prime to m and
p′′ = p(1 + at−1) ≥ 0, q′′ = q(1 + at−1) ≥ 0 such that

(14) yr[at−1, ym] = ±(1 + a(t−1))p′′ [(1 + a(t−1))n′′ , y](1 + at−1)q′′ .

Hence, in view of (13) and the fact that 1 + at−1 is invertible, (14) yields

(15)
[
(1 + a(t−1))n′′ , y

]
= 0, for all y in R.

Combining (4) and (15), we obtain

0 = [(1 + a(t−1))n′′ , y] = [1 + n′′at−1, y] = n′′[at−1, y].

This implies that n′′[x, at−1] = 0, for all x in R, and in view of (12), the
relative primeness of n′′ and m gives that at−1 ∈ Z(R). This contradicts
the minimality of t and thus t = 1 and a ∈ Z(R). Hence by Step 1, we get
C(R) ⊆ N(R) ⊆ Z(R) and Lemma 1 gives that

(16) mym+r−1[x, y] = ±nxp+q+n−1[x, y].

Let m[x, y] = 0. Then equation (16) gives that

(17) nxp+q+n−1[x, y] = xp+q+n−1n[x, y] = 0.

Using Lemma 4, (17) becomes n[x, y] = 0, for all x, y in R, and the relative
primeness of m and n implies that [x, y] = 0. This shows that R also has
the property Q(m). Hence, commutativity of R follows from Theorem 1.

¤
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Corollary 6 [12, Theorem 2]. Let m > 1, n > 1 be fixed relative

prime positive integers and let p, r fixed non-negative integers. If R is a

ring with unity 1 satisfying the polynomial identity yr[x, ym] = ±xp[xn, y]
for all x, y in R, then R is commutative.

Corollary 7 [17, Theorem 2]. Suppose that m > 1, n > 1 be fixed

relative prime positive integers. Let p, q be fixed non-negative integers

and R a ring with unity 1 satisfying the polynomial identity [x, ym]yq =
xp[xn, y] for all x,y in R. Then R is commutative.

Remark 2. The following example shows that R need not be commu-
tative if “m and n are not relatively prime” in the hypothesis of Theorem 2
and Corollaries 6, 7.

Example 2. Let R =
{(

a b c

0 a d

0 0 a

) ∣∣ a, b, c, d ∈ GF (2)
}

. Then R is a

non-commutative ring with unity 1 satisfying yr[x, y4] = ±xp[x4, y]xq (or
[x, y4]yr = ±xp[x4, y]xq), for any non-negative integers p, q and r.

3. Extension to s-unital rings

Since there are non-commutative rings with R2 being central, neither
of these conditions guarantees the commutativity of arbitrary rings. Before
we go ahead with our task, we pause to recall a few preliminaries in order
to make our paper self contained as possible. A ring R is said to be left
(resp. right) s-unital if x ∈ Rx (resp. x ∈ xR) for each x ∈ R. As shown
in [8], then for any finite subset F of R, there exists an element e in R

such that ex = xe = x (resp. ex = x or xe = x) for all x in F . Such an
element e is called a pseudo-identity (resp. pseudo-left identity or pseudo-
right identity) of F in R. The results proved in the preceding section can
be extended to one-sided s-unital ring.

Theorem 3. Let m > 1 and r be fixed non-negative integers. Let R

be a left (resp. right) s-unital ring in which for every x in R there exist

integers n = n(x) ≥ 0, p = p(x) ≥ 0 and q = q(x) ≥ 0 such that R

satisfies the property (P4) (resp. (P5)). Then R is commutative if one of

the following conditions hold:

(I) R has the property Q(m);
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(II) n > 1 and m > 1 are relatively prime integers.

Proof. Let R be a left (resp. right) s-unital ring satisfying the prop-
erty (P4) (resp. (P5)) and x, y arbitrary elements of R. Choose an ele-
ment e in R such that ex = x and ey = y (resp. xe = x and ye = y). If
(n, p, q) 6= (1, 0, 0), then replace y by e in (P4) (resp. (P5)) we have

er[x, em] = ±xp[xn, e]xq (resp. [x, em]er = ±xp[xn, e]xq).

x = xem ± xpexn+q ∓ xn+pexq ∈ xR

(resp. x = emx∓ xpexn+q ± xp+nexq ∈ Rx).

Hence, R is right (resp. left) s-unital ring.

On the other hand, if (n, p, q) = (1, 0, 0), then (m, r) 6= (1, 0). Replace
x by e in (P4) (resp. (P5)) to get

y = ye± yr+me∓ yreym ∈ yR (resp. y = ey ∓ eym+r ± yreym ∈ Ry).

Hence, again R is right (resp. left) s-unital. Thus we observe that R is
s-unital in both cases. Now, in view of [8, Proposition 1] we can assume
that R has unity 1 and hence the commutativity of R follows from an
application of Theorem 1 and Theorem 2. ¤

Remark 3. As a consequence of Theorem 3, we get the following corol-
lary which includes [2, Theorem], [3, Theorems 1–4], [12, Theorems 2 and
3] and [18, Theorem].

Corollary 8. Let m > 1, p, q, n and r be fixed non-negative integers

and R a left (resp. right) s-unital ring satisfying (P4) (resp. (P5)). Then

R is commutative in each of the following cases:

(I) R has the property Q(m);

(II) n > 1 and m > 1 are relatively prime integers.
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