Commutativity of rings with variable constraints

By MOHARRAM A. KHAN (Jeddah)

Abstract

Let $m>1, r \geq 0$ be fixed non-negative integers and R a ring with unity 1 in which for each $x \in R$, there exists a polynomial $f(X, Y)=f_{x}(X, Y)$ in $R\langle X, Y\rangle$ satisfying the condition that for all y in $R f(x, y)=f(x, y+1)=f(x, x+y)$ so that either of the properties $y^{r}\left[x, y^{m}\right]=f(x, y)$ or $\left[x, y^{m}\right] y^{r}=f(x, y)$ for all y in R. The main result of the present paper asserts that R is commutative if it satisfies the property $Q(m)$ (for all $x, y \in R, m[x, y]=0$ implies $[x, y]=0$). Finally, some results have been extended to one-sided s-unital rings.

1. Introduction

Throughout, R will be an associative ring (maybe without unity 1), $Z(R)$ the center of $R, C(R)$ the commutator ideal of $R, N(R)$ the set of all nilpotent elements of $R, N^{\prime}(R)$ the set of all zero-divisors in R. The symbol $[x, y]$ stands for the commutator $x y-y x$ of two elements x and y in R. As usual, $\mathbb{Z}[X, Y]$ the ring of polynomials in two commuting indeterminates and $\mathbb{Z}\langle X, Y\rangle$ the ring of polynomials in two non-commuting indeterminates over the ring \mathbb{Z} of integers. For a ring R and a positive integer m we say that R has the property $Q(m)$ if $m[x, y]=0$ implies that $[x, y]=0$ for all $x, y \in R$.

Obviously, any m-torsion-free ring R has the property $Q(m)$ and if R has the property $Q(m)$, then R has the property $Q(n)$ for any factor m of n.

For fixed integers $m>1$ and $r \geq 0$, consider the following ring properties.

Mathematics Subject Classification: Primary: 16U80; Secondary: 16U99.
Key words and phrases: commutativity theorems, local rings, pseudo-identities, s-unital rings, variable constraints.
(P) For each $x \in R$, there exists a polynomial $f(X, Y)=f_{x}(X, Y)$ in $R\langle X, Y\rangle$ satisfying the condition that for all y in $R f(x, y)=$ $f(x, y+1)=f(x, x+y)$ so that

$$
y^{r}\left[x, y^{m}\right]=f(x, y) \quad \text { for all } y \text { in } R .
$$

$\left(\mathrm{P}_{1}\right)$ For each $x \in R$, there exists a polynomial $f(X, Y)=f_{x}(X, Y)$ in $R\langle X, Y\rangle$ satisfying the condition that for all y in $R f(x, y)=$ $f(x, y+1)=f(x, x+y)$ so that

$$
\left[x, y^{m}\right] y^{r}=f(x, y) \quad \text { for all } y \text { in } R .
$$

$\left(\mathrm{P}_{2}\right)$ For each x in R, there exist polynomials (depending on $\left.x\right) n(X)=$ $n_{x}(X), p(X)=p_{x}(X), q(X)=q_{x}(X)$ in $Z(R)[X]$ so that

$$
y^{r}\left[x, y^{m}\right]=p(x)[n(x), y] q(x), \quad \text { for all } y \text { in } R .
$$

$\left(\mathrm{P}_{3}\right)$ For each x in R, there exist polynomials (depending on $\left.x\right) n(X)=$ $n_{x}(X), p(X)=p_{x}(X), q(X)=q_{x}(X)$ in $Z(R)[X]$ so that

$$
\left[x, y^{m}\right] y^{r}=p(x)[n(x), y] q(x), \quad \text { for all } y \text { in } R .
$$

$\left(\mathrm{P}_{4}\right)$ For each x in R, there exist integers $n=n(x) \geq 0, p=p(x) \geq 0$ and $q=q(x) \geq 0$ such that

$$
y^{r}\left[x, y^{m}\right]= \pm x^{p}\left[x^{n}, y\right] x^{q}, \quad \text { for all } y \text { in } R .
$$

$\left(\mathrm{P}_{5}\right)$ For each x in R, there exist integers $n=n(x) \geq 0, p=p(x) \geq 0$ and $q=q(x) \geq 0$ such that

$$
\left[x, y^{m}\right] y^{r}= \pm x^{p}\left[x^{n}, y\right] x^{q}, \quad \text { for all } y \text { in } R .
$$

$Q(m)$ For all $x, y \in R, m[x, y]=0$ implies that $[x, y]=0$, where m is some positive integer.

Properties $\left(\mathrm{P}_{2}\right)$ and $\left(\mathrm{P}_{3}\right)$, as well as the properties $\left(\mathrm{P}_{4}\right)$ and $\left(\mathrm{P}_{5}\right)$ all follow from (P) and $\left(\mathrm{P}_{1}\right)$. There are several results in the existing literature concerning the commutativity of rings satisfying special cases of the properties (P) and $\left(\mathrm{P}_{1}\right)$.

In [3, Theorems 2 and 4], Abujabal has shown that a ring with unity 1 is commutative if, for every x, y in R, R satisfies any one of the
polynomial identities $y^{s}\left[x, y^{m}\right]= \pm x^{t}\left[x^{n}, y\right]$ and $\left[x, y^{m}\right] y^{s}= \pm x^{t}\left[x^{n}, y\right]$, where $m>1, n \geq 1$ and s, t are fixed non-negative integers with the property $Q(m)$.

In most of the cases, the underlying polynomials in (P) and $\left(\mathrm{P}_{1}\right)$ are particularly assumed to be monomials [1], [2], [4]-[8], [10]-[14], [16][18]. The object of the present paper is to investigate commutativity of rings satisfying one of the properties (P) and $\left(\mathrm{P}_{1}\right)$ together with the property $Q(m)$.

2. Main result

The main result of the present paper is the following:
Theorem 1. Let R be a ring with unity 1 satisfying either of the properties (P) or $\left(\mathrm{P}_{1}\right)$. If R satisfies the property $Q(m)$, then R is commutative.

In the preparation for the proof of the above theorem, we start by stating without proof the following well-known results.

Lemma 1 [9, p. 221]. If $[[x, y], x]=0$ and $p(X)$ in $Z(R)[X]$, then $[p(x), y]=p^{\prime}(x)[x, y]$ for all x, y in R.

Lemma 2 [10, Theorem]. Let f be a polynomial in n non-commuting indeterminates $x_{1}, x_{2}, \ldots, x_{n}$ with relatively prime integral coefficients. Then the following are equivalent:
(a) For any ring satisfying the polynomial identity $f=0, C(R)$ is a nil ideal.
(b) For every prime $p,(G F(p))_{2}$ the ring of all 2×2 matrices over $G F(p)$, fails to satisfy $f=0$.

Following is a special case of a result which was proved by Streb $[19$, Hauptsatz 3].

Lemma 3. Let R satisfy a polynomial identity of the form $[x, y]=$ $p(x, y)$, where $p(X, Y)$ in $\mathbb{Z}\langle X, Y\rangle$ has the following properties:
(i) $p(X, Y)$ is in the kernel of the natural homomorphism from $\mathbb{Z}\langle X, Y\rangle$ to $\mathbb{Z}[X, Y]$;
(ii) each monomial of $p(X, Y)$ has total degree at least 3 ;
(iii) each monomial of $p(X, Y)$ has X-degree at least 2 , or each monomial of $p(X, Y)$ has Y-degree at least 2.
Then R is commutative.
Here, we shall prove the following lemma, which is proved in [15, Lemma 4] for a fixed exponent n, but with a slight modification in the proof it can be obtained for variable exponent n.

Lemma 4. Let R be a ring with unity 1 and let $f: R \rightarrow R$ be any polynomial function of two variables with the property $f(x+1, y)=$ $f(x, y)$, for all x, y in R. If for all x, y in R there exists an integer $n=$ $n(x, y) \geq 1$ such that $x^{n} f(x, y)=0$, then necessarily $f(x, y)=0$.

Proof. Given that $x^{n} f(x, y)=0, n=n(x, y) \geq 1$. Choose an integer $n_{1}=n(1+x, y)$ such that $(1+x)^{n_{1}} f(x, y)=0$. If $k=\max \left\{n, n_{1}\right\}$, then $x^{k} f(x, y)=0$ and $(1+x)^{k} f(x, y)=0$. We have,

$$
f(x, y)=\{(1+x)-x\}^{2 k+1} f(x, y) .
$$

Expanding the expression on the right-hand side by the binomial theorem gives that $f(x, y)=0$.

We establish the following steps to prove Theorem 1.
Step 1. Let R be a ring satisfying either of the properties (P) or $\left(\mathrm{P}_{1}\right)$. Then $C(R) \subseteq N(R)$.

Proof. Let R satisfy the property (P), that is,

$$
\begin{equation*}
y^{r}\left[x, y^{m}\right]=f(x, y) . \tag{1}
\end{equation*}
$$

Replace y by $y+x$ in (1) to get

$$
\begin{equation*}
(y+x)^{r}\left[x,(y+x)^{m}\right]=f(x, x+y)=f(x, y) . \tag{2}
\end{equation*}
$$

Combining (1) and (2), we get

$$
\begin{equation*}
(y+x)^{r}\left[x,(y+x)^{m}\right]-y^{r}\left[x, y^{m}\right]=0 \quad \text { for all } x, y \in R \tag{3}
\end{equation*}
$$

and some fixed integers $r \geq 0, m>1$. Equation (3) is a polynomial identity and we see that $x=e_{11}+e_{12}$ and $y=-e_{12}$ fail to satisfy this equality in $(G F(p))_{2}, p$ a prime. Hence by Lemma $2, C(R) \subseteq N(R)$.

On the other hand, if R satisfies the property $\left(\mathrm{P}_{1}\right)$, then by using a similar technique of replacing y by $y+x$, we find that R satisfies the polynomial identity $\left[x,(y+x)^{m}\right](y+x)^{r}=\left[x, y^{m}\right] y^{r}$ for all $x, y \in R$ and some fixed integers $r \geq 0, m>1$. But $x=e_{22}+e_{12}$ and $y=-e_{12}$ fail to satisfy this equality in $(G F(p))_{2}, p$ a prime. Hence, Lemma 2 gives $C(R) \subseteq N(R)$.

Step 2. Let R be a ring with unity 1 satisfying either of the properties (P) or $\left(\mathrm{P}_{1}\right)$. If R has the property $Q(m)$, then $N(R) \subseteq Z(R)$.

Proof. Let R satisfy the property (P) and $a \in N(R)$. Then there exists an integer $t \geq 1$ such that

$$
\begin{equation*}
a^{k} \in Z(R), \quad \text { for all } k \geq t, t \text { minimal. } \tag{4}
\end{equation*}
$$

Suppose that $t>1$. Replacing y by a^{t-1} in (P), we get

$$
a^{r(t-1)}\left[x, a^{m(t-1)}\right]=f\left(x, a^{t-1}\right)
$$

In view of (4) and the fact that $m(t-1) \geq t$, for $m>1$, we get

$$
\begin{equation*}
f\left(x, a^{t-1}\right)=0 \tag{5}
\end{equation*}
$$

Replacing y by $1+a^{t-1}$ in (P), we get

$$
\left(1+a^{(t-1)}\right)^{r}\left[x,\left(1+a^{(t-1)}\right)^{m}\right]=f\left(x, 1+a^{t-1}\right)=f\left(x, a^{t-1}\right)
$$

Using (5) gives $\left(1+a^{(t-1)}\right)^{r}\left[x,\left(1+a^{(t-1)}\right)^{m}\right]=0$, for all x in R. Since $\left(1+a^{t-1}\right)$ is invertible, the last equation implies that

$$
\begin{equation*}
\left[x,\left(1+a^{(t-1)}\right)^{m}\right]=0 \quad \text { for all } x \quad \text { in } R \tag{6}
\end{equation*}
$$

Combining (4) and (6), we get

$$
0=\left[x,\left(1+a^{(t-1)}\right)^{m}\right]=\left[x, 1+m a^{t-1}\right]=m\left[x, a^{t-1}\right]
$$

Applying the property $Q(m)$, it follows that $\left[x, a^{t-1}\right]=0$ for all $x \in R$, i.e., $a^{t-1} \in Z(R)$. This contradicts the minimality of t in (4). Hence $t=1$ and $a \in Z(R)$. So $N(R) \subseteq Z(R)$.

Similar arguments may be used if R satisfies the property $\left(\mathrm{P}_{1}\right)$.

Proof of Theorem 1. In view of Step 1 and Step 2, we have

$$
\begin{equation*}
C(R) \subseteq N(R) \subseteq Z(R) \tag{7}
\end{equation*}
$$

Properties (P) and $\left(\mathrm{P}_{1}\right)$ are equivalent and by Lemma 1 both can be written as

$$
\begin{equation*}
m[x, y] y^{m+r-1}=f(x, y) . \tag{8}
\end{equation*}
$$

Replacing $1+y$ for y in (8), we get

$$
\begin{equation*}
m[x, y](1+y)^{m+r-1}=f(x, 1+y)=f(x, y) . \tag{9}
\end{equation*}
$$

From (8) and (9), we get

$$
m[x, y]\left\{(1+y)^{m+r-1}-y^{m+r-1}\right\}=0 \quad \text { for all } x, y \text { in } R .
$$

Now, by using the property $Q(m)$ in the last equation, we get

$$
\begin{equation*}
[x, y]\left\{(1+y)^{m+r-1}-y^{m+r-1}\right\}=0 . \tag{10}
\end{equation*}
$$

For $m+r=2$ in (10), we get the commutativity of R.
For $m+r>2$, (10) implies that $[x, y]=[x, y] f(y)$ for all x, y in R and for some polynomial $f(Y)$ in $\mathbb{Z}[Y]$ is a polynomial such that all monomials of f have degree at least one. Hence R is commutative by Lemma 3 .

The following results are immediate consequences of Theorem 1.
Corollary 1. Let R be a ring with unity 1 satisfying one of the properties $\left(\mathrm{P}_{2}\right)$ and $\left(\mathrm{P}_{3}\right)$. If R satisfies the property $Q(m)$, then R is commutative.

Corollary 2. Let R be a ring with unity 1 satisfying one of the properties $\left(P_{4}\right)$ and $\left(P_{5}\right)$. If R satisfies the property $Q(m)$, then R is commutative.

Corollary 3 [3, Theorem 3]. Suppose that $n>1$ and m are positive integers and let s, t be non-negative integers. Let R be a ring with unity 1 satisfying the polynomial identity $\left[x, y^{m}\right] y^{s}= \pm\left[y, x^{n}\right] x^{t}$ for all x, y in R. If R has the property $Q(m)$, then R is commutative.

Corollary 4 [17, Theorem 1]. Let $n>1, m>1$ and let p, q be nonnegative integers. Let R be a ring with unity 1 satisfying the polynomial identity $\left[x, y^{m}\right] y^{q}=x^{p}\left[x^{n}, y\right]$ for all x, y in R. If R is n-torsion-free, then R is commutative.

Corollary 5 [1, Lemma 2(2)]. Let R be a ring with unity 1 and $n>1$ a fixed positive integer. If R is n-torsion-free and satisfies the identity $\left[x^{n}, y\right]=\left[x, y^{n}\right]$ for all x, y in R, then R is commutative.

Remark 1. The following example strengthens the existence of the property $Q(m)$ in Theorem 1 and Corollaries 1, 2, 3, 4, 5 .

Example 1. Let $R=\left[\begin{array}{ccc}\alpha & \beta & \gamma \\ 0 & \alpha^{2} & 0 \\ 0 & 0 & \alpha\end{array}\right]$, where $\alpha, \beta, \gamma \in G F(4)$, the finite Galois field, be the set of all matrices. It is readily verified that R (with the usual matrix addition and multiplication) is a non-commutative local ring with unity I, the identity matrix. Further, R satisfies

$$
\begin{equation*}
x^{48} \in Z(R) \quad \text { for all } x \in R . \tag{11}
\end{equation*}
$$

Since $N^{\prime}(R)$ consists of all matrices x in R with zero diagonal elements, and thus, contains exactly 16 elements. For any $x \in N^{\prime}(R), x^{2}=0$ and hence $x^{48}=0 \in Z(R)$. The set $R \backslash N^{\prime}(R)$ is a multiplicative group of order 48 and hence $x^{48}=I \in Z(R)$ for all $x \in R \backslash N^{\prime}(R)$. In view of (11) it follows that R satisfies the properties (P) or $\left(\mathrm{P}_{1}\right)$. This shows that the assumption that R has the property $Q(m)$ in Theorem 1 and above corollaries cannot be eliminated.

The following result demonstrates that Corollary 2 is still valid if the property " $Q(m)$ " is replaced by the condition that " m and n are relatively prime positive integers".

Theorem 2. Let $m>1$ and $r \geq 0$ be fixed integers and let R be a ring with unity 1 in which for every x in R there exist integers $n=n(x)>1$, $p=p(x) \geq 0$ and $q=q(x) \geq 0$ such that m and n are relatively prime and R satisfies one of the properties $\left(\mathrm{P}_{4}\right)$ and $\left(\mathrm{P}_{5}\right)$. Then R is commutative.

Proof. Let R satisfy the property $\left(\mathrm{P}_{4}\right)$ and let a be an arbitrary element in $N(R)$. Then there exists a positive integer t such that $a^{k} \in$ $Z(R)$, for all $k \geq t, t$ minimal.

Using the same arguments as used to prove Step 2, we have

$$
\begin{equation*}
m\left[x, a^{t-1}\right]=0 \quad \text { for all } x \text { in } R . \tag{12}
\end{equation*}
$$

Further, choose integers $n^{\prime}=n\left(a^{t-1}\right)>1$ relatively prime to m and $p^{\prime}=p\left(a^{t-1}\right) \geq 0$ and $q^{\prime}=q\left(a^{t-1}\right) \geq 0$ such that $y^{r}\left[a^{t-1}, y^{m}\right]= \pm a^{p^{\prime}(t-1)}\left[a^{n^{\prime}(t-1)}, y\right] a^{q^{\prime}(t-1)}$. Using (12) and the fact that $n^{\prime}(t-1) \geq t$ for $n^{\prime}>1$, we have

$$
\begin{equation*}
y^{r}\left[a^{t-1}, y^{m}\right]=0, \quad \text { for all } y \text { in } R . \tag{13}
\end{equation*}
$$

Again, choose integer $n^{\prime \prime}=n\left(1+a^{t-1}\right)>1$ relatively prime to m and $p^{\prime \prime}=p\left(1+a^{t-1}\right) \geq 0, q^{\prime \prime}=q\left(1+a^{t-1}\right) \geq 0$ such that

$$
\begin{equation*}
y^{r}\left[a^{t-1}, y^{m}\right]= \pm\left(1+a^{(t-1)}\right)^{p^{\prime \prime}}\left[\left(1+a^{(t-1)}\right)^{n^{\prime \prime}}, y\right]\left(1+a^{t-1}\right)^{q^{\prime \prime}} \tag{14}
\end{equation*}
$$

Hence, in view of (13) and the fact that $1+a^{t-1}$ is invertible, (14) yields

$$
\begin{equation*}
\left[\left(1+a^{(t-1)}\right)^{n^{\prime \prime}}, y\right]=0, \quad \text { for all } y \text { in } R \tag{15}
\end{equation*}
$$

Combining (4) and (15), we obtain

$$
0=\left[\left(1+a^{(t-1)}\right)^{n^{\prime \prime}}, y\right]=\left[1+n^{\prime \prime} a^{t-1}, y\right]=n^{\prime \prime}\left[a^{t-1}, y\right] .
$$

This implies that $n^{\prime \prime}\left[x, a^{t-1}\right]=0$, for all x in R, and in view of (12), the relative primeness of $n^{\prime \prime}$ and m gives that $a^{t-1} \in Z(R)$. This contradicts the minimality of t and thus $t=1$ and $a \in Z(R)$. Hence by Step 1, we get $C(R) \subseteq N(R) \subseteq Z(R)$ and Lemma 1 gives that

$$
\begin{equation*}
m y^{m+r-1}[x, y]= \pm n x^{p+q+n-1}[x, y] . \tag{16}
\end{equation*}
$$

Let $m[x, y]=0$. Then equation (16) gives that

$$
\begin{equation*}
n x^{p+q+n-1}[x, y]=x^{p+q+n-1} n[x, y]=0 . \tag{17}
\end{equation*}
$$

Using Lemma 4 , (17) becomes $n[x, y]=0$, for all x, y in R, and the relative primeness of m and n implies that $[x, y]=0$. This shows that R also has the property $Q(m)$. Hence, commutativity of R follows from Theorem 1 .

Corollary 6 [12, Theorem 2]. Let $m>1, n>1$ be fixed relative prime positive integers and let p, r fixed non-negative integers. If R is a ring with unity 1 satisfying the polynomial identity $y^{r}\left[x, y^{m}\right]= \pm x^{p}\left[x^{n}, y\right]$ for all x, y in R, then R is commutative.

Corollary 7 [17, Theorem 2]. Suppose that $m>1, n>1$ be fixed relative prime positive integers. Let p, q be fixed non-negative integers and R a ring with unity 1 satisfying the polynomial identity $\left[x, y^{m}\right] y^{q}=$ $x^{p}\left[x^{n}, y\right]$ for all x, y in R. Then R is commutative.

Remark 2. The following example shows that R need not be commutative if " m and n are not relatively prime" in the hypothesis of Theorem 2 and Corollaries 6, 7 .

Example 2. Let $R=\left\{\left.\left(\begin{array}{lll}a & b & c \\ 0 & a & d \\ 0 & 0 & a\end{array}\right) \right\rvert\, a, b, c, d \in G F(2)\right\}$. Then R is a non-commutative ring with unity 1 satisfying $y^{r}\left[x, y^{4}\right]= \pm x^{p}\left[x^{4}, y\right] x^{q}$ (or $\left[x, y^{4}\right] y^{r}= \pm x^{p}\left[x^{4}, y\right] x^{q}$, for any non-negative integers p, q and r.

3. Extension to s-unital rings

Since there are non-commutative rings with R^{2} being central, neither of these conditions guarantees the commutativity of arbitrary rings. Before we go ahead with our task, we pause to recall a few preliminaries in order to make our paper self contained as possible. A ring R is said to be left (resp. right) s-unital if $x \in R x$ (resp. $x \in x R$) for each $x \in R$. As shown in [8], then for any finite subset F of R, there exists an element e in R such that $e x=x e=x$ (resp. $e x=x$ or $x e=x$) for all x in F. Such an element e is called a pseudo-identity (resp. pseudo-left identity or pseudoright identity) of F in R. The results proved in the preceding section can be extended to one-sided s-unital ring.

Theorem 3. Let $m>1$ and r be fixed non-negative integers. Let R be a left (resp. right) s-unital ring in which for every x in R there exist integers $n=n(x) \geq 0, p=p(x) \geq 0$ and $q=q(x) \geq 0$ such that R satisfies the property $\left(\mathrm{P}_{4}\right)$ (resp. $\left(\mathrm{P}_{5}\right)$). Then R is commutative if one of the following conditions hold:
(I) R has the property $Q(m)$;
(II) $n>1$ and $m>1$ are relatively prime integers.

Proof. Let R be a left (resp. right) s-unital ring satisfying the property $\left(\mathrm{P}_{4}\right)$ (resp. $\left(\mathrm{P}_{5}\right)$) and x, y arbitrary elements of R. Choose an element e in R such that $e x=x$ and $e y=y$ (resp. $x e=x$ and $y e=y$). If $(n, p, q) \neq(1,0,0)$, then replace y by e in $\left(\mathrm{P}_{4}\right)\left(\right.$ resp. $\left.\left(\mathrm{P}_{5}\right)\right)$ we have

$$
\begin{gathered}
e^{r}\left[x, e^{m}\right]= \pm x^{p}\left[x^{n}, e\right] x^{q}\left(\text { resp. }\left[x, e^{m}\right] e^{r}= \pm x^{p}\left[x^{n}, e\right] x^{q}\right) . \\
x=x e^{m} \pm x^{p} e x^{n+q} \mp x^{n+p} e x^{q} \in x R \\
\left(\text { resp. } x=e^{m} x \mp x^{p} e x^{n+q} \pm x^{p+n} e x^{q} \in R x\right) .
\end{gathered}
$$

Hence, R is right (resp. left) s-unital ring.
On the other hand, if $(n, p, q)=(1,0,0)$, then $(m, r) \neq(1,0)$. Replace x by e in $\left(\mathrm{P}_{4}\right)$ (resp. $\left.\left(\mathrm{P}_{5}\right)\right)$ to get

$$
y=y e \pm y^{r+m} e \mp y^{r} e y^{m} \in y R \text { (resp. } y=e y \mp e y^{m+r} \pm y^{r} e y^{m} \in R y \text {). }
$$

Hence, again R is right (resp. left) s-unital. Thus we observe that R is s-unital in both cases. Now, in view of [8, Proposition 1] we can assume that R has unity 1 and hence the commutativity of R follows from an application of Theorem 1 and Theorem 2.

Remark 3. As a consequence of Theorem 3, we get the following corollary which includes [2, Theorem], [3, Theorems 1-4], [12, Theorems 2 and $3]$ and [18, Theorem].

Corollary 8. Let $m>1, p, q, n$ and r be fixed non-negative integers and R a left (resp. right) s-unital ring satisfying $\left(\mathrm{P}_{4}\right)\left(\right.$ resp. $\left.\left(\mathrm{P}_{5}\right)\right)$. Then R is commutative in each of the following cases:
(I) R has the property $Q(m)$;
(II) $n>1$ and $m>1$ are relatively prime integers.

Acknowledgement. The author thanks the referee for the excellent suggestions which have helped us to improve considerably the first version of the paper.

References

[1] H. Abu-Khuzam, H. Tominaga and A. Yaqub, Commutativity theorems for s-unital ring satisfying polynomial identities, Math. J. Okayama Univ. 22 (1980), 111-114.
[2] H. A. S. Abujabal, An extension of some commutativity results for rings, Panamerican Math. J. 3 (1993), 73-77.
[3] H. A. S. Abujabal, Commutativity for a certain class of rings, Georgian Math. J. 3 (1996), 1-10.
[4] H. A. S. Abujabal and M. A. Khan, Commutativity theorems for a certain class of rings, Georgian Math. J. 5 (1998), 301-314.
[5] H. E. Bell, On some commutativity theorems of Herstein, Arch. Math. 24 (1973), 34-38.
[6] H. E. Bell, On the power map and ring commutativity, Canad. Math. Bull. 21 (1978), 399-404.
[7] V. Gupta, A result of commutativity of rings, Internat. J. Math. Math. Sci. 17 (1994), 65-72.
[8] Y. Hirano, Y. Kobayashi and H. Tominaga, Some polynomial identities and commutativity of s-unital rings, Math. J. Okayama Univ. 24 (1982), 7-13.
[9] N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. 37, Providence, RI, 1964.
[10] T. P. Kezlan, A note on commutativity of semiprime PI-rings, Math. Japon. 27 (1982), 267-268.
[11] T. P. Kezlan, On commutativity theorems for PI-rings with unity, Tamkang J. Math. 24 (1993), 29-36.
[12] M. A. Khan, Commutativity theorems for rings with constraints on commutators, J. Indian Math. Soc. 66 (1999), 113-124.
[13] H. Komatsu, A commutativity theorem for rings, Math. J. Okayama Univ. 26 (1984), 135-139.
[14] H. Komatsu, A commutativity theorem for rings II, Osaka J. Math. 22 (1985), 811-814.
[15] W. K. Nicholson and A. Yaqub, A Commutativity theorem for rings and groups, Canad. Math. Bull. 22 (1979), 419-423.
[16] E. Psomopoulos, H. Tominaga and A. Yaqub, Some commutativity theorems for n-torsion-free rings, Math. J. Okayama Univ. 23 (1981), 37-39.
[17] E. Psomopoulos, Commutativity theorems for rings and groups with constraints on commutators, Internat. J. Math. Math. Sci. 7 (1984), 513-517.
[18] M. A. Quadri and M. A. Khan, A commutativity theorem for left s-unital rings, Bull. Inst. Math. Acad. Sinica 15 (1987), 323-327.
[19] W. Streb, Übereinen Satz Von Herstein and Nakayama, Rend. Sem. Mat. Univ. Podova 64 (1981), 151-171.

```
MOHARRAM A. KHAN
DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE
KING ABDULAZIZ UNIVERSITY
P.O. BOX 30356, JEDDAH - 21477
SAUDI ARABIA
E-mail: nassb@hotmail.com
```

(Received November 11, 1998; revised May 26, 2000)

