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Attractors for invertible expanding linear operators
and number systems in Z2

By JÖRG M. THUSWALDNER (Leoben)

Abstract. Let M be a 2× 2 matrix whose eigenvalues have all modulus greater
than 1, and let N be a complete residue system of vectors modM(Z2). Define a map-
ping Φ(z) = M−1(z − δ), for δ ∈ N , such that Φ(z) has integer coordinates. Then the
iterates Φk(z) give rise to a dynamical system, whose attractor P is a bounded set. In
this paper we determine P explicitely for a certain class of matrices. For the special case
P = {0}, the pair (M,N ) can be regarded as a number system in Z2. These number
systems have strong connections to number systems in number fields. So we are able
to give an easy proof for the characterization of the bases of canonical number systems
in quadratic fields with help of our results. This characterization was first given in a
series of papers by Kátai, Kovács and Szabó.

1. Introduction

Let M ∈ Zn×n be an invertible matrix with integer entries, whose
eigenvalues have all modulus greater than one. Then MZn is a sublattice
of Zn with index β := det M . Let N be a complete residue system of
elements of Zn modulo MZn. Now define the mapping

Φ(z) := M−1(z − δ),

where δ is the unique element of N with δ ≡ z (mod M). If Φl(z) denotes
the l-th iterate of Φ then for each z ∈ Zn we call Φj(z), (j ≥ 0) the orbit
of z generated by Φ. It is easy to see (cf. [4], [8]), that there exists a
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constant C with the following property: Let ‖ · ‖ denote any norm in Rn.
Then for each z ∈ Zn there exists an integer j0 such that for each j ≥ j0
we have ‖Φj(z)‖ ≤ C. Since there exist only finitely many elements of Zn

with ‖z‖ ≤ C, we conclude, that the sequence

(1) Φ0(z), Φ1(z), . . .

is ultimately periodic for each z ∈ Zn.
Let us call an element p ∈ Zn periodic, if for some positive integer ω

we have Φω(p) = p, and denote the set of all periodic elements by P.
Since the sequence {‖Φj(z)‖}j≥0 is ultimately ≤ C we conclude, that
P has only finitely many elements. It is clear, that (1) ends in a cycle
of periodic points for each z. Thus P is the attractor of the dynamical
system generated by Φ.

The aim of the present paper is the determination of P for certain
matrices M . For some cases a similar problem has been investigated in
Kovács [9]. Furthermore, properties of the attractor P have been studied
in several papers. For instance, I. Kátai [4] studied periodic points of so
called just touching covering systems and recently A. Kovács [8] obtained
some general results for P. In the following paragraph we want to restate
some easy observations that can be found also in these papers.

First of all, it is immediate from the definition of Φ and P, that each
z ∈ Zn admits a unique representation of the shape

(2) z =
L∑

`=0

M `a` + ML+1p

with p ∈ P, a` ∈ N and L as small as possible. We call this representation
the M -adic representation of z. Since p is a periodic point, there exists
a positive integer ω, such that p =

∑Nω−1
k=0 Mkbk modω + MNωp, with

b0, . . . , bω−1 ∈ N and N ∈ N arbitrary large. So we can rewrite (2) in the
form

z =
L∑

`=0

M `a` + ML+1
Nω−1∑

k=0

Mkbk modω + ML+1+Nωp

for any N ∈ N. Denoting the infinite repetition of a string bω−1 . . . b0 by
(bω−1 . . . b0)∞ we identify z with the infinite digit string

z = ((bω−1 . . . b0)∞aL . . . a0)M .
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Thus for P = {0} each z has a unique M -adic representation of the form

(3) z =
L∑

`=0

M `a`

with a` ∈ N and aL 6= 0 for L 6= 0. In this case we call the pair (M,N ) a
number system in Zn.

In this paper we will explicitely compute the attractor P for each in-
vertible matrix M ∈ Z2×2 with the corresponding setN0 = {(0, 0)T , (1, 0)T ,

. . . , (|β| − 1, 0)T } (vT denotes the transposition of a vector v). Of course,
this makes sense only for matrices M , for which N0 forms a complete
residue system modulo M , since otherwise the mapping Φ were not de-
fined correctly. It is easy to see, that this is the case exactly for those
matrices M that satisfy

M =
(

a b

ε d

)
with ε = ±1.

In the remaining part of this paper we will always tacitly assume, that
M has this form. If a matrix M forms a number system with respect to
the set N0 we call (M,N0) a canonical number system. Thus we get the
characterization of all canonical number systems in Z2 as a corollary to our
result. This gives the solution of the two-dimensional case of Problems 1
and 6 of Kovács [8].

2. Statement of results

In this section we give our main results. The first result gives a char-
acterization of the set of periodic points of a pair (M,N0), the second one
characterizes the matrices M , that give rise to a canonical number system.

Theorem 2.1. Let M :=
(

a b

ε d

)
with ε ∈ {−1, 1} be a matrix with

characteristic polynomial p(x) = x2+αx+β and N0 = {(0, 0)T , (1, 0)T , . . .

. . . , (|β| − 1, 0)T }. Let Φ(z) = M−1(z − δ), where δ is the unique element

of N0 with δ ≡ z (mod M), and let P be the attractor of the dynamical

system generated by Φ. Then P has the following shape:

• For 0 ≤ α ≤ β ≥ 2 we have P = {0} and Φ(0) = 0.
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• For 0 < −α ≤ β ≥ 2 let γ := β + α + 1 and let K be the integer

defined by Kγ ≤ β − 1 < (K + 1)γ. Then

P =
{(

0
0

)
,

(
1− d

ε

)
, . . . ,

(
K(1− d)

Kε

)}

and Φ(p) = p for each p ∈ P.

• For 0 ≤ −α < −β ≥ 2 we have

P =
{(

0
0

)
,

(−1
0

)
,

(
d

−ε

)}
.

Furthermore, Φ(0) = 0, Φ((−1, 0)T ) = (d,−ε)T and Φ((d,−ε)T ) =
(−1, 0)T .

• For 0 < α < −β ≥ 2 let γ := −β − α − 1 and define K by Kγ ≤
−β − 1 < (K + 1)γ. Then

P =
{(

0
0

)
,

(
d− 1
−ε

)
, . . . ,

(
K(d− 1)
−Kε

)}

and Φ(p) = p for each p ∈ P.

In the remaining cases |β| = 1 or 2 ≤ β < |α| or 2 ≤ −β ≤ |α| the

corresponding matrix M has at least one eigenvalue with modulus less

than or equal to 1.

Corollary 2.1. Let M , N0, α and β be defined as in Theorem 2.1.

Then (M,N0) is a canonical number system if and only if −1 ≤ α ≤ β ≥ 2.

This corollary is an immediate consequence of Theorem 2.1.
The main tool for the proof of Theorem 2.1 will be a so-called trans-

ducer automaton (cf. for instance [1], [12] for its definition) that performs
the addition of (1, 0)T on the M -adic representations. For the construction
of this automaton, we will need the identity

(4) M2 + αM + βI = 0

which directs the possible carries occurring by the addition of (1, 0)T in
M -adic representations. Similar “counting automata” where studied in
Grabner–Kirschenhofer–Prodinger [2]. Thuswaldner [13] men-
tioned that they are useful for the characterization of bases of number
systems in number fields.
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3. The case 0 ≤ α ≤ β

In this section we will prove, that a matrix M satisfying 0 ≤ α ≤ β

has always P = {0}. Thus in this case M is the base of a canonical number
system in Z2. For convenience, we will identify the digit (ν, 0)T with ν.
This will cause no confusions and allows an easier notation.

The plan of our proof is the following: Obviously (0, 0)T has the finite
representation 0. Let z ∈ Z2 have a finite M -adic representation of the
shape (2) with p = 0. We shall prove that then z+(±1, 0)T and z+(0,±1)T

have again finite M -adic representations. This implies by induction, that
any z ∈ Z2 has a representation of the form (2) with p = 0. Thus P = {0}.

As mentioned in the previous section, so-called counting automata
are an appropriate tool to perform the addition of 1 on the M -adic rep-
resentations. Adopting the notations of [2], let σ be a digit string. Let
(σ)M denote the vector, whose M -adic representation has digit string σ.
Let furthermore σP , σ−P , σQ, σ−Q, σR and σ−R be the string defined
respectively by

(5)

(σ±P )M = (σ)M ± (1, 0)T ,

(σ±Q)M = (σ)M ±M(1, 0)T ± (α− 1, 0)T ,

(σ±R)M = (σ)M ∓M(1, 0)T ∓ (α, 0)T .

Using (4) we obtain the following rules for these operations (remember the
convention for writing the digits; a bar over a term indicates, that this
term represents one digit).

(σν)P =
{

σν + 1, ν ∈ {0, . . . , β − 2}
σR0, ν = β − 1,

(σν)−P =
{

σ−Rβ − 1, ν = 0

σν − 1, ν ∈ {1, . . . , β − 1},

(σν)Q =
{

σP ν + α− 1, ν ∈ {0, . . . , β − α}
σ−Qν − β + α− 1, ν ∈ {β − α + 1, . . . , β − 1},

(σν)−Q =
{

σQν + β − α + 1, ν ∈ {0, . . . , α− 2}
σ−P ν − α + 1, ν ∈ {α− 1, . . . , β − 1},
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(σν)R =
{

σQν + β − α, ν ∈ {0, . . . , α− 1}
σ−P ν − α, ν ∈ {α, . . . , β − 1},

(σν)−R =
{

σP ν + α, ν ∈ {0, . . . , β − α− 1}
σ−Qν − β + α, ν ∈ {β − α, . . . , β − 1}.

We want to prove only the first rule, all the others can be established
by similar reasoning. Let σ = . . . σ3σ2σ1 with σj ∈ N0 (j ≥ 1) be the
digit string of an M -adic representation and define L as in Section 1. We
want to get a recurrence for the digit string of the M -adic representa-
tion of ((σν)P )M = (σν)M + (1, 0)T . We first add the digit string of the
representation (1, 0)T = (1)M to σν. Digitwise addition yields the digit
string σν + 1. If ν ∈ {0, . . . , β − 2} then ν + 1 ∈ N0 and we arrive at
(σν)P = σν + 1.

If ν = β − 1, ν + 1 = β /∈ N0. In this case the addition of (1, 0)T

produces a carry. By (4) this carry is described by (β, 0)T = −M2(1, 0)T −
M(α, 0)T . Thus, using (5) we derive

(
(σβ − 1)P

)
M

= ML+1p +
L∑

j=1

M jσj + (β, 0)T

= ML+1p +
L∑

j=1

M jσj −M2(1, 0)T −M(α, 0)T

= M
(
(σ)M −M(1, 0)T − (α, 0)T

)

= M(σR)M = (σR0)M

and we are ready.
Since these rules are rather hard to survey, we visualize them with

help of the transducer automaton depicted in Figure 1.

Remark 3.1. Note that for α = β or α = 0 the automaton becomes
simpler. Anyway, the following considerations apply also to these cases.

If we want to add 1, i.e. perform the operation P , we start at state P .
Starting at one of the other states, will add the quantities related to it
according to (5). The automaton reads the digits from right to left. The
notation j | k means, that the automaton reads j and writes out k, moving
along the according edge. The states indicated by “•” in Figure 1 are called
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Figure 1.

accepting states. If the automaton reaches one of the two accepting states,
it copies all the remaining digits of the input string to the output string.

Now suppose, we want to add (1, 0)T to the representation of a given
element z ∈ Z2 with finite M -adic representation. To z there corresponds
a string σ having only finitely many nonzero digits. Starting at P , we run
through the automaton according to the digits of z until we have processed
all its nonzero digits. If we find ourselves in one of the accepting states
at this point, we are ready, since the remaining zero digits are just copied
to the output string. Thus in this case the output string also has only
finitely many nonzero digits. In other words, z + 1 has a finite M -adic



430 Jörg M. Thuswaldner

representation. Suppose now, that we find ourselves in one of the other
states. Since the remaining digits of z are all equal to zero, we look at
the walks of the automaton that are labelled only with zeros. Since each
of these walks leads to one of the accepting states after at most three
vertices, we conclude that the representation for z + 1 is finite also in this
case (in fact, the representation (3) of z + 1 is at most three digits longer
than the representation of z).

Since the same arguments apply to the addition of (−1, 0)T , we have
proved that the addition of (±1, 0)T transforms finite representations to fi-
nite representations. Now note, that −R performs the addition of (−d, ε).
In order to perform the addition of (0, ε)T we have to add −R and then
d times P . Since the addition of −R as well as each addition of P trans-
forms finite M -adic representations to finite M -adic representations, we
conclude, that this is also true for the addition of (0, ε)T . The same can
be shown for the addition of (0,−ε)T . Because zero has a finite represen-
tation and any z ∈ Z2 can be reached by a finite number of additions of
(±1, 0) and (0,±1), each z ∈ Z2 has a finite M -adic representation. Thus

P = {0}

for the case treated in this section. Furthermore, it is obvious that
Φ(0) = 0.

4. The case 0 < −α ≤ β

The automaton in the last section had the advantage, that it trans-
formed finite representations to finite representations for any starting state.
We saw, that this property has the consequence, that each z ∈ Z2 is rep-
resentable by means of a finite M -adic representation. Thus the related
matrices M gave rise to canonical number systems in Z2. The key obser-
vation was, that each walk, labelled only with zeros, leads to one of the
accepting states after at most three steps. In the case we want to consider
now, things get a little bit more complicated. Because α is no longer an
element of N0, the automaton gets a different shape. Let σ±P and σ±R

be defined in the same way as in (5) and set

(
σ±S

)
M

= (σ)M ∓M(1, 0)T ∓ (α + 1, 0)T .
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Figure 2.

Again using (4) one gets the counting automaton shown in Figure 2. Note
that for β = −α the automaton becomes simpler. Anyway, the following
considerations apply also to this case.

Since ±P and ±R occur again as states of the automaton it is pos-
sible to perform the addition of (±1, 0) and (0,±1) with it. Thus the
M -adic representation of any z ∈ Z2 emerges from the representation 0
after finitely many applications of the automaton. We now characterize
the possible periodicities in the representations of z. For abbrevation we
set γ := β + α + 1 and define the integer K by

(6) Kγ ≤ β − 1 < (K + 1)γ.
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Let 0 ≤ l ≤ K and suppose, that z has the M -adic representation

z = ((lγ)∞aL . . . a0)M .

If we put z into the automaton with an arbitrary starting state the follow-
ing things can happen:
• The walk directed by the representation of z ends up in the accepting

state. Then the output string is of the form (lγ)∞a′L . . . a′0.
• The walk ends up in the cycle at S (this is possible only for l > 0).

Then the output string is of the form ((l − 1)γ)∞a′L . . . a′0.
• The walk ends up in the cycle at −S (this is possible only for l < K).

Then the output string is of the form ((l + 1)γ)∞a′L . . . a′0.

Note, that if we apply the automaton to any number z with periodicity
(lγ)∞, the walk directed by z ends up in the accepting state or in one of
the cycles at S and −S. Thus the other cycles occurring in the automaton
do not play any role. This ensures, that the only possible periodicities are
(lγ)∞ for 0 ≤ l ≤ K. Hence, each z has a representation of the shape

z =
L∑

`=0

M `a` + ML+1pl

for some l ∈ {0, 1, . . . ,K} and

pl = ((lγ)∞)M (0 ≤ l ≤ K).

Putting 0 at the starting state −S into the automaton and iterating this
l times, we get pl = M(l, 0)T + (l(α + 1), 0)T (0 ≤ l ≤ K). Thus we have
shown that

P =
{(

0
0

)
,

(
1− d

ε

)
, . . . ,

(
K(1− d)

Kε

)}

with K as in (6) in this case. Since the period length of pl is 1 we have
Φ(pl) = pl for 0 ≤ l ≤ K.

5. The case 0 ≤ −α < −β

Again we can attach an automaton to this case. Let σ±P , σ±Q and
σ±R be as before. Obtaining the rules between the additions of the related
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Figure 3.

quantities results in the automaton depicted in Figure 3. Note, that the
automaton gets simpler for α = 0. Nevertheless, the following considera-
tions are true also in this case.

The same considerations as in the previous sections show, that the
M -adic representation of each z ∈ Z2 can be obtained by applying the
automaton to the representation of 0 with appropriate starting states.
Thus we get any informations about the possible periodicities from the
automaton. Suppose first, that

(7) z =
(
(0)∞aL . . . a0

)
M

.
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Putting z in the automaton with arbitrary starting state, the following
things can happen:

• The walk directed by the digits of z ends up in one of the accepting
states. Then the output string has the form (0)∞a′L . . . a′0.

• The walk ends up in the cycle −P → R → −P . Then the resulting
output string has the form

(
(−β − 1) (−α)

)∞
a′L . . . a′0

or
(
(−α) (−β − 1)

)∞
a′′L . . . a′′0 .

Now, suppose that z has a representation of the form

(8)
(
(−β − 1) (−α)

)∞
a′L . . . a′0.

Then we find the following possibilities:

• The walk directed by z ends up in the accepting state. Then the
output string is of the same shape as the one in (8).

• The walk ends up in the cycle P → −R → P . Then the output string
has the shape (0)∞a′L . . . a′0.

If z has a representation of the shape

(
(−α) (−β − 1)

)∞
a′L . . . a′0

the possible output strings can be determined in a similar way. Summing
up we arrive at

P =
{(

0
0

)
,

(−1
0

)
,

(
d

−ε

)}

in this case. The behaviour of Φ on P follows easily from the shape of the
occurring periodicities.

6. The case 0 < α < −β

As in the foregoing sections we attach an automaton to this case. It
is depicted in Figure 4.



Attractors for invertible expanding linear operators . . . 435

Figure 4.

In this case, things are similar to the case 0 < −α ≤ β. Let γ =
−β − α− 1 and define K by

Kγ ≤ −β − 1 < (K + 1)γ.

Again, the cycles at S and −S transform a periodic element (lγ)∞ to
((l + 1)γ)∞ and ((l − 1)γ)∞, respectively. Note, that the cycles P →
−R → P and −P → R → −P do not play a role in this case, since a
representation with periodicity (lγ)∞ (0 ≤ l ≤ K) can not end up in one
of these cycles. Thus (lγ)∞ (1 ≤ l ≤ K) are the only periodicities that
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can occur and we arrive at

P =
{(

0
0

)
,

(
d− 1
−ε

)
, . . . ,

(
K(d− 1)
−Kε

)}
.

Again it is easy to see that Φ(p) = p for each p ∈ P.

7. The remaining cases

In this section we will deal with the cases
(i) 2 ≤ β < |α|,
(ii) 2 ≤ −β ≤ |α|.

The case |β| = 1 is trivial. It will turn out, that in these cases the cor-
responding matrix M has at least one eigenvalue, whose modulus is less
than or equal to 1.

Let M be a matrix having eigenvalues, whose moduli are all greater
than 1. In the introduction we remarked, that in this case the orbit of any
z ∈ Z2 generated by Φ ends up in a set P ⊂ {‖z‖ ≤ C} (C an absolute
constant depending only on M). We will show, that such a constant C
does not exist in the cases treated in this section. This will lead to the
desired conclusion.

First we deal with Case (i). We will show, that to each N there exists
a number zN , whose orbit is contained in KN := {x ∈ Z2 | ‖x‖ ≥ N}. To
this matter consider

(9)
(

x0

y0

)
=

(−σ1r0d + σ2s0

σ1r0

)
(0 ≤ s0 ≤ r0),

for σ1, σ2 ∈ {−1, 1}. Applying Φ to this vector, we arrive at a vector
(x1, y1)T with (note that α = −a− d and β = ad∓ ε)

x1 = −dy1 + σ1r0

y1 =
x0 − ay0 − δ

−β
=

σ1r0α + σ2s0 − δ

−β
,

where (δ, 0)T ∈ N0 is selected suitably, according to the definition of Φ.
Now set σ3 := σ1 sign α. Then we get

|y1| =
∣∣∣∣
|r0| |α|+ σ3(σ2s0 − δ)

|β|

∣∣∣∣ ≥
∣∣∣∣
|r0| |β|+ r0 + σ3(σ2s0 − δ)

|β|

∣∣∣∣ ≥ r0.
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These inequalities hold because, by the definition of Φ and by s0 ≤ r0

we have |σ3(σ2s0 − δ)| ≤ r0. Thus there are σ′1, σ
′
2 ∈ {−1, 1} such that

y1 = σ′1r1 with r1 ≥ r0 and x1 = −σ′1dr1 + σ′2s1 with s1 := r0. Hence, we
arrive at

(10)
(

x1

y1

)
=

(−σ′1r1d + σ′2s1

σ′1r1

)
(0 ≤ s1 ≤ r1 ≥ r0).

Iterating this procedure, we conclude, that r0 = |y0| ≤ |y1| ≤ |y2| ≤ · · · .
Since r0 can be selected arbitrary, we found elements of Z2, whose orbits
are contained in KN for each N . Thus in this case the related matrix M

has at least one eigenvalue of modulus less than or equal to 1.
Case (ii) can be treated in a similar way. Let (x0, y0) be defined in

the same way as in (9), but assume that σ2 := σ1 sign α. Defining x1 and
y1 in the same way as in Case (i) we derive

r1 := |y1| ≥
∣∣∣r0|α|+ s0 − σ1(sign α)δ)

|β|
∣∣∣

≥
∣∣∣r0|β|+ s0 − σ1(sign α)δ)

|β|
∣∣∣ ≥ r0 = |y0|

and sign y1 = σ1(signα) =: σ′1. Setting σ′2 := (sign α)σ′1 and s1 := r0

yields (10) and the existence of eigenvalues of modulus ≤ 1 now follows in
the same way as in Case (i).

8. Connections to number systems in quadratic number fields

In this section we want to discuss certain connections between canon-
ical number systems in Z2, and canonical number systems in number
fields. Let n be a squarefree number and consider the quadratic num-
ber field Q(

√
n). Let µ be an element of its ring of integers O and set

M0 := {0, 1, . . . , |N(µ)| − 1}, where N(µ) denotes the norm of µ over Q.
The pair (µ,M0) is called a canonical number system in Q(

√
n), if each

z ∈ O has a unique representation of the shape

z = c0 + c1µ + · · ·+ cHµH

with cj ∈ M (0 ≤ j ≤ H) and cH 6= 0 for H 6= 0. These number systems
have been studied, for instance, in [7], [5], [6], [11]. In particular, in the first
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three of these papers the bases of canonical number systems in quadratic
fields where characterized. In this section we will give a short proof of
these characterizations using Corollary 2.1.

It is easy to see, that µ can be a basis of a canonical number system
only if {1, µ} is an integral basis of O (cf. Kovács [10, Lemma 1]). Let
now µ be such that {1, µ} forms an integral basis of O, and let m(x) =
x2 +αx+β be the minimal polynomial of µ. We now want to characterize
the numbers µ ∈ O that give rise to a canonical number system (µ,M0).
To this matter we define the mapping Ψ : Q(

√
n) → R2, ξ0 + ξ1µ 7→

(ξ0, ξ1). Since µ is an integral basis, we have Ψ(O) = Z2. Furthermore,
Ψ(µx) = MΨ(x), with

M =
(

0 −β

1 −α

)
.

Since Ψ(M0) = N0, it is easy to see that µ is the basis of a canonical
number system (µ,M0) if and only if M is the basis of the canonical
number system (M,N0). According to the different shape of the integral
bases of quadratic number fields we have to distinguish two cases (cf.
Hardy–Wright [3]). Namely, {1, µ} is an integral basis of O iff

µ = µ1 = r ±√n for n ≡ 2, 3 (mod 4),

µ = µ2 =
1
2
(s±√n) for n ≡ 1 (mod 4) and s ≡ 1 (mod 2).

Since these numbers have the minimal polynomials m1(x) = x2 − 2rx +
(r2 − n) and m2(x) = x2− sx + 1

4 (s2 − n), respectively, the corresponding
matrices are

M1 =
(

0 n− r2

1 2r

)
and M2 =

(
0 1

4 (n− s2)
1 s

)
.

But by Corollary 2.1 these matrices give rise to a canonical number system
in Z2 if and only if

−1 ≤ −2r ≤ r2 − n ≥ 2 and − 1 ≤ s ≤ 1
4
(s2 − n),

respectively. We have reproved the following result:
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Theorem 8.1. Let Q(
√

n), with n squarefree and not equal to 1, be

a quadratic number field. µ is the basis of the canonical number system

(µ,M0) if and only if one of the following conditions holds.

• n > 0 and n ≡ 2, 3 (mod 4) (cf. [5]):

µ = r ±√n with 6 ≤ −2r ≤ r2 − n ≥ 2.

• n > 0 and n ≡ 1 (mod 4) (cf. [5]):

µ =
1
2
(s±√n) with 5 ≤ −s ≤ 1

4
(s2 − n) ≥ 2 (s ≡ 1 (mod 2)).

• n = −1 (cf. [7]):

µ = r ± i with 2 ≤ −2r ≤ r2 + 1 ≥ 2.

• n < −1 and n ≡ 2, 3 (mod 4) (cf. [6]):

µ = r ±√n with 0 ≤ −2r ≤ r2 − n ≥ 2.

• n < −1 and n ≡ 1 (mod 4) (cf. [6]):

µ =
1
2
(s±√n) with −1 ≤ −s ≤ 1

4
(s2−n) ≥ 2 (s ≡ 1 (mod 2)).

Remark 2.1. In the case n > 0 and n ≡ 2, 3 (mod 4) of the above
theorem Corollary 2.1 yields only −1 ≤ −2r ≤ r2 − n ≥ 2. But together
with the conditions posed upon n these inequalities imply 3 ≤ −r. Thus
in this case −1 ≤ −2r can be replaced by 6 ≤ −2r. In the remaining cases
the lower bounds for −2r and −s can be established in the same way.
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