Homeomorphisms and monotone vector fields

By S. Z. NÉMETH (Budapest)

Abstract

A classical result of Minty [8] states that for a Hilbert space H and a continuous monotone map $A: H \rightarrow H$ the map $A+I$ is a homeomorphism of H. We extend this result to Hadamard manifolds.

1. Introduction

Let B be a Banach space and G a subset of B. The map $A: G \rightarrow B^{*}$ is called monotone with respect to duality (or in the sense of Minty-Browder) if $\langle A y-A x, y-x\rangle \geq 0$ for any x and y in G, where B^{*} is the dual of B and $\langle.,$.$\rangle is the natural pairing. If the strict inequality holds whenever$ $x \neq y$, then A is called strictly monotone. If B is a Hilbert space, then the pairing $\langle.,$.$\rangle can be identified with the scalar product of B$. We extended the notion of monotonicity for vector fields of a Riemannian manifold. A classical result of Minty [8] states that for a Hilbert space H and a continuous monotone map $A: H \rightarrow H$ the map $A+I: H \rightarrow H$, where I is the identical map of H, is a homeomorphism. This result (and different variations of it) is widely used to prove existence and uniqueness theorems for operator equations, partial differential equations and variational inequalities (see [19]). Surprisingly, in the finite dimensional case this result boils down just to the continuity and expansivity of $A+I$, beeing a particular case (it is not trivial to show) of a classical homeomorphism theorem

Mathematics Subject Classification: 47H05, 53C20, 53C21, 53C22, 58C07, 58C99.
Key words and phrases: monotone vector field, expansive map, homeomorphism, Hadamard manifold.
Supported by Bolyai János Research Fellowship and Hungarian Research Grant OTKA T029572.
of Browner [4, Theorem 4.10] (connected to this subject see also [1]-[3], [6], [13]-[15].) We shall generalize this result for a complete connected Riemannian manifold M. We shall prove that a continuous expansive map $A: M \rightarrow M$ is a homeomorphism. By an expansive map on a Riemannian manifold we mean a map which increases the distance between any two points. The distance function on a Riemannian manifold is given by [5, p. 146, Definition 2.4]. The expansivity of A can be greatly weakened. It is enough to suppose that A is reverse uniform continuous, which means that for any $\varepsilon>0$ there is a $\delta=\delta(\varepsilon)>0$ such that $d(A x, A y)<\delta$ implies $d(x, y)<\varepsilon$, where d denotes the distance function on M. Particularly if M is an Hadamard manifold (complete, simply connected Riemannian manifold, of nonpositive sectional curvature) and X is a monotone vector field on M we shall prove that $\exp X$ is expansive. Hence if X is continuous $\exp X$ is a homeomorphism of M, extending Minty's classical result. (We note that for a Hilbert space H we have $\exp X=X+I$, where X is identified with a map of H.)

The author expresses his gratitude to professor TAMÁs RAPCsÁk, professor János Szenthe and dr. Balázs Csikós to many helpful conversations.

2. Preliminary results

First we prove the following lemma:
Lemma 2.1. Consider \mathbb{R}^{2} endowed with the canonical scalar product $\langle.,$.$\rangle . Denote by \|$.$\| the norm induced by \langle.,$.$\rangle . Let abcd be a quadri-$ lateral in \mathbb{R}^{2} such that $\|c-d\|>\|a-b\|$. Denote by α, β, γ and δ the angles $\angle d a b, \angle a b c, \angle b c d$ and $\angle c d a$, respectively. Then

$$
\begin{equation*}
\|a-d\| \cos \delta+\|b-c\| \cos \gamma>0 \tag{2.1}
\end{equation*}
$$

(This holds even if abcd degenerates to a triangle.)
Proof. If $a=b$ the inequality follows from the relation

$$
\|a-d\| \cos \delta+\|a-c\| \cos \gamma=\|c-d\|
$$

which can be easily obtained by projecting a to the straight line joining c and d. Suppose that $a \neq b$. From $\|c-d\|>\|a-b\|$ and the Schwarz inequality we have that

$$
\langle d-c, a-b\rangle<\|d-c\|^{2}
$$

which is equivalent to

$$
\begin{equation*}
\langle c-d, a-d\rangle+\langle d-c, b-c\rangle>0 \tag{2.2}
\end{equation*}
$$

It is easy to see that (2.2) implies (2.1).
In the following definition indices $i=1, \ldots, n$ are considered modulo n. A geodesic n-sided poligon in a Riemannian manifold M is a set formed by n segments of minimizing unit speed geodesics (called sides of the poligon)

$$
\gamma_{i}:\left[0, l_{i}\right] \rightarrow M ; \quad i=1, \ldots, n,
$$

in such a way that $\gamma_{i}\left(l_{i}\right)=\gamma_{i+1}(0) ; i=l, \ldots, n$. The endpoints of the geodesic segments are called vertices of the poligon. The angle

$$
\angle\left(-\dot{\gamma}_{i}\left(l_{i}\right), \dot{\gamma}_{i+1}(0)\right) ; \quad i=1, \ldots, n
$$

is called the (interior) angle of the corresponding vertex.
Recall that on Hadamard manifolds every two points can be uniquely joined by a geodesic arc [11]. Hence the distance between two points of an Hadamard manifold is the length of the geodesic joining these points.

Let M be an Hadamard manifold. If a, b, c are three arbitrary points of M then $a b$ will denote the distance of a from b and $a b c_{\triangle}$ the geodesic triangle of vertices a, b, c (which is uniquely defined). In general a geodesic poligon in M, of consecutive vertices a_{1}, \ldots, a_{n} will be denoted by $a_{1} \ldots a_{n}$.

Lemma 2.2. Let $a b c d$ be a quadrilateral in a Hadamard manifold M and $\alpha, \beta, \gamma, \delta$ the angles of the vertices a, b, c, d, respectively. Then

$$
\alpha+\beta+\gamma+\delta \leq 2 \pi .
$$

Proof. Let α_{1}, α_{2} be the angles of the vertex a in $a d c_{\Delta}$ and $a b c_{\Delta}$, respectively. Similarly, let γ_{1} and γ_{2} be the angles of the vertex c in $a d c_{\triangle}$ and $a b c_{\Delta}$, respectively. It is known that an angle formed by two edges of
a trieder is bounded by the sum of the other two angles formed by edges. Hence

$$
\begin{equation*}
\alpha_{1}+\alpha_{2} \geq \alpha \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\gamma_{1}+\gamma_{2} \geq \gamma \tag{2.4}
\end{equation*}
$$

On the other hand by [5, p. 259, Lemma 3.1 (ii)] we have that

$$
\begin{align*}
& \alpha_{1}+\gamma_{1}+\delta \leq \pi \tag{2.5}\\
& \alpha_{2}+\gamma_{2}+\beta \leq \pi \tag{2.6}
\end{align*}
$$

Summing inequalities (2.5), (2.6) and using (2.3), (2.4) we obtain

$$
\alpha+\beta+\gamma+\delta \leq 2 \pi
$$

The next lemma follows from [18, Lemma 1].
Lemma 2.3. Let $(M,\langle.\rangle$,$) be an Hadamard manifold and abcd be$ a quadrilateral in M such that α is nonacute and β is obtuse (nonacute), where $\alpha, \beta, \gamma, \delta$ are the angles of the vertices a, b, c, d, respectively. Then $c d>a b(c d \geq a b)$.

The following lemma is a generalization of Lemma 2.1.
Lemma 2.4. Let $(M,\langle.,\rangle$.$) be an Hadamard manifold and abcd be$ a quadrilateral in M such that $c d>a b$. Denote by $\alpha, \beta, \gamma, \delta$ the angles of the vertices a, b, c, d, respectively. Then

$$
a d \cos \delta+b c \cos \gamma>0
$$

(This holds even if abcd degenerates to a triangle.)
Proof. We identify $T_{a} M$ with \mathbb{R}^{n}, where $n=\operatorname{dim} M$. Denote by $\|$.$\| the norm generated by the canonical scalar product of \mathbb{R}^{n}$.

If $\delta, \gamma \geq \pi / 2$ then Lemma 2.3 implies $a b \geq c d$ which contradicts $c d>a b$. Hence we have either $\delta<\pi / 2$ or $\gamma<\pi / 2$. We can suppose without loss of generality that

$$
\begin{equation*}
\gamma<\pi / 2 \tag{2.7}
\end{equation*}
$$

The lengths of the sides of a geodesic triangle satisfy the triangle inequalities. Hence there exist the points $b^{\prime}, c^{\prime}, d^{\prime}$ of $T_{a}(M)$ such that $\left\|a-d^{\prime}\right\|=a d$, $\left\|a-c^{\prime}\right\|=a c,\left\|d^{\prime}-c^{\prime}\right\|=d c,\left\|a-b^{\prime}\right\|=a b,\left\|b^{\prime}-c^{\prime}\right\|=b c$ and b^{\prime} is contained in the plane of $a d^{\prime} c_{\triangle}^{\prime}$, such that b^{\prime} and d^{\prime} are contained in different half planes defined by the straight line in $T_{a}(M)$ joining a and c^{\prime}. Let $\alpha^{\prime}=\angle d^{\prime} a b^{\prime}, \beta^{\prime}=\angle a b^{\prime} c^{\prime}, \gamma^{\prime}=\angle b^{\prime} c^{\prime} d^{\prime}, \delta^{\prime}=\angle c^{\prime} d^{\prime} a, \gamma_{1}^{\prime}=\angle a c^{\prime} d^{\prime}$ and $\gamma_{2}^{\prime}=\angle a c^{\prime} b^{\prime}$. Using Lemma 2.1 to the quadrilateral $a b^{\prime} c^{\prime} d^{\prime}$ we obtain

$$
\begin{equation*}
\left\|a-d^{\prime}\right\| \cos \delta^{\prime}+\left\|b^{\prime}-c^{\prime}\right\| \cos \gamma^{\prime}>0 \tag{2.8}
\end{equation*}
$$

Denote by γ_{1}, γ_{2} the angles of the vertex c in the triangles $a d c_{\Delta}, a b c_{\Delta}$, respectively. Then we have, by [5, p. 259, Lemma 3.1 (i)] that

$$
\begin{equation*}
\delta^{\prime} \geq \delta \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\gamma_{1}^{\prime}+\gamma_{2}^{\prime} \geq \gamma_{1}+\gamma_{2} \geq \gamma \tag{2.10}
\end{equation*}
$$

We consider two cases:

1) $\gamma_{1}^{\prime}+\gamma_{2}^{\prime} \leq \pi$.

We have

$$
\begin{equation*}
\gamma^{\prime}=\gamma_{1}^{\prime}+\gamma_{2}^{\prime} \tag{2.11}
\end{equation*}
$$

Relations (2.10) and (2.11) implies

$$
\begin{equation*}
\gamma^{\prime} \geq \gamma \tag{2.12}
\end{equation*}
$$

Since $\left\|a-d^{\prime}\right\|=a d,\left\|b^{\prime}-c^{\prime}\right\|=b c$ and the cosine function is strictly decreasing on $] 0, \pi]$ (2.8), (2.9) and (2.12) imply

$$
a d \cos \delta+b c \cos \gamma>0
$$

2) $\gamma_{1}^{\prime}+\gamma_{2}^{\prime}>\pi$.

If $\delta<\pi / 2$ then $a d \cos \delta+b c \cos \gamma>0$ holds trivially, since $\gamma<\pi / 2$. We suppose that $\delta \geq \pi / 2$. By (2.9) we have that $\delta^{\prime} \geq \pi / 2$. [5, p. 259, Lemma 3.1 (ii)] implies that

$$
\begin{equation*}
\gamma_{1}^{\prime} \leq \pi / 2 \tag{2.13}
\end{equation*}
$$

We also have

$$
\begin{equation*}
\gamma_{2}^{\prime} \leq \pi \tag{2.14}
\end{equation*}
$$

Hence (2.13) and (2.14) implies

$$
\begin{equation*}
2 \pi-\gamma^{\prime}=\gamma_{1}^{\prime}+\gamma_{2}^{\prime} \leq \frac{3 \pi}{2} \tag{2.15}
\end{equation*}
$$

By (2.7) and (2.15) we have $0 \leq \gamma<\gamma^{\prime} \leq \pi$. Since the cosine function is strictly decreasing on $[0, \pi]$ we have

$$
\begin{equation*}
\cos \gamma>\cos \gamma^{\prime} \tag{2.16}
\end{equation*}
$$

Similarly (2.9) implies

$$
\begin{equation*}
\cos \delta \geq \cos \delta^{\prime} \tag{2.17}
\end{equation*}
$$

By $\left\|a-d^{\prime}\right\|=a d,\left\|b^{\prime}-c^{\prime}\right\|=b c,(2.8),(2.16)$ and (2.17) we have

$$
a d \cos \delta+b c \cos \gamma>0
$$

3. Monotone vector fields on Riemannian manifolds

Let M be a Riemannian manifold. We recall that a subset K of M is called (geodesic) convex [12] if for every two points of M there is a geodesic arc joining these points contained in K.

If N is an arbitrary manifold, we shall denote by $\operatorname{Sec}(T N)$ the family of sections of the tangent bundle $T N$ of N. Using this notation, we have the following definition:

Definition 3.1. Let $(M,\langle\rangle$,$) be a Riemannian manifold, K \subset M$ a convex open set and $X \in \operatorname{Sec}(T K)$ a vector field on $K . X$ is called monotone [9] if for every $x, y \in K$ and every unit speed geodesic arc $\gamma:[0, l] \rightarrow M$ joining x and $y(\gamma(0)=x, \gamma(l)=y)$ contained in K, we have that

$$
\left\langle X_{x}, \dot{\gamma}(0)\right\rangle \leq\left\langle X_{y}, \dot{\gamma}(l)\right\rangle,
$$

where $\dot{\gamma}$ denotes the tangent vector of γ with respect to the arclength.
Let X be monotone. With the previous notations X is called strictly monotone [9] if for every distinct x and y

$$
\left\langle X_{x}, \dot{\gamma}(0)\right\rangle<\left\langle X_{y}, \dot{\gamma}(l)\right\rangle
$$

Since the length of the tangent vector of an arbitrary parametrized geodesic is constant, the relations of Definition 3.1 can be given for any parametrization of γ. It is also easy to see that X is monotone (strictly monotone), if and only if for every geodesic γ (arbitrarily parametrized) the $v: \tau \mapsto\left\langle X_{\gamma(\tau)}, \gamma^{\prime}(\tau)\right\rangle$ is monotone (strictly monotone), where $\gamma^{\prime}(\tau)$ is the tangent vector of γ with respect to its parameter τ.

The following example makes connection between monotone vector fields and monotone operators of a Euclidean space, showing that with few modifications the formers are generalizations of the latters:

Example 3.2. Let E be a Euclidean space, $G \subset E$ an open and convex set and $h: G \rightarrow E$ a monotone (strictly monotone) operator. Then, the vector field $X \in \operatorname{Sec}(T G) ; x \mapsto h(x)_{x}$, where $h(x)_{x}$ is the tangent vector in 0 of the curve $t \mapsto x+\operatorname{th}(x)$, is monotone (strictly monotone).

The next remark follows easily from Definition 3.1.
Remark 3.3. If M is an Hadamard manifold, $K \subset M$ a convex open set and $X \in \operatorname{Sec}(T K)$ is a vector field on K then X is monotone if and only if for every $x, y \in K$

$$
\begin{equation*}
\left\langle X_{x}, \exp _{x}^{-1} y\right\rangle+\left\langle X_{y}, \exp _{y}^{-1} x\right\rangle \leq 0, \tag{3.1}
\end{equation*}
$$

where $\exp : T M \rightarrow M$ is the exponential map of M.
Examples for monotone vector fields on Riemannian manifolds can be found in [9], [10]. We also remark that the gradient of every (geodesic) convex function [12] on a Riemannian manifold is monotone (see [16], [17]).

4. Homeomorphisms of Hadamard manifolds

The following proposition is a consequence of Lemma 2.4.
Proposition 4.1. Let M be an Hadamard manifold and $X \in \operatorname{Sec}(T M)$ a monotone vector field on M. Then the map $A=\exp X: M \rightarrow M$ defined by $A x=\exp _{x} X_{x}$ is expansive.

Proof. Suppose that A is not expansive. Hence there exist x and y in M such that $x^{\prime} y^{\prime}<x y$, where $x^{\prime}=A x$ and $y^{\prime}=A y$. Consider the
quadrilateral $x y y^{\prime} x^{\prime}$. Denote by the same letters the angles corresponding to the vertices x and y, respectively. Then by Lemma 2.4 we have

$$
\begin{equation*}
x x^{\prime} \cos x+y y^{\prime} \cos y>0 . \tag{4.1}
\end{equation*}
$$

It is easy to see that (4.1) is equivalent to

$$
\begin{equation*}
\left\langle X_{x}, \exp _{x}^{-1} y\right\rangle+\left\langle X_{y}, \exp _{y}^{-1} x\right\rangle>0 . \tag{4.2}
\end{equation*}
$$

But by (3.1) inequality (4.2) contradicts the monotonicity of X. Hence A is expansive.

Definition 4.2. Let M be a Riemannian manifold and d its distance function, which is a metric on M (see [5, p. 146, Proposition 2.5]). A : $M \rightarrow M$ is called reverse uniform continuous if for any $\varepsilon>0$ there is a $\delta=\delta(\varepsilon)>0$ such that $d(A x, A y)<\delta$ implies $d(x, y)<\varepsilon$.

Let $\alpha \geq 1$ and $L>0$ be two arbitrary positive constants and A : $M \rightarrow M$ such that for any x and y in M to have $d(A x, A y) \geq L d(x, y)^{\alpha}$. Then A is reverse uniform continuous. If $\alpha=L=1$ we obtain the set of expansive maps.

Theorem 4.3. Let M be a complete connected Riemannian manifold and $A: M \rightarrow M$ a continuous and reverse uniform continuous map. Then A is a homeomorphism. Particularly this is true for A continuous and expansive.

Proof. Let $n=\operatorname{dim} M$. It is easy to see that the reverse uniform continuity of A implies that it is injective and $A^{-1}: A M \rightarrow M$ is continuous, where $A M=\{A x: x \in M\}$. Hence $A: M \rightarrow A M$ is a homeomorphism. It remains to show that $A M=M$. Suppose that we have already proved that $A M$ is closed. Since $A: M \rightarrow A M$ is a homeomorphism, by Brouwer's domain invariance theorem, [7, p. 65] $A M$ is open. Since M is connected and $A M$ is an open and closed subset of M we have $A M=M$. Hence if we prove that $A M$ is closed we are done. For this let us consider a sequence $x_{n}^{\prime}=A x_{n}$ in M convergent to $x^{\prime} \in M$ and prove that $x^{\prime} \in A M$ i.e. there is an $x \in M$ such that $x^{\prime}=A x$. Since x_{n}^{\prime} is convergent it is a Cauchy sequence. It is easy to see that the reverse continuity of A implies that x_{n} is also a Cauchy sequence. Since M is complete, by Hopf-Rinow theorem for Riemannian manifolds it is complete as a metric space (see
[5, p. 146]). Hence x_{n} is convergent. Denote by x its limit. Since A is continuous taking the limit in the relation $x_{n}^{\prime}=A x_{n}$ as $n \rightarrow \infty$ we obtain $x^{\prime}=A x$.

By Proposition 4.1 we have the following extension to Hadamard manifolds of Minty's classical homeomorphism theorem for monotone maps $[8$, Corollary of Theorem 4].

Corollary 4.4. Let M be an Hadamard manifold and X be a continuous monotone vector field. Then $\exp X: M \rightarrow M$ is a homeomorphism.

In [10] we proved that if $p_{1}, p_{2}, \ldots, p_{n}$ are projection maps onto closed convex sets of an Hadamard manifold [18] then the vector field

$$
X=-\exp ^{-1}\left(p_{1} \circ \ldots \circ p_{n}\right)
$$

defined by

$$
X_{x}=-\exp _{x}^{-1}\left[\left(p_{1} \circ \ldots \circ p_{n}\right)(x)\right]
$$

is continuous and monotone. Hence we have the following corollary:
Corollary 4.5. Let M be an Hadamard manifold and $p_{1}, p_{2}, \ldots, p_{n}$ projection maps onto closed convex sets of M. Then $\exp \left[-\exp ^{-1}\left(p_{1} \circ \ldots \circ p_{n}\right)\right]$ is a homeomorphism of M onto M.

References

[1] J. S. BaE, Mapping theorems for locally expansive operators, J. Korean Math. Soc. 24 (1987), 65-71.
[2] J. S. Bae and B. G. Kang, Homeomorphism theorems for locally expansive operators, Bull. Korean Math. Soc. 25 (2) (1988), 253-260.
[3] J. S. Bae and S. Yie, Range of Gateaux differentiable operators and local expansions, Pacific J. Math. 125 (2) (1986), 289-300.
[4] F. E. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces, Proc. Symp. Pure Math. 18; Pt. 2, Amer. Math. Soc. Providence, R.I. (1976).
[5] M. P. do Carmo, Riemannian Geometry, Birkhäuser, Boston, 1992.
[6] W. A. Kirk and R. Schöneberg, Mapping theorems for local expansions in metric and Banach spaces, Journal of Mathematical Analysis and Applications 72 (1979), 114-121.
[7] W. S. Massey, Homology and cohomology theory, An approach based on Alexan-der-Spanier cochains, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 46, Marcel Dekker, Inc., New York - Basel, 1978.
[8] G. Minty, Monotone operators in Hilbert spaces, Duke Math. J. 29 (1962), 341-346.
[9] S. Z. Németh, Monotone vector fields, Publ. Math. Debrecen 54/3-4 (1999), 437-449.
[10] S. Z. Németh, Monotonicity of the complementary vector field of a nonexpansive map, Acta Mathematica Hungarica 84 (3) (1999), 189-197.
[11] B. O'Neil, Semi-Riemannian Geometry, With Applications to Relativity, [B] Pure and Applied Mathematics, 106, XIII, Academic Press, New York, London, 1983.
[12] T. RAPCSÁk, Smooth Nonlinear Optimization in \mathbb{R}^{n}, Kluwer Academic Publishers, 1997.
[13] W. O. Ray and A. M. Walker, Mapping theorems for Gateaux differentiable and accretive operators, Nonlinear Analysis, Theory, Methods \mathcal{G} Applications 6 (5) (1982), 423-433.
[14] W. O. Ray and A. M. Walker, Perturbations of normally solvable nonlinear operators, Internat. J. Math. Math. Sci. 8 (1985), 241-246.
[15] R. Torrejon, A note on locally expansive and locally accretive operators, Canad. Math. Bull. 26 (2) (1983).
[16] C. Udrişte, Convex functions on Riemannian manifolds, St. Cerc. Mat. 28 (6) (1976), 735-745.
[17] C. UdriŞTE, Continuity of convex functions on Riemannian manifolds, Bulletine Mathematique de Roumanie 21 (1977), 215-218.
[18] R. Walter, On the Metric Projections onto Convex Sets in Riemanian Spaces, Arch. Math. XXV (1974), 91-98.
[19] E. Zeidler, Nonlinear Functional Analysis and its Applications, II/B: Nonlinear Monotone Operators, Springer Verlag, 1990.

S. Z. NÉMETH

HUNGARIAN ACADEMY OF SCIENCES
LABORATORY OF OPERATIONS RESEARCH AND DECISION SYSTEMS
COMPUTER AND AUTOMATION RESEARCH INSTITUTE
H-1518 BUDAPEST, P.O. BOX 63
HUNGARY
E-mail: snemeth@sztaki.hu
(Received February 24, 2000)

