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On the set for which 1 is univoque

By I. KATAI (Budapest) and G. KALLOS (Gyér)

Abstract. For some integer K > 2 let £x be the set of those © € (%ﬂ’ %),

for which 1 has only one expansion 1 = e10 + €202 + ... with digits e; € {0,..., K},
(j =1,2,...). In this paper we prove, that the Lebesgue measure of the set £k is 0.

1. Introduction

I = K&

Let K €N, g € [K,K+1), Ax = {0,1,...,K}, © = K6

(z qu1) . Since

1
q’

K
0,2] < [ J(i© +©[o, 1)),
§=0

therefore each z € [0, L] has at least one expansion of the form
(1) T =0a104a0%+ ..., aj € A (j=1,2,...).

The structure of the so called univoque numbers, i.e. those for which no
more than one expansion (1) exist was investigated in the case K =1 by
Z. DAROCzY and 1. KATAI [1], 2], and for K > 2 by G. KALLOS [3],
[4]. In [2] it was demonstrated that this set is quite simple for K = 1 if
1 has at least two representations of form (1), and that the set of those
NS ( %, 1) for which 1 is univoque has Lebesgue measure 0 (and Hausdorff
dimension 1).
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Our purpose in this short paper is to prove

Theorem 1. For each K € N, the set of those © € (ﬁ, %), for

which 1 is univoque is of Lebesgue measure 0.

2. Some remarks and definitions

The regular (or Rényi-Parry [5]) expansion of some z € [0,1) is gen-
erated by the iteration of the rule:

r=¢e1(2)0+ 0Oz, ei(x)=[qz], z1 = {qz}.

The quasiregular expansion of some z € (0,1}, x = 6(2)© + Oz; =
51(2)O + 62(2)O% + ... is defined as follows: &1 (z) is the largest integer s
for which x — s© > 0, 1 = qx — s.

Let A} be the set of infinite sequences over Ag, and for some o =
aias ... let @ =a@1as ..., where m = K — n for n € Agx. For some integer
h > 0 let A% be the set of sequences of length h over Ag. The shift
operator o : .A?{ — .A?L is defined as usual by o(ajaz...) = agas....
Let < denote the lexicographic ordering in AY-. Furthermore let © =
(©,02,...), and for £ = ({1,0z,...) € A let (£,0) = (10 + £,0% + ....

For some © € (ﬁ, %) let t = t(©) = tyt2... be the sequence of

the digits in the quasiregular expansion of 1. Let

fK:{t(@))@e <K1+1[1(>}

According to a theorem due to W. PARRY [5], t € F if and only if
dty<t (j=12,...), =K

holds. Furthermore, for a fixed © the sequence e € AL is the regular
expansion of some z € [0, 1), if and only if

dlle)<t  (j=0,1,2,...).

Let F I(g ) C Fk be the set of those sequences t, for which 1 is univoque with

respect to O, 1 = (t,0), and let Ex be the set of those © € <ﬁ, %),

for which 1 is univoque, i.e.

EK:{@)@,@:L ;ef}é‘)}.
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We should prove that A(x) = 0 (X is the Lebesgue measure). Since the
case K =1 was treated in [2], from now on we assume that K > 2.

A trivial but important observation is that for some fixed © the num-
ber x is univoque, if and only if L — x is univoque. Since L < 2, therefore
0<L-1<1.If1=t0+t0%2+...,then L—1=160+10%+....
1 is univoque with respect to © if the expansion #1fs... of L — 1 is the

)

quasiregular expansion of it. Thus t € F ]((u if and only if

I<olt)<t (j=1,2,...), t1=K

holds (clearly ¢ < t).
W. PARRY proved that, if t},t? € F, (t',01) =1, (t*,02) = 1, then
t! < t? implies that ©; > O.

3. A useful lemma

Lemma 1. Let u > 1, t1,ta,...,t, € Ak, and Bg(t1,ta,...,t,) be
the set of those ©-s, for which 1 is univoque with respect to ©, with first
u digits t1,ta,...,ty,. Then B (t1,ta,...,ty) C [, Bu], where «,, is the
positive solution of

L= (ty+-+tuy")

11—y

and (3, is the positive solution of the polynomial 1 = tix + -+ + t,z%.
au

Consequently, 3, — a, < J*.

PROOF of Lemma 1. Let © € Bg(t1,ta,...,ty), 1 = t10 + -+ +
t,0% + ... . Then

b 8,00 <t < (ty .. 1),

and for a,, we get

l=(ty+ 4ty )1 +y"+y* +..) = (ty+ - + tuy")

11—y’
thus the first assertion holds. Let
o1(z) =tz + -+ t,z* —1

Go(x) = t1x + -+ + by x4 (fy + D2 — 1,
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A = [, — ay. We have 0 = ¢1(8,) = ¢p2(a,). From the Taylor expansion

A2
0= ¢1(ow + A) = ¢1(ow) + Adl () + -5 Tow) + -,

with ¢1(a,) = —a we obtain that

2

A
oy = Ady () + 7<z>'1'(au) ..

Since the derivates ¢§“) () are nonnegative (u =1,2,...), we get

au
AS 1u Si
tywos ™t 4o+t T K

R

u
U

The proof is completed. O

4. Proof of Theorem 1

Let > 1,0<s< K, T=K"s (€ A", Let By(T) be the set of
those sequences s185...SN € A%, for which

(2) T§5i+1---3i+(r+1)§T (1=0,1,...,N —r—1),
(3) 0Pt < sy p...sy < KPTY (p=0,1,...,7)

holds. For some « of length M < N let By (T | ) be the subset of those
elements of By (T') for which additionally s185...sy = a holds. Let Dy =
Dn(T), My () be the size of By (T), By (T | ), respectively.

We shall give an upper estimate for Dy .

Assume that N > r + 2. Then

K-1
Dy = My(0) + My (K)+ Y My(j).

It is clear that My (j) = Dny—-1, (j = 1,..., K—1). If the conditions (2), (3)
hold then they remain valid for 5753 .. .5y as well. Thus My (0) = My (K),
and so

(4) Dy — (K —1)Dy-1 = 2MN(K).



On the set for which 1 is univoque 747

Similarly, if 1 < h < r, then

K-1
My (K") = My (K"0) + My (K" + > My (K")

j=1
= Myn_p(K) + My(K"™) + (K — 1)Dy_(111),

and so

r—1

> (My(E") - My (KM = i My_n(K)+ (K —-1)> Dy_y.
h=1 h=1 v=2

The left hand side is My (K) — My(K").
Other hand, if s > 0 then

Mn(K") = My(K"0) + ZMN(KTJ) = Mn—(K) + 8DN_(r41)»
=1

and so

r—1

Mn(K) = My_(K) = sDy_ri1) = O My_n(K)+ (K =1)> Dy_y.
h=1 v=2

Hence, by (4), substituting 2My (K) and 2My_p,(K)

r

Dy — (K —1)Dy—_1 — Z (DN—h — (K — 1)DN—(h+1)>
h—1

= 2(K — ]_) ZDN_V + 2SDN—(T+1)7

v=2

Consequently

'
Dy — (Z KDy + 3DN(T+1)) + (K —1-8)Dy_(r41) =0,

pu=1
and so

.
Dy < Z KDN— i+ $DN_(r41)-
pn=1
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Let the sequence X be defined by the equation X; =D;, (j =1,...,r+1),
and let

(5) Xn:iKXn_u—&—an,(rJrl), (n=r+2,...,N).
=1
Then D; < Xj, (j =7 +2,...,N). Let
p(r) =2 —K(2" +--+2) =5
be the characteristic polynomial of the difference equation (5), and

(6) Az) = 26 <1> 1 K(z 4 +a’) — szt

T

Let n be the positive root of A(z). This is a simple root, and no other
roots do exist in the disc |z| < n. Thus

1 N

with a suitable positive constant ¢, which may depend only on r and s.

In the case s = 0, similarly as above, we deduce the recursion

Dy — KZDN,V + (K — 1)DN—(T+1) =0,
v=1

whence

Dy < KZT:Dny

v=1

follows. Let X; =D; (j=1,...,r), and
(8) X, =K» Xop, (n=r+1,..N)
v=1

As earlier, we have D; < X, (j=r+1,...,N). Let

V@) =a" = K@ 4+ 1)
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be the characteristic polynomial of (8), and

B(z) = 2" (i) 1 K(z 442"

Let n* be its positive root. Then, as above, we obtain that

1 N
DNSXNSC<*> )
n

with some positive constant ¢ = ¢(r).
To finish the proof we shall prove that for every r > 1 and 0 < s < K,
A(Br(K"s)) = 0. Here

BK(KTS) = BK(KKS)

T

is defined in Lemma 1. If K"ssys2--- € ]:I(g) then (2) and (3) hold.
Assume that s > 1. We have

BK(KTS): Z BK(KT88182...SN),

$1,.-38N

where on the right hand sum we sum only over those si, ..., sy, for which
(2), (3) hold. From Lemma 1 it follows that each summand on the right

hand side can be covered by an interval [y (r+1), Bn4(r+1)], the length
of which is By (r41) — ANgr41) < a%ig:ig If (2) holds, then among
51 ... Sr41 there exists a nonzero element, consequently a1 (,41) is smaller

than w, where w is the positive root of the equation
9 l1=K(x+--+2")+sz" T 4122+
(9)

It is obvious that w < 7 (see (6)). Thus, from (7),
Y
/\(BK(KTS)) <c <n> wN+r+1,

which by N — oo implies that A\(Bg(K"s)) = 0.

In the case s = 0 the argument is similar. We can observe only that
the positive root w of the equation (9) with s = 0 is less than n*. Hence
we obtain that A(Bx(K"s)) = 0. Since &x = 3200, S5V Br(K™s),
therefore A\(€x) = 0.

The proof of the theorem is completed. O
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