On the total curvature of hypersurfaces in negatively curved Riemannian manifolds

By ALBERT BORBÉLY (Safat)

Abstract

The total curvature of hypersurfaces is estimated in certain Hadamard manifolds.

0. Introduction

Let M^{n} be an n-dimensional Hadamard manifold, that is, a simply connected manifold with nonpositive sectional curvature and F be an $n-1$ dimensional smooth immersed hypersurface. Denote by $A_{q}: T_{q} F \rightarrow T_{q} F$ the shape operator of F at $q \in F$ and set $K(q)=\operatorname{det} A_{q}$. It is well defined up to sign and when M is the Euclidean space it is called the GaussKronecker curvature. We adapt the same name for K in a Hadamard manifold although it is no longer an intrinsic quantity of the hypersurface.

It is well known that in case M is the Euclidean space and F is compact we have

$$
\operatorname{Vol}\left(S^{n-1}\right) \operatorname{deg} S=\int_{F} K
$$

where S denotes the Gauss map of F. As a consequence we also have

$$
\begin{equation*}
\int_{F}|K| \geq \operatorname{Vol}\left(S^{n-1}\right) \tag{1}
\end{equation*}
$$

This remains true for a general Hadamard manifold in dimensions $n=2,3$ as a result of the Gauss-Bonnet theorem. It seems natural to expect that the above statement will hold in higher dimensions as well.

[^0]There is another important motivation for trying to show that (1) is satisfied for a general nonpositively curved manifold. This is the so called isoperimetric conjecture (see [3], [4]).

Isoperimetric Conjecture. Let M^{n} be a Hadamard manifold and $D \subset M^{n}$ be a compact domain with smooth boundary. Then it satisfies the Euclidean isoperimetric inequality:

$$
\operatorname{area}(\partial D) \geq d_{n}(\operatorname{vol}(D))^{\frac{n-1}{n}},
$$

where $d_{n}=\operatorname{area}\left(S^{n-1}\right) /\left(\operatorname{vol}\left(B^{n}\right)\right)^{\frac{n-1}{n}}$.
This is now settled in dimension 4 by [3] and in dimension 3 by [4]. In fact, the main part of the proof in [4] is to show how (1) implies the isoperimetric inequality. Although, it was carried out in dimension 3 only, it is very likely (and is explicitly mentioned in [4]), that it generalizes to higher dimensions. This means that a possible way of proving the isoperimetric conjecture is to establish (1) for a general Hadamard manifold.

The goal of this paper is to prove inequality (1) in certain situations, thereby making a case for the validity of (1) for a general Hadamard manifold. We have the following theorem.

Theorem 1. Let M^{n} be a Hadamard manifold which is rotationally symmetric at $p \in M^{n}$ and $p \in E \subset M^{n}$ be an open subset with compact closure and a smooth boundary. Then we have

$$
\begin{equation*}
\int_{\partial E}|K| \geq \operatorname{Vol}\left(S^{n-1}\right) \tag{1'}
\end{equation*}
$$

where K denotes the determinant of the shape operator of the boundary.
If equality occurs, then E is flat, that is, E is isometric to a subset of the Euclidean space.

Since the n-dimensional hyperbolic space H^{n} is rotationally symmetric at any of its point we have the following corollary.

Corollary 1. Let F be a closed $(n-1)$-dimensional manifold and $F \hookrightarrow H^{n}$ be an isometric immersion. Then

$$
\int_{F}|K| \geq \operatorname{Vol}\left(S^{n-1}\right)
$$

There are several natural questions related to inequality (1^{\prime}) which could be studied in the context of general Hadamard manifolds. For example, it seems natural to expect that Theorem 1 holds in general. One might also try to generalize results of Chern and Lashof [2] to Hadamard manifolds.

Although, we have precise results about certain integrals on hypersurfaces due to Chern (the curvature integra [1]) the generalized Gauss-Bonnet-Chern theorem does not seem to help in higher dimension (at least not in an obvious way).

1. Rotationally symmetric manifolds

Let M^{n} be a rotationally symmetric Hadamard manifold at $p \in M^{n}$. We use the conformal model for M, that is, we think of M^{n} as an open Euclidean ball around p (possibly the whole \mathbb{R}^{n}) equipped with the metric:

$$
\begin{equation*}
d s^{2}=f(r)^{2} d s_{E}^{2}, \quad f(0)=1, \tag{2}
\end{equation*}
$$

where $d s_{E}$ denotes the natural metric of the underlying Euclidean space and r denotes the Euclidean distance from p.

We call a two-dimensional submanifold a radial plane if it is a radial plane in the underlying Euclidean space. It is obviously true that:

Claim 1. Every radial plane is totally geodesic.
We also need the following. Let $Z(p) \in T_{p} M^{n}$ be a unit tangent vector and denote by Z the vector field which we obtained from $Z(p)$ by parallel translation along geodesics from p.

Claim 2. The orthogonal distribution Z^{\perp} is integrable and the integral manifolds are hyperplanes in the Euclidean sense.

Proof. Denote by \tilde{Z} the vector field on M^{n} which is parallel in the Euclidean sense and $\tilde{Z}(p)=Z(p)$. From the special form of the metric one can easily deduce that

$$
Z=\frac{1}{f(r)} \tilde{Z}
$$

Since \tilde{Z}^{\perp} is obviously integrable and $Z^{\perp}=\tilde{Z}^{\perp}$ the claim follows.
Denote by H_{Z} the family of integral manifolds of Z^{\perp}. We are going to show that every hypersurface of H_{Z} has a definite 2nd fundamental
form. More precisely, let $q \in M^{n}$ be an arbitrary point different from p and denote by H_{q} the integral manifold of Z^{\perp} passing through q. Denote by R the radial unit vector field ($R=\frac{1}{f(r)} \frac{\partial}{\partial r}$) defined on $M^{n}-\{p\}$. Then we have:

Proposition 1. If $\langle Z, R\rangle \geq 0$ at q, then the 2nd fundamental form of H_{q} at q with respect to the normal field Z is positive semi-definite.

Proof. Let $T(q)$ be a unit tangent vector tangent to H_{q} at q. We need to show that $\left\langle\nabla_{T} Z, T\right\rangle \geq 0$. Denote also by T the vector field defined on the geodesic segment $[p q]$ which is obtained from $T(q)$ by parallel translation. Now, we have two globally defined unit vector fields Z and R (actually R is defined only on $M^{n}-\{p\}$) and a unit vector field T defined only on the geodesic segment $[p q]$.

The following computation takes place along the geodesic segment [pq] $-\{p\}$. Since $\nabla_{R} Z$ is zero on $M^{n}-\{p\}$ and T is parallel along $[p q]$ we have

$$
\begin{equation*}
R\left\langle\nabla_{T} Z, T\right\rangle=\left\langle\nabla_{R} \nabla_{T} Z, T\right\rangle=\langle\mathbf{R}(T, R) Z, T\rangle-\left\langle\nabla_{[T, R]} Z, T\right\rangle \tag{3}
\end{equation*}
$$

where \mathbf{R} is the curvature tensor.
Let us decompose $Z=a R+b T+Z_{1}$ along $[p q]-\{p\}$, where a, b are constants (since Z, T, R are all parallel along $[p q]-\{p\}$) and Z_{1} is a vector field along $[p q]-\{p\}$ orthogonal to the two-plane determined by R and T. Since we assumed that $\langle Z, R\rangle \geq 0$ a simple computation shows that $a \geq 0$. Indeed, write

$$
0 \leq\langle Z, R\rangle=a+b\langle T, R\rangle
$$

and

$$
0=\langle Z, T\rangle=a\langle R, T\rangle+b
$$

Observing that T, R are unit vectors, the claim follows by substituting the expression for b into the first inequality.

We can also write $[T, R]$ along $[p q]-\{p\}$ in the form $[T, R]=c(r) T+$ $d(r) R$. We will need the fact that $c(r)>0$. Indeed, we have $[T, R]=\nabla_{T} R$ since $\nabla_{R} T=0$ on $[p q]-\{p\}$. Write $T=T^{\prime}+d R$ along $[p q]-\{p\}$, where T^{\prime} is orthogonal to R and d is some constant since Z, R are parallel along $[p q]-\{p\}$. The shape operator of every ball centerd around p is a positive multiple of the identity operator, therefore we have $\nabla_{T} R=$ $\nabla_{T^{\prime}} R=\alpha(r) T^{\prime}$, where $\alpha(r)>0$. Taking into account that $T^{\prime}=T-d R$
the fact follows. Since radial two-planes are totally geodesic (Claim 1) the curvature term $\left\langle\mathbf{R}(T, R) Z_{1}, T\right\rangle=0$ and (3) becomes

$$
\begin{equation*}
R\left\langle\nabla_{T} Z, T\right\rangle=a\langle\mathbf{R}(T, R) R, T\rangle-c(r)\left\langle\nabla_{T} Z, T\right\rangle \tag{4}
\end{equation*}
$$

This is an ordinary differential equation for $\left\langle\nabla_{T} Z, T\right\rangle$ along the geodesic segment $[p q]-\{p\}$. Since Z is a globally defined smooth vector field $\left\langle\nabla_{T} Z, T\right\rangle$ is defined and is differentiable on the whole of $[p q]$ with initial value 0 at p. Since $a\langle\mathbf{R}(T, R) R, T\rangle \geq 0$ and $c(r)>0$ the solution has to be also non-negative. This concludes the proof of the proposition.

2. Proof of Theorem 1

We will need an elementary fact from linear algebra. Let C, D be two positive definite matrices such that $C \leq D$, that is, $\langle C X, X\rangle \leq\langle D X, X\rangle$ for every X. Then $\operatorname{det}(C) \leq \operatorname{det}(D)$. This follows from Hadamard's inequality which states: for a positive definite matrix $C=\left[c_{i j}\right]$ we have $\operatorname{det}(C) \leq c_{11} c_{22} \cdot \ldots \cdot c_{n n}$. Equality occurs if and only if C is a diagonal matrix.

The method of the proof of Theorem 1 is the same as in the Euclidean case. We are going to estimate the determinant of the Gauss map.

Let $p \in \operatorname{int} E$ and let $Z(p) \in T_{p} M^{n}$ be an arbitrary unit tangent vector at p. As before we construct the vector field Z and the family of integral manifolds H_{Z}. If we think of M^{n} as a Euclidean ball equipped with the metric (2) it is clear from previous remarks (Claim 2) that H_{Z} is a family of parallel hyperplanes in the Euclidean sense. Let H be the supporting hyperplane of the set E such that E lies completely on one side of H and the outward unit normals at the intersection $H \cap \partial E$ are the same as the corresponding values of the vector field Z. Set $F_{Z}=H \cap \partial E \neq \emptyset$ and let F be the union of F_{Z} for all unit vectors $Z \in T_{p} M^{n}$. Then $F \subset \partial E$ and we are going to show that

$$
\int_{F}|K| \geq \operatorname{Vol}\left(S^{n-1}\right)
$$

This clearly implies Theorem 1 .
Let $G_{p}: T M^{n} \rightarrow T_{p} M^{n}$ be the map defined by parallel translating vectors in $T_{q} M^{n}$ to $T_{p} M^{n}$ along the geodesic segment $[q p]$. This is clearly
a differentiable map on $T M^{n}$ which is linear on the fibers $T_{q} M^{n}$. Denote the restriction of G_{p} to $T_{q} M^{n}$ by $G_{q p}: T_{q} M^{n} \rightarrow T_{p} M^{n}$.

For $q \in \partial E$ denote by $N(q)$ the outer unit normal and define the map $S: \partial E \rightarrow T_{p} M^{n}$ by $S(q)=G_{p}(N(q))$. This may be regarded as the generalization of the Gauss map. Then $d S: T \partial E \rightarrow T S^{n-1} \subset T_{p} M^{n}$, where S^{n-1} denotes the unit sphere in $T_{p} M^{n}$.

Let $q \in F$ be an arbitrary point. From the construction of F we know that there exists a unit vector $Z(p) \in T_{p} M^{n}$ such that the integral manifold H_{q} of the distribution Z^{\perp} at q is tangent to $\partial E, E$ lies completely on one side of H_{q} and the outward normal of ∂E coincides with Z at q. Here Z, as before, denotes the vector field obtained from $Z(p)$ by parallel translation along geodesics.

We are going to express $d S$ in terms of the covariant derivatives. Let $T \in T_{q} \partial E$ be a unit vector and $\gamma:[0, \epsilon) \rightarrow \partial E$ be a curve emanating from q with $\gamma^{\prime}(0)=T$. Then

$$
\begin{aligned}
d S(T) & =\lim _{t \rightarrow 0} \frac{G_{p}(N(\gamma(t)))-G_{p}(N(q))}{t}=\lim _{t \rightarrow 0} G_{p}\left(\frac{N(\gamma(t))-Z(\gamma(t))}{t}\right) \\
& =G_{p}\left(\lim _{t \rightarrow 0} \frac{N(\gamma(t))-Z(\gamma(t))}{t}\right)=G_{p}\left(\nabla_{T}(N-Z)\right) .
\end{aligned}
$$

If we identify the tangent spaces $T_{p} M^{n}$ and $T_{q} M^{n}$ via the isometry $G_{p q}$, then $G_{q p}^{-1} \circ d S: T_{q} \partial E \rightarrow T_{q} \partial E$ is a symmetric map and

$$
G_{q p}^{-1} \circ d S(T)=\nabla_{T}(N-Z)=\nabla_{T} N-\nabla_{T} Z .
$$

The terms on the right hand side are the shape operators of ∂E and H_{q} at q which we denote by A_{q} and B_{q}, respectively. Since H_{q} "envelops" ∂E at q, that is, ∂E lies completely on one side of H_{q} and they have a common normal at q we conclude that $A_{q} \geq B_{q}$ in the sense that for every $T \in T_{q} H=T_{q} \partial E$ we have $\left\langle A_{q} T, T\right\rangle \geq\left\langle B_{q} T, T\right\rangle$. This implies that $G_{q p}^{-1} \circ d S$ is positive semi-definite. Since $p \in \operatorname{int} E$ from the construction of H_{q} it is clear that $\langle R, Z\rangle>0$ at q. Taking into account Proposition 1 we conclude that $B_{q} \geq 0$, therefore

$$
0 \leq G_{q p}^{-1} \circ d S \leq A_{q} .
$$

From Hadamard's inequality one can easily get

$$
0 \leq \operatorname{det}(d S) \leq \operatorname{det}\left(A_{q}\right)=|K| .
$$

Since the Gauss map $S: F \rightarrow S^{n-1}$ is onto it implies

$$
\operatorname{Vol}\left(S^{n-1}\right) \leq \int_{F} \operatorname{det}(d S) \leq \int_{F}|K| \leq \int_{\partial E}|K| .
$$

This concludes the proof of the inequality.
If equality occurs, then $\operatorname{det}(d S)=\operatorname{det}(A)$ at every point of F. Let $q \in \partial E$ be a point where $\operatorname{dist}(p, q)$ is maximal. We will show that q must belong to the set F. Let H_{q} denote the supporting hyperplane (in the Euclidean sense) of E at the point q. Since the metric is rotationally symmetric and the $\operatorname{dist}(p, q)$ is maximal, we conclude that the set E must lie on completely one side of H_{q} and from the definition of F the claim follows.

Clearly, the shape operator A_{q} at q is positive definite and from the equality case of Hadamard's inequality we conclude that $A_{q}=d S$ at q. This implies that H is flat at $q\left(B_{q}=0\right)$, that is, all the principal curvatures of H are zero at q. The vector fields Z and R introduced in the proof of Proposition 1 are equal at q, which means that $a=1$ in (4). Since $\left\langle\nabla_{T} Z, T\right\rangle=0$ at p and at q from the differential equation (4) we obtain that $\left\langle\nabla_{T} Z, T\right\rangle \equiv 0$ on $[p q]$, which implies that $\left.\langle\mathbf{R}(T, R) R, T)\right\rangle \equiv 0$ along the geodesic segment $[p q]$. Since $T \in T_{q} \partial E$ was arbitrary, we conclude that the radial sectional curvatures along $[p q]$ are zero. Taking into account the rotational symmetry we see that all the radial sectional curvatures are zero and since they completely determine the metric the theorem follows.

References

[1] S.-S. Chern, On the curvatura integra in a Riemannian manifold, Annals of Math. 46 (1945), 674-684.
[2] S.-S. Chern and R.K. Lashof, On the total curvature of immersed manifolds, Amer. J. Math. 79 (1957), 306-318.
[3] C. Croke, A sharp four dimensional isoperimetric inequality, Comment. Math. Helv. 59 (1984), 187-192.
[4] B. Kleiner, An isoperimetric comparison theorem, Invent. Math. 108 (1992), 37-47.

ALBERT BORBÉLY
KUWAIT UNIVERSITY
DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE
P.O. BOX 5969, SAFAT 13060

KUWAIT
E-mail: borbely@mcc.sci.kuniv.edu.kw
(Received February 4, 2000; revised October 11, 2000)

[^0]: Mathematics Subject Classification: 53C21.
 Key words and phrases: total curvature, Gauss curvature, isoperimetric inequality.
 This research was supported by the Kuwait University Research Grant SM 03/99.

