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On the total curvature of hypersurfaces in
negatively curved Riemannian manifolds

By ALBERT BORBÉLY (Safat)

Abstract. The total curvature of hypersurfaces is estimated in certain Hadamard
manifolds.

0. Introduction

Let Mn be an n-dimensional Hadamard manifold, that is, a simply
connected manifold with nonpositive sectional curvature and F be an n−1-
dimensional smooth immersed hypersurface. Denote by Aq : TqF → TqF
the shape operator of F at q ∈ F and set K(q) = det Aq. It is well defined
up to sign and when M is the Euclidean space it is called the Gauss-
Kronecker curvature. We adapt the same name for K in a Hadamard
manifold although it is no longer an intrinsic quantity of the hypersurface.

It is well known that in case M is the Euclidean space and F is
compact we have

Vol(Sn−1) deg S =
∫

F

K,

where S denotes the Gauss map of F . As a consequence we also have

(1)
∫

F

|K| ≥ Vol(Sn−1).

This remains true for a general Hadamard manifold in dimensions
n = 2, 3 as a result of the Gauss–Bonnet theorem. It seems natural to
expect that the above statement will hold in higher dimensions as well.
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There is another important motivation for trying to show that (1) is
satisfied for a general nonpositively curved manifold. This is the so called
isoperimetric conjecture (see [3], [4]).

Isoperimetric Conjecture. Let Mn be a Hadamard manifold and

D ⊂ Mn be a compact domain with smooth boundary. Then it satisfies

the Euclidean isoperimetric inequality:

area(∂D) ≥ dn(vol(D))
n−1

n ,

where dn = area(Sn−1)/(vol(Bn))
n−1

n .

This is now settled in dimension 4 by [3] and in dimension 3 by [4]. In
fact, the main part of the proof in [4] is to show how (1) implies the isoperi-
metric inequality. Although, it was carried out in dimension 3 only, it is
very likely (and is explicitly mentioned in [4]), that it generalizes to higher
dimensions. This means that a possible way of proving the isoperimetric
conjecture is to establish (1) for a general Hadamard manifold.

The goal of this paper is to prove inequality (1) in certain situations,
thereby making a case for the validity of (1) for a general Hadamard man-
ifold. We have the following theorem.

Theorem 1. Let Mn be a Hadamard manifold which is rotationally

symmetric at p ∈ Mn and p ∈ E ⊂ Mn be an open subset with compact

closure and a smooth boundary. Then we have

(1’)
∫

∂E

|K| ≥ Vol(Sn−1),

where K denotes the determinant of the shape operator of the boundary.

If equality occurs, then E is flat, that is, E is isometric to a subset of

the Euclidean space.

Since the n-dimensional hyperbolic space Hn is rotationally symmet-
ric at any of its point we have the following corollary.

Corollary 1. Let F be a closed (n − 1)-dimensional manifold and

F ↪→ Hn be an isometric immersion. Then
∫

F

|K| ≥ Vol(Sn−1).
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There are several natural questions related to inequality (1’) which
could be studied in the context of general Hadamard manifolds. For ex-
ample, it seems natural to expect that Theorem 1 holds in general. One
might also try to generalize results of Chern and Lashof [2] to Hadamard
manifolds.

Although, we have precise results about certain integrals on hyper-
surfaces due to Chern (the curvature integra [1]) the generalized Gauss–
Bonnet–Chern theorem does not seem to help in higher dimension (at least
not in an obvious way).

1. Rotationally symmetric manifolds

Let Mn be a rotationally symmetric Hadamard manifold at p ∈ Mn.
We use the conformal model for M , that is, we think of Mn as an open
Euclidean ball around p (possibly the whole Rn) equipped with the metric:

(2) ds2 = f(r)2ds2
E , f(0) = 1,

where dsE denotes the natural metric of the underlying Euclidean space
and r denotes the Euclidean distance from p.

We call a two-dimensional submanifold a radial plane if it is a radial
plane in the underlying Euclidean space. It is obviously true that:

Claim 1. Every radial plane is totally geodesic.

We also need the following. Let Z(p) ∈ TpM
n be a unit tangent vector

and denote by Z the vector field which we obtained from Z(p) by parallel
translation along geodesics from p.

Claim 2. The orthogonal distribution Z⊥ is integrable and the inte-

gral manifolds are hyperplanes in the Euclidean sense.

Proof. Denote by Z̃ the vector field on Mn which is parallel in the
Euclidean sense and Z̃(p) = Z(p). From the special form of the metric one
can easily deduce that

Z =
1

f(r)
Z̃.

Since Z̃⊥ is obviously integrable and Z⊥ = Z̃⊥ the claim follows. ¤
Denote by HZ the family of integral manifolds of Z⊥. We are going

to show that every hypersurface of HZ has a definite 2nd fundamental
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form. More precisely, let q ∈ Mn be an arbitrary point different from p

and denote by Hq the integral manifold of Z⊥ passing through q. Denote
by R the radial unit vector field (R = 1

f(r)
∂
∂r ) defined on Mn−{p}. Then

we have:

Proposition 1. If 〈Z,R〉 ≥ 0 at q, then the 2nd fundamental form of

Hq at q with respect to the normal field Z is positive semi-definite.

Proof. Let T (q) be a unit tangent vector tangent to Hq at q. We
need to show that 〈∇T Z, T 〉 ≥ 0. Denote also by T the vector field de-
fined on the geodesic segment [pq] which is obtained from T (q) by parallel
translation. Now, we have two globally defined unit vector fields Z and R

(actually R is defined only on Mn−{p}) and a unit vector field T defined
only on the geodesic segment [pq].

The following computation takes place along the geodesic segment
[pq]−{p}. Since ∇RZ is zero on Mn−{p} and T is parallel along [pq] we
have

(3) R〈∇T Z, T 〉 = 〈∇R∇T Z, T 〉 = 〈R(T, R)Z, T 〉 − 〈∇[T,R]Z, T 〉,

where R is the curvature tensor.
Let us decompose Z = aR + bT + Z1 along [pq]− {p}, where a, b are

constants (since Z, T , R are all parallel along [pq]−{p}) and Z1 is a vector
field along [pq]−{p} orthogonal to the two-plane determined by R and T .
Since we assumed that 〈Z, R〉 ≥ 0 a simple computation shows that a ≥ 0.
Indeed, write

0 ≤ 〈Z,R〉 = a + b〈T, R〉
and

0 = 〈Z, T 〉 = a〈R, T 〉+ b.

Observing that T,R are unit vectors, the claim follows by substituting the
expression for b into the first inequality.

We can also write [T, R] along [pq]−{p} in the form [T, R] = c(r)T +
d(r)R. We will need the fact that c(r) > 0. Indeed, we have [T, R] = ∇T R

since ∇RT = 0 on [pq] − {p}. Write T = T ′ + dR along [pq] − {p},
where T ′ is orthogonal to R and d is some constant since Z, R are parallel
along [pq] − {p}. The shape operator of every ball centerd around p is
a positive multiple of the identity operator, therefore we have ∇T R =
∇T ′R = α(r)T ′, where α(r) > 0. Taking into account that T ′ = T − dR
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the fact follows. Since radial two-planes are totally geodesic (Claim 1) the
curvature term 〈R(T, R)Z1, T 〉 = 0 and (3) becomes

(4) R〈∇T Z, T 〉 = a〈R(T, R)R, T 〉 − c(r)〈∇T Z, T 〉.

This is an ordinary differential equation for 〈∇T Z, T 〉 along the geo-
desic segment [pq]−{p}. Since Z is a globally defined smooth vector field
〈∇T Z, T 〉 is defined and is differentiable on the whole of [pq] with initial
value 0 at p. Since a〈R(T,R)R, T 〉 ≥ 0 and c(r) > 0 the solution has to
be also non-negative. This concludes the proof of the proposition. ¤

2. Proof of Theorem 1

We will need an elementary fact from linear algebra. Let C,D be two
positive definite matrices such that C ≤ D, that is, 〈CX,X〉 ≤ 〈DX, X〉
for every X. Then det(C) ≤ det(D). This follows from Hadamard’s
inequality which states: for a positive definite matrix C = [cij ] we have
det(C) ≤ c11c22 · . . . · cnn. Equality occurs if and only if C is a diagonal
matrix.

The method of the proof of Theorem 1 is the same as in the Euclidean
case. We are going to estimate the determinant of the Gauss map.

Let p ∈ intE and let Z(p) ∈ TpM
n be an arbitrary unit tangent vector

at p. As before we construct the vector field Z and the family of integral
manifolds HZ . If we think of Mn as a Euclidean ball equipped with the
metric (2) it is clear from previous remarks (Claim 2) that HZ is a family
of parallel hyperplanes in the Euclidean sense. Let H be the supporting
hyperplane of the set E such that E lies completely on one side of H and
the outward unit normals at the intersection H ∩ ∂E are the same as the
corresponding values of the vector field Z. Set FZ = H ∩ ∂E 6= ∅ and let
F be the union of FZ for all unit vectors Z ∈ TpM

n. Then F ⊂ ∂E and
we are going to show that

∫

F

|K| ≥ Vol(Sn−1).

This clearly implies Theorem 1.
Let Gp : TMn → TpM

n be the map defined by parallel translating
vectors in TqM

n to TpM
n along the geodesic segment [qp]. This is clearly
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a differentiable map on TMn which is linear on the fibers TqM
n. Denote

the restriction of Gp to TqM
n by Gqp : TqM

n → TpM
n.

For q ∈ ∂E denote by N(q) the outer unit normal and define the
map S : ∂E → TpM

n by S(q) = Gp(N(q)). This may be regarded as the
generalization of the Gauss map. Then dS : T∂E → TSn−1 ⊂ TpM

n,
where Sn−1 denotes the unit sphere in TpM

n.
Let q ∈ F be an arbitrary point. From the construction of F we

know that there exists a unit vector Z(p) ∈ TpM
n such that the integral

manifold Hq of the distribution Z⊥ at q is tangent to ∂E, E lies completely
on one side of Hq and the outward normal of ∂E coincides with Z at q.
Here Z, as before, denotes the vector field obtained from Z(p) by parallel
translation along geodesics.

We are going to express dS in terms of the covariant derivatives. Let
T ∈ Tq∂E be a unit vector and γ : [0, ε) → ∂E be a curve emanating from
q with γ′(0) = T . Then

dS(T ) = lim
t→0

Gp(N(γ(t)))−Gp(N(q))
t

= lim
t→0

Gp

(
N(γ(t))− Z(γ(t))

t

)

= Gp

(
lim
t→0

N(γ(t))− Z(γ(t))
t

)
= Gp(∇T (N − Z)).

If we identify the tangent spaces TpM
n and TqM

n via the isometry
Gpq, then G−1

qp ◦ dS : Tq∂E → Tq∂E is a symmetric map and

G−1
qp ◦ dS(T ) = ∇T (N − Z) = ∇T N −∇T Z.

The terms on the right hand side are the shape operators of ∂E and Hq

at q which we denote by Aq and Bq, respectively. Since Hq “envelops”
∂E at q, that is, ∂E lies completely on one side of Hq and they have
a common normal at q we conclude that Aq ≥ Bq in the sense that for
every T ∈ TqH = Tq∂E we have 〈AqT, T 〉 ≥ 〈BqT, T 〉. This implies that
G−1

qp ◦ dS is positive semi-definite. Since p ∈ intE from the construction
of Hq it is clear that 〈R, Z〉 > 0 at q. Taking into account Proposition 1
we conclude that Bq ≥ 0, therefore

0 ≤ G−1
qp ◦ dS ≤ Aq.

From Hadamard’s inequality one can easily get

0 ≤ det(dS) ≤ det(Aq) = |K|.
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Since the Gauss map S : F → Sn−1 is onto it implies

Vol(Sn−1) ≤
∫

F

det(dS) ≤
∫

F

|K| ≤
∫

∂E

|K|.

This concludes the proof of the inequality.
If equality occurs, then det(dS) = det(A) at every point of F . Let

q ∈ ∂E be a point where dist(p, q) is maximal. We will show that q must
belong to the set F . Let Hq denote the supporting hyperplane (in the
Euclidean sense) of E at the point q. Since the metric is rotationally
symmetric and the dist(p, q) is maximal, we conclude that the set E must
lie on completely one side of Hq and from the definition of F the claim
follows.

Clearly, the shape operator Aq at q is positive definite and from the
equality case of Hadamard’s inequality we conclude that Aq = dS at q.
This implies that H is flat at q (Bq = 0), that is, all the principal curvatures
of H are zero at q. The vector fields Z and R introduced in the proof
of Proposition 1 are equal at q, which means that a = 1 in (4). Since
〈∇T Z, T 〉 = 0 at p and at q from the differential equation (4) we obtain
that 〈∇T Z, T 〉 ≡ 0 on [pq], which implies that 〈R(T,R)R, T )〉 ≡ 0 along
the geodesic segment [pq]. Since T ∈ Tq∂E was arbitrary, we conclude that
the radial sectional curvatures along [pq] are zero. Taking into account the
rotational symmetry we see that all the radial sectional curvatures are zero
and since they completely determine the metric the theorem follows. ¤
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