A generalization of the Hyers-Ulam-Rassias stability of the beta functional equation

By GWANG HUI KIM (Suwon)

Abstract

In this paper, we prove a generalization of the Hyers-Ulam-Rassias stability for the inverse form (2^{\prime}) of the beta functional equation. As a consequence we obtain the Hyers-Ulam stability and the stability in the spirit of Găvruta for the gamma functional equation.

1. Introduction

In 1940, S. M. Ulam [16] raised the following problem: Under what conditions does there exist an additive mapping near an approximately additive mapping?

In 1941, this problem was solved by D. H. HyERS [3]. Thereafter we usually say that the equation $E_{1}(h)=E_{2}(h)$ is stable in the HyersUlam sense if for an approximate solution f of this equation, i.e. for a function f with $\left|E_{1}(f)-E_{2}(f)\right| \leq \delta$ there exists a function g such that $E_{1}(g)=E_{2}(g)$ and $|f(x)-g(x)| \leq \epsilon$. In 1978 the Hyers-Ulam stability for additive mapping was generalized by TH. M. RASSIAS [12]. This result of Th. M. Rassias was again generalized by P. Gǎvruta [2] as follows:

If for an approximate solution f of the equation $E_{1}(h)=E_{2}(h)$, i.e. for a function f such that $\left|E_{1}(f)-E_{2}(f)\right| \leq \phi$ holds with a given function ϕ there exists a function g such that $E_{1}(g)=E_{2}(g)$ and $|g(x)-f(x)| \leq \Phi(x)$ for some fixed function Φ.

Mathematics Subject Classification: 39B82, 39B72, 39B52.
Key words and phrases: gamma and beta function, functional equations, Hyers-Ulam stability, Hyers-Ulam-Rassias stability.

The functional equation

$$
\begin{equation*}
f(x+1)=x f(x) \quad \text { for all } x>0 \tag{1}
\end{equation*}
$$

is called the gamma functional equation. It is well-known that the gamma function

$$
\Gamma(x)=\int_{0}^{\infty} e^{-t} t^{x-1} d t \quad(x>0)
$$

is a solution of the gamma functional equation.
From the relation of gamma and beta function, that is,

$$
B(x, y)=\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}=B(y, x)
$$

the functional equation

$$
\begin{equation*}
f(x+1, y+1)=\frac{x y}{(x+y)(x+y+1)} f(x, y) \quad \text { for all } x, y>0 \tag{2}
\end{equation*}
$$

will be called the beta functional equation. The beta function

$$
B(x, y)=\int_{0}^{1} t^{x-1}(1-t)^{y-1} d t
$$

is a solution of the beta functional equation.
We consider the inverse functional equation of beta functional equation (2) as follows:

$$
B(x+1, y+1)^{-1}=\frac{(x+y)(x+y+1)}{x y} B(x, y)^{-1} .
$$

In this paper, we shall investigate the modified Hyers-Ulam-Rassias stability of the functional equation $\left(2^{\prime}\right)$. Throughout this paper, we denote by \mathbb{R}_{+}the set of all positive real numbers and n_{0} is a nonnegative integer, and in particular the author will use a notation $x_{i}=x+i$ for the convenience of calculation and the appreciation of the reader. By using an idea of GÃVRUTA [2] we can prove the following theorem:

Theorem 1. Let $\Phi: \mathbb{R}_{+} \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be a given mapping satisfying the inequality

$$
\begin{equation*}
\Phi(x, y):=\sum_{j=0}^{\infty} \varphi\left(x_{j}, y_{j}\right) \prod_{i=0}^{j} \frac{x_{i} y_{i}}{\left(x_{i}+y_{i}\right)\left(x_{i}+y_{i}+1\right)}<\infty \tag{3}
\end{equation*}
$$

for all $x, y \in \mathbb{R}_{+}$, and let n_{0} be a given nonnegative integer.
Assume that a mapping $B: \mathbb{R}_{+} \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$satisfies the inequality

$$
\begin{equation*}
\left|B(x+1, y+1)^{-1}-\frac{(x+y)(x+y+1)}{x y} B(x, y)^{-1}\right| \leq \varphi(x, y) \tag{4}
\end{equation*}
$$

for all $x, y>n_{0}$. Then there exists a unique mapping $T: \mathbb{R}_{+} \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$ which satisfies the beta functional equation (2^{\prime}) and the inequality

$$
\begin{equation*}
\left|T(x, y)^{-1}-B(x, y)^{-1}\right| \leq \Phi(x, y) \tag{5}
\end{equation*}
$$

for all $x, y>n_{0}$.

2. Proof of the Theorem 1

For $x, y>n_{0}$, we use an induction on n to prove

$$
\begin{align*}
& \left|B\left(x_{n}, y_{n}\right)^{-1}-B(x, y)^{-1} \prod_{i=0}^{n-1} \frac{\left(x_{i}+y_{i}\right)\left(x_{i}+y_{i}+1\right)}{x_{i} y_{i}}\right| \tag{6}\\
& \quad \leq \sum_{j=0}^{n-1} \varphi\left(x_{j}, y_{j}\right) \prod_{i=1}^{n-1-j} \frac{\left(x_{i+j}+y_{i+j}\right)\left(x_{i+j}+y_{i+j}+1\right)}{x_{i+j} y_{i+j}}
\end{align*}
$$

for all positive integers n, where we assume that $\prod_{i=1}^{0} \frac{\left(x_{i}+y_{i}\right)\left(x_{i}+y_{i}+1\right)}{x_{i} y_{i}}=1$ conventionally. The inequality (6) immediately follows from (4) for the case of $n=1$. If we assume that (6) holds true for some n, then we obtain for $n+1$

$$
\begin{aligned}
& \left|B\left(x_{n+1}, y_{n+1}\right)^{-1}-B(x, y)^{-1} \prod_{i=0}^{n} \frac{\left(x_{i}+y_{i}\right)\left(x_{i}+y_{i}+1\right)}{x_{i} y_{i}}\right| \\
& \quad \leq\left|B\left(x_{n+1}, y_{n+1}\right)^{-1}-\frac{\left(x_{n}+y_{n}\right)\left(x_{n}+y_{n}+1\right)}{x_{n} y_{n}} B\left(x_{n}, y_{n}\right)^{-1}\right| \\
& \quad+\frac{\left(x_{n}+y_{n}\right)\left(x_{n}+y_{n}+1\right)}{x_{n} y_{n}} \\
& \quad .\left|B\left(x_{n}, y_{n}\right)^{-1}-B(x, y)^{-1} \prod_{i=0}^{n-1} \frac{\left(x_{i}+y_{i}\right)\left(x_{i}+y_{i}+1\right)}{x_{i} y_{i}}\right| \\
& \quad \leq \varphi\left(x_{n}, y_{n}\right)+\frac{\left(x_{n}+y_{n}\right)\left(x_{n}+y_{n}+1\right)}{x_{n} y_{n}}
\end{aligned}
$$

$$
\begin{aligned}
& \cdot \sum_{j=0}^{n-1} \varphi\left(x_{j}, y_{j}\right) \prod_{i=1}^{n-1-j} \frac{\left(x_{i+j}+y_{i+j}\right)\left(x_{i+j}+y_{i+j}+1\right)}{x_{i+j} y_{i+j}} \\
= & \varphi\left(x_{n}, y_{n}\right)+\sum_{j=0}^{n-1} \varphi\left(x_{j}, y_{j}\right) \prod_{i=1}^{n-j} \frac{\left(x_{i+j}+y_{i+j}\right)\left(x_{i+j}+y_{i+j}+1\right)}{x_{i+j} y_{i+j}} \\
= & \sum_{j=0}^{n} \varphi\left(x_{j}, y_{j}\right) \prod_{i=1}^{n-j} \frac{\left(x_{i+j}+y_{i+j}\right)\left(x_{i+j}+y_{i+j}+1\right)}{x_{i+j} y_{i+j}},
\end{aligned}
$$

which completes the proof of (6). If we divide both sides in (6) by $\prod_{i=0}^{n-1} \frac{\left(x_{i}+y_{i}\right)\left(x_{i}+y_{i}+1\right)}{x_{i} y_{i}}$, then we get

$$
\begin{align*}
& \left|B\left(x_{n}, y_{n}\right)^{-1} \prod_{i=0}^{n-1}\left(\frac{\left(x_{i}+y_{i}\right)\left(x_{i}+y_{i}+1\right)}{x_{i} y_{i}}\right)^{-1}-B(x, y)^{-1}\right| \tag{7}\\
& \quad \leq \sum_{j=0}^{n-1} \varphi\left(x_{j}, y_{j}\right) \prod_{i=0}^{j}\left(\frac{\left(x_{i}+y_{i}\right)\left(x_{i}+y_{i}+1\right)}{x_{i} y_{i}}\right)^{-1}
\end{align*}
$$

for every $n \in \mathbb{N}$. By using (4) and(3) we have for $n>m>0$

$$
\begin{aligned}
& \left\lvert\, B\left(x_{m}, y_{m}\right)^{-1} \prod_{i=0}^{m-1}\left(\frac{\left(x_{i}+y_{i}\right)\left(x_{i}+y_{i}+1\right)}{x_{i} y_{i}}\right)^{-1}\right. \\
& \left.\quad-B\left(x_{n}, y_{n}\right)^{-1} \prod_{i=0}^{n-1}\left(\frac{\left(x_{i}+y_{i}\right)\left(x_{i}+y_{i}+1\right)}{x_{i} y_{i}}\right)^{-1} \right\rvert\, \\
& =\left\lvert\, B\left(x_{m}, y_{m}\right)^{-1} \prod_{i=0}^{m-1}\left(\frac{\left(x_{i}+y_{i}\right)\left(x_{i}+y_{i}+1\right)}{x_{i} y_{i}}\right)^{-1}\right. \\
& \quad-B\left(x_{m+1}, y_{m+1}\right)^{-1} \prod_{i=0}^{m}\left(\frac{\left(x_{i}+y_{i}\right)\left(x_{i}+y_{i}+1\right)}{x_{i} y_{i}}\right)^{-1} \\
& \quad+-\cdots \\
& \quad+B\left(x_{n-1}, y_{n-1}\right)^{-1} \prod_{i=0}^{n-2}\left(\frac{\left(x_{i}+y_{i}\right)\left(x_{i}+y_{i}+1\right)}{x_{i} y_{i}}\right)^{-1} \\
& \left.\quad-B\left(x_{n}, y_{n}\right)^{-1} \prod_{i=0}^{n-1}\left(\frac{\left(x_{i}+y_{i}\right)\left(x_{i}+y_{i}+1\right)}{x_{i} y_{i}}\right)^{-1} \right\rvert\,
\end{aligned}
$$

$$
\begin{aligned}
\leq & \sum_{j=m}^{n-1} \left\lvert\, B\left(x_{j}, y_{j}\right)^{-1} \frac{\left(x_{j}+y_{j}\right)\left(x_{j}+y_{j}+1\right)}{x_{j} y_{j}}\right. \\
& -B\left(x_{j+1}, y_{j+1}\right)^{-1} \left\lvert\, \prod_{i=0}^{j}\left(\frac{\left(x_{i}+y_{i}\right)\left(x_{i}+y_{i}+1\right)}{x_{i} y_{i}}\right)^{-1}\right. \\
\leq & \sum_{j=m}^{n-1} \varphi\left(x_{j}, y_{j}\right) \prod_{i=0}^{j}\left(\frac{\left(x_{i}+y_{i}\right)\left(x_{i}+y_{i}+1\right)}{x_{i} y_{i}}\right)^{-1} \rightarrow 0,
\end{aligned}
$$

as $\quad m \rightarrow \infty$.
Therefore, the sequence

$$
B\left(x_{n}, y_{n}\right)^{-1} \prod_{i=0}^{n-1}\left(\frac{\left(x_{i}+y_{i}\right)\left(x_{i}+y_{i}+1\right)}{x_{i} y_{i}}\right)^{-1}
$$

is a Cauchy sequence for $x, y>n_{0}$, and hence we can define a mapping $T_{0}:\left(n_{0}, \infty\right) \times\left(n_{0}, \infty\right) \rightarrow \mathbb{R}_{+}$by

$$
\begin{equation*}
T_{0}(x, y)^{-1}=\lim _{n \rightarrow \infty} B\left(x_{n}, y_{n}\right)^{-1} \prod_{i=0}^{n-1}\left(\frac{\left(x_{i}+y_{i}\right)\left(x_{i}+y_{i}+1\right)}{x_{i} y_{i}}\right)^{-1} \tag{8}
\end{equation*}
$$

for all $x, y>n_{0}$. Letting in (7) $n \rightarrow \infty$ and applying (8) and (3) we obtain (5).

By (8) we can easily verify that T_{0} satisfies $\left(2^{\prime}\right)$:

$$
\begin{aligned}
T_{0} & (x+1, y+1)^{-1} \\
& =\lim _{n \rightarrow \infty} B\left(x_{n+1}, y_{n+1}\right)^{-1} \prod_{i=0}^{n-1}\left(\frac{\left(x_{i+1}+y_{i+1}\right)\left(x_{i+1}+y_{i+1}+1\right)}{x_{i+1} y_{i+1}}\right)^{-1} \\
& =\frac{(x+y)(x+y+1)}{x y} \lim _{n \rightarrow \infty} B\left(x_{n+1}, y_{n+1}\right)^{-1} \prod_{i=0}^{n}\left(\frac{\left(x_{i}+y_{i}\right)\left(x_{i}+y_{i}+1\right)}{x_{i} y_{i}}\right)^{-1} \\
& =\frac{(x+y)(x+y+1)}{x y} T_{0}(x, y)^{-1}
\end{aligned}
$$

for all $x, y>n_{0}$.
Now we assume that $G:\left(n_{0}, \infty\right) \times\left(n_{0}, \infty\right) \rightarrow \mathbb{R}_{+}$is another mapping which satisfies $\left(2^{\prime}\right)$ as well as (5) for all $x, y>n_{0}$. By (2^{\prime}), (5) and (3) we
obtain

$$
\begin{aligned}
& \left|T_{0}(x, y)^{-1}-G(x, y)^{-1}\right| \\
& \quad=\left|T_{0}\left(x_{n}, y_{n}\right)^{-1}-G\left(x_{n}, y_{n}\right)^{-1}\right| \prod_{i=0}^{n-1} \frac{x_{i} y_{i}}{\left(x_{i}+y_{i}\right)\left(x_{i}+y_{i}+1\right)} \\
& \quad \leq 2 \Phi\left(x_{n}, y_{n}\right) \prod_{i=0}^{n-1} \frac{x_{i} y_{i}}{\left(x_{i}+y_{i}\right)\left(x_{i}+y_{i}+1\right)} \\
& \quad=2 \sum_{j=0}^{\infty} \varphi\left(x_{n+j}, y_{n+j}\right) \prod_{i=0}^{n+j} \frac{x_{i} y_{i}}{\left(x_{i}+y_{i}\right)\left(x_{i}+y_{i}+1\right)} \\
& \quad=2 \sum_{j=n}^{\infty} \varphi\left(x_{j}, y_{j}\right) \prod_{i=0}^{j} \frac{x_{i} y_{i}}{\left(x_{i}+y_{i}\right)\left(x_{i}+y_{i}+1\right)} \quad \rightarrow 0, \quad \text { as } n \rightarrow \infty .
\end{aligned}
$$

for all $x, y>n_{0}$. This implies the uniqueness of T_{0}. Now we extend the function T_{0} to $(0, \infty) \times(0, \infty)$. We define for $0<x, y \leq n_{0}$

$$
T(x, y):=\prod_{n=0}^{k-1} \frac{\left(x_{n}+y_{n}\right)\left(x_{n}+y_{n}+1\right)}{x_{n} y_{n}} \cdot T_{0}(x+k, y+k)
$$

where k is the smallest natural number satisfying the inequalities $x+k>n_{0}$ and $y+k>n_{0}$. And also $T(x, y)=T_{0}(x, y)$ for all $x, y>n_{0}$. Then $T(x+1, y+1)=\frac{x y}{(x+y)(x+y+1)} T(x, y)$ for all $x, y>0$.

Also the following inequality holds

$$
\left|T(x, y)^{-1}-B(x, y)^{-1}\right|<\Phi(x, y)
$$

for all $x, y>n_{0}$. Hence, the proof of the theorem is completed.

3. Applications to the gamma and beta functional equation

The following corollary that is called the Hyers-Ulam stability for the functional equation $\left(2^{\prime}\right)$ can be found in the author's papers ([7], [11]).

Corollary 2. Assume that a mapping $B: \mathbb{R}_{+} \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$satisfies the inequality

$$
\left|B(x+1, y+1)^{-1}-\frac{(x+y)(x+y+1)}{x y} B(x, y)^{-1}\right| \leq \delta
$$

for some $\delta>0$ and for all $x, y>n_{0}$. Then there exists a unique mapping $T: \mathbb{R}_{+} \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$which satisfies the beta functional equation (2') and the inequality

$$
\left|T(x, y)^{-1}-B(x, y)^{-1}\right| \leq \delta
$$

for all $x, y>n_{0}$.
Proof. Apply Theorem 1 and condition (3) with $\varphi(x, y)=\delta$. Then we arrive

$$
\begin{aligned}
\Phi(x, y) & =\sum_{j=0}^{\infty} \delta \prod_{i=0}^{j} \frac{x_{i} y_{i}}{\left(x_{i}+y_{i}\right)\left(x_{i}+y_{i}+1\right)}=\delta \sum_{j=0}^{\infty} \prod_{i=0}^{j} \frac{x_{i} y_{i}}{\left(x_{i}+y_{i}\right)\left(x_{i}+y_{i}+1\right)} \\
& <\delta\left(\frac{1}{2}+\frac{1}{2^{2}}+\cdots\right)=\delta .
\end{aligned}
$$

For the stability of the gamma functional equation we apply Theorem 1 to a single variable, and then we can get the following results. In the case $n_{0}=0$, Corollary 4 can be found in S.-M. Jung ([8], [9]), H. Alzer [1] and the author's [10].

Theorem 3. Assume that a mapping $g: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$satisfies the inequality

$$
\begin{equation*}
|g(x+1)-x g(x)| \leq \varphi(x) \tag{9}
\end{equation*}
$$

for all $x, y>n_{0}$. Then there exists a unique mapping $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$which satisfies the the gamma functional equation (1) with

$$
|f(x)-g(x)| \leq \Phi(x) \quad \forall x>n_{0}
$$

where $\Phi(x):=\sum_{j=0}^{\infty} \varphi\left(x_{j}\right) \prod_{i=0}^{j} \frac{1}{x_{i}}<\infty$.
Proof. For any $x>n_{0}$ and for every positive integer n we define

$$
P_{n}(x)=g\left(x_{n}\right) \prod_{i=0}^{n-1} \frac{1}{x_{i}} .
$$

By (9) we have

$$
\begin{align*}
\mid P_{n+1}(x) & -P_{n}(x)\left|=\left|g\left(x_{n+1}\right)-x_{n} g\left(x_{n}\right)\right| \prod_{i=0}^{n} \frac{1}{x_{i}}\right. \tag{10}\\
& \leq \varphi\left(x_{n}\right) \prod_{i=0}^{n} \frac{1}{x_{i}} \quad \text { for } x>n_{0} .
\end{align*}
$$

Now we use induction on n to prove

$$
\begin{equation*}
\left|P_{n}(x)-g(x)\right| \leq \sum_{j=0}^{n-1} \varphi\left(x_{j}\right) \prod_{i=0}^{j} \frac{1}{x_{i}} \tag{11}
\end{equation*}
$$

for the fixed $x>n_{0}$ and for all positive integers n. For the case $n=1$, the inequality (11) is an immediate consequence of (9). Assume that (11) holds true for some n. It then follows from (9) and (10)
$\left|P_{n+1}(x)-g(x)\right| \leq\left|P_{n+1}(x)-P_{n}(x)\right|+\left|P_{n}(x)-g(x)\right| \leq \sum_{j=0}^{n} \varphi\left(x_{j}\right) \prod_{i=0}^{j} \frac{1}{x_{i}}$.
which completes the proof of (11). Now let m, n be positive integers with $n \geq m$. Suppose $x\left(>n_{0}\right)$ is given. By definition of Φ, we have

$$
\begin{aligned}
& \left|P_{n}(x)-P_{m}(x)\right| \leq \sum_{j=m}^{n-1}\left|P_{j+1}(x)-P_{j}(x)\right| \\
& \quad \leq \sum_{j=m}^{n-1} \varphi\left(x_{j}\right) \prod_{i=0}^{j} \frac{1}{x_{i}} \rightarrow 0 \quad \text { as } m \rightarrow \infty
\end{aligned}
$$

This implies that $\left\{P_{n}(x)\right\}$ is a Cauchy sequence for $x>n_{0}$. Next proceeding of the proof is very similiar to that of the Theorem 1 .

Corollary 4. Assume that a mapping $g: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$satisfies the inequality

$$
|g(x+1)-x g(x)| \leq \delta
$$

for some $\delta>0$ and for all $x, y>n_{0}$. Then there exists a unique mapping $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$which satisfies the gamma functional equation (1) with

$$
|f(x)-g(x)| \leq \frac{e \delta}{x}
$$

for all $x>n_{0}$, where e is the best possible constant.
Proof. Apply $\delta=\varphi(x)$ in Theorem 3. We can find in [1] that e is the best possible constant.

References

[1] H. Alzer, Remark on the stability of the gamma functional equation, Results Math. 35 (1999), 199-200.
[2] P. Găvruta, A Generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
[3] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
[4] D. H. Hyers, G. Isac and Th. M. Rassias, Stability of the Functional Equations in Several Variables, Birkhäuser Verlag, 1998.
[5] D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), 125-153.
[6] G. Isac and Th. M. Rassias, On the Hyers-Ulam stability of ψ-additive mappings, J. Appr. Theory 72 (1993), 131-137.
[7] K. W. Jun, G. H. Kim and Y. W. Lee, Stability of generalized gamma and beta functional equations, Aequationes Math. 60 (2000), 15-24.
[8] S.-M. Jung, On the stability of gamma functional equation, Results Math. $\mathbf{3 3}$ (1998), 306-309.
[9] S.-M. Jung, On the modified Hyers-Ulam-Rassias stability of the functional equation for gamma function, Mathematica Cluj 39 (62) no. 2 (1997), 233-237.
[10] G. H. Kim, On the stability of generalized gamma functional equation, Internat. J. Math. \& Math. Sci. 23 (2000), 513-520.
[11] G. H. Kim and Y. W. Lee, The stability of the Beta functional equation, Studia, Univ. Babes-Bolyai, (to appear).
[12] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[13] Th. M. Rassias, On the modified Hyers-Ulam sequence, J. Math. Anal. Appl. 158 (1991), 106-113.
[14] Th. M. Rassias and P. Šemrl, On the Hyers-Ulam stability of the linear mappings, J. Math. Anal. Appl. 173 (1993), 325-338.
[15] Th. M. Rassias and J. Tabor (eds.), Stability of Mappings of Hyers-Ulam Type, Hadronic Press Inc., Florida, 1994.
[16] S. M. Ulam, Problems in Modern Mathematics Chap. VI, Science eds., Wiley, New York, 1960.

```
GWANG HUI KIM
DEPARTMENT OF MATHEMATICS
KANGNAM UNIVERSITY
SUWON, 449-702
KOREA
E-mail: ghkim @ kns.kangnam.ac.kr
```

(Received May 29, 2000; revised October 4, 2000)

