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On a problem of S. Mazur

By ANTAL JÁRAI (Budapest)

Abstract. In Problem 24 of “The Scottish Book” S. Mazur asked whether the
Lebesgue measurability of an additive functional along every path in a Banach space
implies its continuity. It is proved that this condition is equivalent to universal mea-
surability.

Introduction

In about 1935 S. Mazur asked (Problem 24 of “The Scottish Book”
[11]) the following question: An additive functional f in a Banach space
X is given with the property

(P) for each path g in X, f ◦ g is Lebesgue measurable.

Is it true that f is continuous? This long-standing question was answered
in 1984: Labuda and Mauldin [7] proved, that the answer is yes, more
generally, if f is an additive operator mapping X into a Hausdorff topo-
logical vector space, and f has property (P), then it is continuous. The
result was extended by Lipecki [8] to the case when X and Y are Abelian
Hausdorff topological groups with X metrizable, connected, locally arcwise
connected and complete. More general functional equations have also been
considered. R. Ger [3] has obtained similar results concerning property
(P) for Jensen convex functions, and L. Székelyhidi [12] for exponential
polynomials.
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The aim of this note is to prove that, on certain topological spaces,
property (P) is equivalent to a more usual measurability condition, namely,
universal measurability. This result makes it possible to use “measura-
bility implies continuity” type results, that are known for more general
functional equations, to get “property (P) implies continuity” type re-
sults. “Measurability implies continuity” type results exist for several func-
tional equations and inequalities. See, for example, Gajda [2], Grosse–
Erdman [4] and Járai [5]. In particular, using a result from the classic
book of Schwartz [10], we obtain the result of Labuda and Mauldin.

Definition. We say that µ is a measure over X, if X is a set, µ maps
2X into the set of nonnegative extended real numbers, and

µ(A) ≤
∑

B∈F
µ(B) whenever F ⊂ 2X , F is countable, A ⊂ ∪F .

We say that A is a µ measurable set if A⊂X and µ(T )= µ(T ∩A)+ µ(T\A)
whenever T ⊂ X. Let Mµ denote the σ-algebra of all µ measurable sets.
A measure is called diffuse if any set with only one element has measure 0.

If Y ⊂ X, the restriction of µ to 2Y is a measure on Y denoted by µY .
Let µbY defined by (µbY )(A) = µ(Y ∩A) for all A ⊂ X.

Every function f : X → Y induces a map f# of measures over X
defined by (f#µ)(B) = µ(f−1(B)) for B ⊂ Y .

Under a path we mean a continuous function g : I → X of the unit
interval I = [0, 1] into the topological space X. The class of Lebesgue
measurable subsets of I will be denoted by L, and Lebesgue measure on
the subsets of I by λ. A function with values in the topological space
X is called Lebesgue measurable if it is (L,BX) measurable, where BX is
the class of Borel subsets of X, the σ-algebra generated by open sets. A
measure µ over X is called a Borel measure if X is a topological space, all
open sets are measurable, and for each set A ⊂ X there exists a Borel set
B such that A ⊂ B and µ(A) = µ(B). µ is a Radon measure, if X is a
Hausdorff space, all open sets are measurable, µ is locally finite and

µ(V ) = sup{µ(K) : K is compact, K ⊂ V } for any open set V,

µ(A) = inf{µ(V ) : V is open, A ⊂ V } for any subset A of X.

The support of a Borel measure is

sptµ = X \ ∪{V : V is open, µ(V ) = 0}.
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If µ is a Radon measure, then µ(X \ sptµ) = 0.
For a topological space X let

UX =
⋂
{Mµ : µ is a Borel measure on X},

the set of universally measurable subsets of X. Similarly, if X is a Haus-
dorff space, let

RX =
⋂
{Mµ : µ is a Radon measure on X}.

If in these definitions the expressions “Borel measure” and “Radon mea-
sure” are replaced by “diffuse probability Borel measure” and “diffuse
probability Radon measure”, respectively, then the classes UX and RX

remain unchanged. In the case when X is a Polish space, RX = UX . More
general results can be found in Schwartz [10, pp. 117–130]. See also
Federer [1, 2.2.16].

Results

Let

PX = {A : A ⊂ X, g−1(A) ∈ L for each path g in X}.

Trivially, PX is a σ-algebra, and a function f : X → Y mapping X into a
measurable space (Y,S) is (PX ,S) measurable if and only if for each path
g in X, the function f ◦ g is (L,S) measurable. So we have to investigate
only the connection of PX with other σ-algebras. Clearly, BX ⊂ PX . More
generally, we have

Theorem. If X is a Hausdorff topological space, then RX ⊂ PX .

Proof. Suppose, that A is a subset of X for which A /∈ PX . Then
there exists a path g in X for which g−1(A) /∈ L. Let µ = g#λ. Using re-
sults 2.2.17, 2.1.5(4) from Federer [1], we get that µ is a Radon measure,
and A cannot be µ measurable. ¤

The converse is not true in all Hausdorff spaces. Clearly, if X is totally
disconnected, than PX = 2X . Hence some connectedness properties are
needed. To prove the converse for a wide class of spaces we need a lemma,
which is more or less equivalent to a theorem of Marczewski published
in Polish (see [7] and [8]).
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Lemma. Let µ be a diffuse probability Radon measure on a complete

metric space X. Then for each ε > 0 there exists a compact subset C

of I and a homeomorphism g : C → g(C) ⊂ X such that g is measure

preserving between C and g(C), that is, g#(λC) = µbg(C), moreover

1 > µ(g(C)) > 1− ε.

Proof. Let G(x, r) denote the open, B(x, r) the closed ball with
centre x and radius r, respectively. Let tn be a stricly decreasing sequence
tending to 1. Let us choose a compact set K ⊂ X for which 1 > µ(K) >

1 − ε/2. We may suppose, that spt(µbK) = K. For a fixed x ∈ K,
the function r 7→ µ(K ∩B(x, r)) is positive for each positive r, monotone
increasing, and tends to 0, as r tends to 0. Hence, we can choose a number
0 < rx < 1/2, for which the function is continuous at the point rx, and
has value less than 1

2µ(K). Choosing a finite subcovering from the open
covering G(x, rx), x ∈ K, we get points xi and radii ri = rxi , for which

µ(K ∩B(xi, ri)) <
1
2
µ(K) (i = 1, 2, . . . , n).

Moreover, we can choose radii r′i > ri, i = 1, 2, . . . , n, for which

µ(K ∩G(xi, r
′
i)) < µ(K ∩B(xi, ri)) +

ε

22n
.

Let K1 = K ∩B(x1, r1), and by induction let

Ki = (K \ (∪j<iG(xj , r
′
j))) ∩B(xi, ri) if i = 2, 3, . . . , n.

If one of the sets Ki has measure zero, let us drop it, decreasing n. Finally,
let

K(1) =
n⋃

i=1

Ki.

Clearly, the sets Ki are disjoint compact sets with diameter less then 1, for
each i the inequality 0 < µ(Ki) < 1/2 holds, K(1) ⊂ K, and µ(K \K(1)) <

ε/22. Let us select disjoint closed intervals Ci, i = 1, 2, . . . , n in I, such
that µ(Ki) < λ(Ci) < t1µ(Ki), whenever i = 1, 2, . . . , n.

In the second step, let us repeat the above construction for each Ki

instead of K. We get disjoint compact subsets

Ki,1, Ki,2, . . . , Ki,ni , ni > 1
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of Ki, with diameter less than 1/2, with measure positive but less then
1/4, such that with the notation

K(2) =
n⋃

i1=1

ni1⋃

i2=1

Ki1,i2 ,

K(2) ⊂ K(1) and µ(K(1) \ K(2)) < ε/23. We choose the corresponding
closed subintervals

Ci,1, Ci,2, . . . , Ci,ni

of Ci such that
µ(Ki1,i2) < λ(Ci1,i2) < t2µ(Ki1,i2)

is satisfied. Let

C(2) =
n⋃

i1=1

ni1⋃

i2=1

Ci1,i2 .

Continuing this process, by induction we get the systems

Ki1,i2,... ,ik
and Ci1,i2,... ,ik

and the sets K(k) and C(k). Let

K∞ =
∞⋂

k=1

K(k), C =
∞⋂

k=1

C(k).

To each point x ∈ C there corresponds a unique sequence

i1, i2, . . . , ik, . . . , 1 ≤ ik ≤ ni1,i2,... ,ik−1 .

Similarly, to each y ∈ K∞ there corresponds a unique such sequence. Let
g(x) = y if the corresponding sequences are equal.

To prove that g is continuous, let η > 0. If 1/2k−1 < η, and δ is the
minimal distance between sets Ci1,i2,... ,ik

, then |x − x′| < δ implies that
g(x) and g(x′) are in the same set Ki1,i2,... ,ik

, hence have distance less
than η.

If η > 0 and tk/2k < η, let δ be the minimal distance between sets
Ki1,i2,... ,ik

. If the distance between g(x) and g(x′) less than δ, then x and
x′ are in the same set Ci1,i2,... ,ik

, hence |x−x′| < η and g−1 is continuous.
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To prove that g#(λC) = µbg(C), it is enough to prove that

λ(C ∩ Ci1,... ,ik
) = µ(K∞ ∩Ki1,... ,ik

),

because every open subset of C and g(C) can be written as a disjoint
countable union of open subsets of C and g(C) of this form, respectively,
and the measures are Radon measures. But

λ(C ∩ Ci1,... ,ik
) = lim

l→∞

∑

ik+1,... ,il

λ(Ci1,... ,ik,ik+1,... ,il
),

µ(K∞ ∩Ki1,... ,ik
) = lim

l→∞

∑

ik+1,... ,il

µ(Ki1,... ,ik,ik+1,... ,il
),

and
µ(Ki1,... ,il

) < λ(Ci1,... ,il
) < tlµ(Ki1,... ,il

). ¤

Theorem. Let X be a complete, connected and locally arcwise con-

nected metric space. Then PX ⊂ RX .

Proof. Suppose, that A is a subset of X for which A /∈ RX . We
shall prove, that A /∈ PX . Let us choose a diffuse probability Radon
measure, for which A /∈ Mµ. Let A′ denote the complement of A. Then
µ(A)+µ(A′) > µ(X) = 1. Let us choose an ε > 0 for which µ(A)+µ(A′) >

1+2ε. By our lemma, there exist a compact subset C of I with λ measure
greater then 1 − ε and a measure preserving homeomorphism g between
C and K = g(C) ⊂ X. By Theorem 5, §50 in Kuratowski [6] g can be
extended to a path h mapping I into X. Clearly h#(λbC) = g#(λC) =
µbK. By the measurability of K, µ(A) = µ(A ∩ K) + µ(A \ K), hence
µ(A∩K) > µ(A)−ε. Similarly, µ(A′∩K) > µ(A′)−ε. This proves, that A

is not µbK measurable. By 2.1.2 of Federer [1], h−1(A) is λ measurable
if and only if A is h#(λbB) measurable for each subset B of X, which is
not the case if B = C. Hence A /∈ PX . ¤

Corollary. The answer to the problem of Mazur is affirmative, i.e. if

for an additive functional f of a real Banach space X the function f ◦ g is

Lebesgue measurable for all continuous function g : [0, 1] → X, then f is

continuous.

Proof. Using the notations of the definition, from the previous the-
orem we obtain that f is universally Radon measurable. Since for all
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x ∈ X the mapping t 7→ f(tx) is Lebesgue measurable and additive, by
well-known results we obtain that f is homogeneous. By a theorem from
the book of Schwartz [10] (p. 157), a linear and universally Radon mea-
surable functional on a Banach space is continuous. It follows that f is
continuous. ¤

Remark. The previous corollary can be extended to additive operators
mapping a (real) ultrabornological topological vector space into a (real)
locally convex Hausdorff topological vector space, if we use the ideas of
the proof on p. 159 in the book of Schwartz [10].
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