Publ. Math. Debrecen 59 / 3-4 (2001), 327–338

On submanifolds of Lorentzian almost paracontact manifolds

By MUKUT MANI TRIPATHI (Lucknow) and SHIV SHARMA SHUKLA

Abstract. Lorentzian almost paracontact structures are constructed from Riemannian almost paracontact structures on a differentiable manifold. Some properties of submanifolds of a Lorentzian s-paracontact manifold are presented. Non-existence of any anti-invariant distribution \mathcal{A} on a submanifold tangent to the structure vector field of an *LP*-Sasakian manifold such that the structure vector field is orthogonal to \mathcal{A} is proved. This non-existence implies that an *LP*-Sasakian or *LSP*-Sasakian manifold does not admit any proper *CR*, generalized *CR*, semi-invariant or almost semi-invariant submanifold. It is also proved that a Lorentzian s-paracontact manifold can not admit any proper mixed foliated semi-invariant submanifold.

1. Introduction

K. MATSUMOTO introduced [9] the notion of a Lorentzian almost paracontact manifold. Later on several authors studied Lorentzian almost paracontact manifolds including those of [5], [10]–[13], [16]. Different types of submanifolds of Lorentzian almost paracontact manifold have been studied in [3], [4], [6], [7], [15], [17]–[19], [21], [23], [24].

In this paper, we study submanifolds of Lorentzian almost paracontact manifolds. The paper is organized as follows. Section 2 is devoted to preliminaries. In Section 3, we prove a theorem which interrelates the Riemannian and Lorentzian almost paracontact structures on a differentiable manifold. In this way, we find a general method for constructing

Mathematics Subject Classification: 53C25, 53C40.

Key words and phrases: CR, generalized CR, semi-invariant and almost semi-invariant submanifold of Lorentzian almost para-contact manifolds.

The second author is thankful to C.S.I.R., New Delhi, for Junior Research Fellowship # 9/107(206)/98-EMR-1.

Lorentzian almost paracontact structures from Riemannian almost paracontact structures on a differentiable manifold. In Section 4, some properties of submanifolds of a Lorentzian s-paracontact manifold are presented. In Section 5, we mainly prove the non-existence of any anti-invariant distribution \mathcal{A} on a submanifold tangent to the structure vector field of an LP-Sasakian manifold such that the structure vector field is orthogonal to \mathcal{A} . Therefore, we are able to state that a LP-Sasakian or LSP-Sasakian manifold can not admit any proper CR, generalized CR, semi-invariant or almost semi-invariant submanifold. In the last section, we prove that a Lorentzian s-paracontact manifold can not admit any proper mixed foliated semi-invariant submanifold.

2. Preliminaries

A differentiable manifold \overline{M} is said to admit an *almost paracontact* Riemannian structure (ϕ, ξ, η, g) , where ϕ is a (1, 1) tensor field, ξ is a vector field, η is a 1-form and g is a Riemannian metric on \overline{M} such that

(1)
$$\phi^2 = I - \eta \otimes \xi, \quad \eta(\xi) = 1.$$

(2)
$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y)$$

for all vector fields X and Y on \overline{M} (see [20]).

On the other hand, \overline{M} is said to admit a *Lorentzian almost paracontact* structure (ϕ, ξ, η, g) , if ϕ is a (1, 1) tensor field, ξ is a vector field, η is a 1-form and g is a Lorentzian metric on \overline{M} , which makes ξ a timelike unit vector field, such that

(3)
$$\phi^2 = I + \eta \otimes \xi, \quad \eta(\xi) = -1,$$

(4)
$$g(\phi X, \phi Y) = g(X, Y) + \eta(X)\eta(Y)$$

for all vector fields X and Y on \overline{M} (see [9], [10]).

For both the structures mentioned above, it follows that

(5)
$$\eta \circ \phi = 0, \quad \phi \xi = 0,$$

(6)
$$g(\xi, X) = \eta(X),$$

(7)
$$g(\phi X, Y) = g(X, \phi Y).$$

- A Lorentzian almost paracontact manifold is called
- 1. Lorentzian para Sasakian (in brief, LP-Sasakian) manifold [9] if

(8)
$$(\overline{\nabla}_X \phi)Y = g(\phi X, \phi Y)\xi + \eta(Y)\phi^2 X$$

where $\overline{\nabla}$ is the covariant differentiation with respect to g,

2. Lorentzian special para Sasakian (in brief, LSP-Sasakian) manifold [9] if

(9)
$$\Phi(X,Y) = \varepsilon g(\phi X,\phi Y), \quad \varepsilon^2 = 1.$$

An LSP-Sasakian manifold is always LP-Sasakian [9].

Let M be a submanifold of a Lorentzian almost paracontact manifold \overline{M} with Lorentzian almost paracontact structure (ϕ, ξ, η, g) . Let the induced metric on M also be denoted by g. Then Gauss and Weingarten formulae are given respectively by

(10)
$$\overline{\nabla}_X Y = \nabla_X Y + h(X, Y), \qquad X, Y \in TM,$$

(11)
$$\overline{\nabla}_X N = -A_N X + \nabla_X^{\perp} N, \qquad N \in T^{\perp} M,$$

where ∇ is the induced connection on M, h is the second fundamental form of the immersion, and $-A_N X$ and $\nabla_X^{\perp} N$ are the tangential and normal parts of $\overline{\nabla}_X N$. From (10) and (11) one gets

(12)
$$g(h(X,Y),N) = g(A_NX,Y).$$

Moreover, we have

(13)
$$(\overline{\nabla}_X \phi)Y = ((\nabla_X P)Y - A_{FY}X - th(X, Y)) + ((\nabla_X F)Y + h(X, PY) - fh(X, Y)),$$

where

(14)
$$\phi X \equiv PX + FX, \quad PX \in TM, \quad FX \in T^{\perp}M,$$

(15)
$$\phi N \equiv tN + fN, \qquad tN \in TM, \quad fN \in T^{\perp}M,$$

(16)
$$(\nabla_X P)Y \equiv \nabla_X PY - P\nabla_X Y, \quad (\nabla_X F)Y \equiv \nabla_X^\perp FY - F\nabla_X Y.$$

Let $\xi \in TM$. We write $TM = \{\xi\} \oplus \{\xi\}^{\perp}$, where $\{\xi\}$ is the distribution spanned by ξ and $\{\xi\}^{\perp}$ is the complementary orthogonal distribution of $\{\xi\}$ in M. Then we get

(17) $P\xi = 0 = F\xi, \qquad \eta \circ P = 0 = \eta \circ F,$

(18) $P^2 + tF = I + \eta \otimes \xi, \qquad FP + fF = 0,$

(19)
$$f^2 + Ft = I,$$
 $tf + Pt = 0.$

A submanifold M of a Lorentzian almost paracontact manifold \overline{M} with $\xi \in TM$ is an *almost semi-invariant submanifold* of \overline{M} if TM can be decomposed as a direct sum of mutually orthogonal differentiable distributions

$$TM = \mathcal{D}^1 \oplus \mathcal{D}^0 \oplus \mathcal{D} \oplus \{\xi\},\$$

where $\mathcal{D}^1 = TM \cap \phi(TM)$, $\mathcal{D}^0 = TM \cap \phi(T^{\perp}M)$ (see [7]). A submanifold M of a Lorentzian almost paracontact manifold \overline{M} with $\xi \in TM$ is a generalized CR-submanifold [21] of \overline{M} if TM can be decomposed as a direct sum of mutually orthogonal differentiable distributions $TM = \mathcal{D}^0 \oplus \mathcal{D} \oplus \{\xi\}$, where $\mathcal{D}^0 = TM \cap \phi(T^{\perp}M)$.

A submanifold M of a Lorentzian almost paracontact manifold \overline{M} is an *invariant* (resp. *anti-invariant*) submanifold of \overline{M} if $\phi(TM) \subset TM$ (resp. $\phi(TM) \subset T^{\perp}M$). An almost semi-invariant submanifold of a Lorentzian almost paracontact manifold is a *semi-invariant submanifold* if $\mathcal{D} = \{0\}$. A semi-invariant submanifold of a Lorentzian almost paracontact manifold becomes an invariant submanifold (resp. anti-invariant submanifold) if $\mathcal{D}^0 = \{0\}$ (resp. $\mathcal{D}^1 = \{0\}$). An almost semi-invariant submanifold is *proper* if none of the distributions $\mathcal{D}^1, \mathcal{D}^0$ and \mathcal{D} is zero. A semi-invariant submanifold is *proper* if $\mathcal{D}^0 \neq \{0\} \neq \mathcal{D}^1$.

3. Riemannian and Lorentzian almost paracontact structures

An example of a 5-dimensional LP-Sasakian manifold is given as follows.

Example 3.1 (K. MATSUMOTO, I. MIHAI and R. ROSCA [11]). Let \mathbb{R}^5 be the 5-dimensional real number space with a coordinate system (x, y, z, t, s). Defining

$$\eta = ds - ydx - tdz , \qquad \xi = \frac{\partial}{\partial s},$$

$$g = \eta \otimes \eta - (dx)^2 - (dy)^2 - (dz)^2 - (dt)^2 ,$$

$$\phi \left(\frac{\partial}{\partial x}\right) = -\frac{\partial}{\partial x} - y\frac{\partial}{\partial s} , \qquad \phi \left(\frac{\partial}{\partial y}\right) = -\frac{\partial}{\partial y},$$

$$\phi \left(\frac{\partial}{\partial z}\right) = -\frac{\partial}{\partial z} - t\frac{\partial}{\partial s} , \qquad \phi \left(\frac{\partial}{\partial t}\right) = -\frac{\partial}{\partial t}, \qquad \phi \left(\frac{\partial}{\partial s}\right) = 0,$$

the structure (ϕ, ξ, η, g) becomes an *LP*-Sasakian structure in \mathbb{R}^5 .

Now, we prove the following theorem which interrelates the Riemannian and Lorentzian almost paracontact structures on a differentiable manifold.

Theorem 3.2. A differentiable manifold \overline{M} admits an almost paracontact Riemannian structure if and only if it admits a Lorentzian almost paracontact structure.

PROOF. Let \overline{M} admit an almost paracontact Riemannian structure (ϕ, ξ, η, g) . We define a 1-form β by

(20)
$$\beta(X) \equiv -\eta(X)$$

and a (0,2) tensor field γ (see page 148, B. O'NEILL [14]) by

(21)
$$\gamma(X,Y) \equiv g(X,Y) - 2\eta(X)\eta(Y).$$

From (20), it is clear that

$$\beta(X)\beta(Y) = \eta(X)\eta(Y)$$

and hence (21) becomes equivalent to

(22)
$$g(X,Y) = \gamma(X,Y) + 2\beta(X)\beta(Y).$$

In view of (20), (1) transforms to

$$\phi^2 = I + \beta \otimes \xi, \quad \beta(\xi) = -1.$$

From (21), it is clear that γ is symmetric. Moreover,

$$\begin{split} \gamma(\phi X,\phi Y) &= g(\phi X,\phi Y) = g(X,Y) - \eta(X)\eta(Y) \\ &= \gamma(X,Y) + \eta(X)\eta(Y) = \gamma(X,Y) + \beta\left(X\right)\beta\left(Y\right), \end{split}$$

where (21), (5), (2) and (20) have been used. Consequently,

$$\gamma(\xi, X) = \beta(X) = -\eta(X) = -g(\xi, X).$$

Thus X is orthogonal to ξ with respect to g if and only if X is orthogonal to ξ with respect to γ . From the last equation we see that $\gamma(\xi,\xi) = -1$, that is, γ makes ξ a timelike unit vector field. If X and Y are orthogonal to ξ with respect to γ , then $\gamma(X,Y) = g(X,Y)$, that is, X and Y are spacelike. Thus the metric γ is a Lorentzian metric associated with the structure (ϕ, ξ, β) . This proves the necessary part.

Conversely, let $(\phi, \xi, \beta, \gamma)$ be a Lorentzian almost paracontact structure on \overline{M} . Then it is easy to check that (ϕ, ξ, η, g) is an almost paracontact Riemannian structure on \overline{M} , where η and g are defined by (20) and (22) respectively.

Remark 3.3. In view of the preceding theorem, it is now easy to construct a Lorentzian almost paracontact structure by an almost paracontact Riemannian structure and vice-versa.

4. Submanifolds of Lorentzian s-paracontact manifolds

We begin this section with the following definition, which is analogous to the definition of special paracontact Riemannian manifolds.

Definition 4.1. We call a Lorentzian almost paracontact manifold as a Lorentzian s-paracontact manifold if

(23)
$$\phi X = \overline{\nabla}_X \xi$$

It can be verified that an LP-Sasakian manifold is always a Lorentzian s-paracontact manifold.

Definition 4.2. The distribution $\{\xi\}^{\perp}$ in a Lorentzian almost paracontact manifold will be called the *paracontact distribution*.

First, we prove

Theorem 4.3. On a Lorentzian s-paracontact manifold \overline{M} the paracontact distribution $\{\xi\}^{\perp}$ is integrable.

PROOF. Let $X, Y \in \{\xi\}^{\perp}$. Then $\eta(X) = 0 = \eta(Y)$ and consequently, in view of (23) and (7), it follows that $\eta[X, Y] = 0, X, Y \in \{\xi\}^{\perp}$. \Box

In view of Definition 4.2 and Theorem 4.3, we can state the following theorem.

Theorem 4.4. Let M be a submanifold of a Lorentzian s-paracontact manifold such that ξ is tangential to M. Then the paracontact distribution $\{\xi\}^{\perp}$ on M is integrable.

In view of the above theorem we have the following corollary.

Corollary 4.5. Let M be either a semi-invariant or an almost semiinvariant or a generalized CR-submanifold of a Lorentzian s-paracontact manifold. Then the paracontact distribution $\{\xi\}^{\perp}$ on M is integrable.

Now, we prove a lemma.

Lemma 4.6. For a submanifold M of a Lorentzian s-paracontact manifold, we have

(24)
$$\phi X = \nabla_X \xi + h(X,\xi), \qquad \xi \in TM,$$

(25)
$$\phi X = -A_{\xi}X + \nabla_X^{\perp}\xi, \qquad \xi \in T^{\perp}M,$$

(26)
$$\eta(A_N X) = 0, \qquad \xi \in T^{\perp} M,$$

(27)
$$\eta(A_N X) = g(\phi X, N), \qquad \xi \in TM$$

for all $X \in TM$ and $N \in T^{\perp}M$.

PROOF. From (23) and Gauss formula, we get (24) and (25). In view of (6), we get (26). In last, for $\xi \in TM$, we have

$$\eta\left(A_{N}X\right) = g\left(\xi, A_{N}X\right) = -g\left(\xi, \overline{\nabla}_{X}N\right) = g\left(\overline{\nabla}_{X}\xi, N\right) = g\left(\phi X, N\right),$$

where (6), (11) and (23) have been used.

In view of (24), we can state the following

Theorem 4.7. Let M be a submanifold of a Lorentzian s-paracontact manifold such that ξ is tangential to M. Then M is an invariant submanifold if and only if $h(X,\xi) = 0$, and M is an anti-invariant submanifold if and only if $\nabla_X \xi = 0$.

Now, we prove the following

Theorem 4.8. If M is a totally umbilical submanifold of a Lorentzian s-paracontact manifold such that ξ is tangential to M, then

- (a) M is necessarily minimal and consequently totally geodesic, and
- (b) *M* is an invariant submanifold and $\nabla_X \xi \neq 0$ for any non-zero *X* that is not in $\{\xi\}$.

PROOF. Let *M* be totally umbilical. Using (24), $\phi \xi = 0$ and (6) we get

$$0 = h(\xi, \xi) = g(\xi, \xi) H = H, \qquad H \equiv \operatorname{trace}(h) / \dim(M),$$

hence we have (a). The second part is obvious from Theorem 4.7 and Theorem 4.8 (a). $\hfill \Box$

Next, we prove the following

Theorem 4.9. A submanifold M of a Lorentzian s-paracontact manifold such that ξ is normal to M is an anti-invariant submanifold if and only if $A_{\xi}X = 0$. Consequently, if M is totally geodesic then it is anti-invariant.

PROOF. Since, ξ is normal to M, therefore in view of (25) and (12), we obtain

 $g(\phi X, Y) = -g(A_{\xi}X, Y), \quad X, Y \in TM,$

which proves the theorem.

We complete this section by the following

Remark 4.10. Since *LP*-Sasakian and *LSP*-Sasakian manifolds are Lorentzian *s*-paracontact manifolds, therefore the results of this section are valid for the submanifolds of *LP*-Sasakian and *LSP*-Sasakian manifolds.

5. Nonexistence of an anti-invariant distribution

Let M be a submanifold of a Lorentzian *s*-paracontact manifold \overline{M} with $\xi \in TM$. Then in view of (27) and (14) we get

(28)
$$\eta(A_N X) = g(FX, N), \qquad X \in TM, \ N \in T^{\perp} M.$$

Moreover, if \overline{M} is *LP*-Sasakian, then in view of (8) and (13) we get

(29)
$$(\nabla_X P)Y - A_{FY}X - th(X,Y) = g(\phi X,\phi Y)\xi + \eta(Y)\phi^2 X.$$

Now, we prove the following

Theorem 5.1. Let M be a submanifold of a LP-Sasakian manifold \overline{M} with $\xi \in TM$. Then there does not exist any anti-invariant distribution \mathcal{A} such that $\mathcal{A} \perp \{\xi\}$.

PROOF. We shall prove that $\mathcal{A} = \{0\}$. Let $X \in \mathcal{A}$ and $Y \in TM$. We get

$$g(A_{FX}X,Y) = g(h(Y,X),FX) = g(th(Y,X),X)$$

= $g(\nabla_Y PX - P\nabla_Y X - A_{FX}Y - g(\phi Y,\phi X)\xi - \eta(X)\phi^2 Y,X)$
= $-g(\nabla_Y X,PX) - g(A_{FX}Y,X) = -g(A_{FX}X,Y),$

which implies that

$$A_{FX}X = 0, \quad X \in \mathcal{A}$$

and consequently

$$0 = \eta(A_{FX}X) = g(FX, FX) = g(\phi X, \phi X) = g(X, X),$$

that is, $\mathcal{A} = \{0\}$.

Since an LSP-Sasakian manifold is LP-Sasakian, therefore we can state the following

Corollary 5.2. Let M be a submanifold of a LSP-Sasakian manifold \overline{M} with $\xi \in TM$. Then there does not exist any anti-invariant distribution \mathcal{A} such that $\mathcal{A} \perp \{\xi\}$.

In view of the definitions of CR [3], [17], generalized CR [21], semiinvariant [6] and almost semi-invariant [7] submanifolds of Lorentzian almost paracontact manifolds and in view of Theorem 5.1 and Corollary 5.2 we have the following theorem.

335

Theorem 5.3. An LP–Sasakian or LSP–Sasakian manifold does not admit any proper CR, generalized CR, semi-invariant or almost semiinvariant submanifold. In fact, in these cases the anti-invariant distribution \mathcal{D}^0 becomes $\{0\}$.

Remark 5.4. The geometry of CR-submanifolds of Kaehler manifolds was initiated by A. BEJANCU in 1978 (see A. BEJANCU [2] and K. YANO & M. KON [25]). The definition of CR-submanifolds of Lorentzian almost paracontact manifolds resembles with the definition of semi-invariant submanifolds. However, the name CR-submanifold does not seem to be appropriate as possibility of getting a CR-structure on the so called CRsubmanifold of a LAP-manifold is very far from reality. In [4], [23] it is proved that a Lorentzian para-Sasakian manifold does not admit proper semi-invariant submanifold. In [6], [18] it is claimed that the distributions \mathcal{D}^0 and $\mathcal{D}^0 \oplus \{\xi\}$ are never integrable on semi-invariant submanifolds of LP-Sasakian manifolds. The same result is claimed in [7] for almost semi-invariant submanifolds of LP-Sasakian manifolds. Contrary to these claims, the authors of [21] claim that the distribution \mathcal{D}^0 is always integrable on generalized CR-submanifolds of LP-Sasakian manifolds. However, in view of the above theorem, in these cases the anti-invariant distribution \mathcal{D}^0 becomes $\{0\}$, which makes a number of results of [3], [6], [7],[17], [18], [21] redundant.

6. Nonexistence of proper mixed foliated semi-invariant submanifolds

In [8], a semi-invariant submanifold is said to be *mixed foliated* if $\mathcal{D}^1 \oplus \{\xi\}$ is integrable and $h(Z + \xi, X) = 0$ for all $Z \in \mathcal{D}^1$ and $X \in \mathcal{D}^0$. In [22], the first author of this paper proved that a Sasakian manifold does not admit any proper mixed foliated semi-invariant submanifold.

In similar manner, we prove the following

Theorem 6.1. A Lorentzian s-paracontact manifold can not admit any proper mixed foliated semi-invariant submanifold.

PROOF. For a submanifold M of a Lorentzian s-paracontact manifold, it follows that

$$\phi X = \overline{\nabla}_X \xi = \nabla_X \xi + h(X,\xi), \quad \xi, X \in TM.$$

If M is semi-invariant, then for $X \in \mathcal{D}^0$ we get $\nabla_X \xi = 0$ and $\phi X = h(X,\xi)$. Moreover, if M is assumed to be mixed foliated, then for $X \in \mathcal{D}^0$ we get $\phi X = 0$, that is, $\mathcal{D}^0 = \{0\}$.

Remark 6.2. The authors of [4] prove that LP-Sasakian manifolds do not admit proper mixed foliated semi-invariant submanifolds. But in view of Theorem 5.3, LP-Sasakian manifolds do not admit even proper semi-invariant submanifolds. Therefore, that result of [4] is redundant.

Acknowledgement. The authors are thankful to referees for their comments towards the improvement of the paper.

References

- [1] J. K. BEEM and P. E. EHRLICH, Global Lorentzian geometry, *Marcel Dekker*, 1981.
- [2] A. BEJANCU, Geometry of CR-submanifolds, D. Reidel Publ. Co., 1986.
- [3] U. C. DE and A. K. SENGUPTA, CR-submanifolds of a Lorentzian para-Sasakian manifold, Bull. Malaysian Math. Soc. (Second Series) 23 (2000).
- [4] U. C. DE and A. A. SHEIKH, Non-existence of proper semi-invariant submanifolds of a Lorentzian para-Sasakian manifolds, *Bull. Malaysian Math. Soc. (Second Series)* 22 (1999), 179–183.
- [5] U. C. DE, K. MATSUMOTO and A. A. SHEIKH, On Lorentzian para-Sasakian manifolds, *Rendinconti del Seminario Matematico di Messina Serie II Suplemento* al n. 3 (1999).
- [6] KALPANA and G. GUHA, Semi-invariant submanifolds of a Lorentzian para-Sasakian manifold, *Ganit* 13 (1993), 71–76.
- [7] KALPANA and G. SINGH, On almost semi-invariant submanifolds of a Lorentzian para-Sasakian manifold, Bull. Calcutta Math. Soc. 85 (1993), 559–566.
- [8] S. M. KHURSEED HAIDER, V. A. KHAN and S. I. HUSAIN, Reduction in codimension of proper mixed foliated semi-invariant submanifold of a Sasakian space form *M*(-3), *Riv. Mat. Univ. Parma* (5) 1 (1992), 147–153.
- [9] K. MATSUMOTO, On Lorentzian paracontact manifolds, Bull. Yamagata Univ. (Nat. Sci.) 12 no. 2 (1989), 151–156.
- [10] K. MATSUMOTO and I. MIHAI, On a certain transformation in a Lorentzian para-Sasakian manifold, *Tensor (N.S.)* 47 (1988), 189–197.
- [11] K. MATSUMOTO, I. MIHAI and R. ROSCA, *ξ*-null geodesic gradient vector fields on a Lorentzian para-Sasakian manifold, *J. Korean Math. Soc.* **32** no. 1 (1995), 17–31.
- [12] I. MIHAI and R. ROSCA, Classical Analysis, World Scientific, Singapore, 1992, 155–169.
- [13] I. MIHAI, A. A. SHEIKH and U. C. DE, On Lorentzian para-Sasakian manifolds, Korean J. of Math. Sci. 6 (1999), 1–13.
- [14] B. O'NEILL, Semi-Riemannian geometry with applications to relativity, Academic Press, 1983.
- [15] A. K. PANDEY and S. D. SINGH, Invariant submanifolds of codimension 2 of an LSP-Sasakian manifold, Acta. Cienc. Indica Math. 21 (1995), 520–524.
- [16] B. PRASAD, Nijenhuis tensor in Lorentzian para-Sasakian manifold, Ganita Sandesh 10 (1996), 61–64.

- 338 M. M. Tripathi and S. S. Shukla : On submanifolds of Lorentzian ...
- [17] B. PRASAD, CR-submanifolds of Lorentzian para-Sasakian manifold, Acta. Cienc. Indica Math. 28 no. 4 (1997), 293–295.
- [18] B. PRASAD, Semi-invariant submanifolds of a Lorentzian para-Sasakian manifold, Bull. Malaysian Math. Soc. (Second Series) 21 (1998), 21–26.
- [19] S. PRASAD and R. H. OJHA, Lorentzian paracontact submanifolds, Publ. Math. Debrecen 44 (1994), 215–223.
- [20] I. SATŌ, On a structure similar to almost contact structure, I-II, Tensor (N.S.) 30 (1976), 219–224; Tensor (N.S.) 31 (1977), 199–205.
- [21] A. K. SENGUPTA and U. C. DE, Generalised *CR*-submanifolds of a Lorentzian para-Sasakian manifold, (*private communication*).
- [22] M. M. TRIPATHI, Non existence of proper mixed foliated semi-invariant submanifolds of Sasakian manifolds, *Riv. Mat. Univ. Parma* (5) 4 (1995), 101–102.
- [23] M. M. TRIPATHI, On semi-invariant submanifolds of Lorentzian almost paracontact manifolds, J. Korea Soc. Math. Ed. Ser. B: Pure Appl. Math. 8 no. 1 (2001), (to appear).
- [24] M. M. TRIPATHI, On semi-invariant submanifolds of LP-cosymplectic manifolds, Bull. Malaysian Math. Soc. (Second Series) 24 no. 1 (2001), (to appear).
- [25] K. YANO and M. KON, CR submanifolds of Kaehlerian and Sasakian manifolds, Birkhäuser, Boston, 1983.

MUKUT MANI TRIPATHI DEPARTMENT OF MATHEMATICS AND ASTRONOMY LUCKNOW UNIVERSITY LUCKNOW-226 007 INDIA

SHIV SHARMA SHUKLA DEPARTMENT OF MATHEMATICS AND ASTRONOMY LUCKNOW UNIVERSITY LUCKNOW-226 007 INDIA

(Received October 6, 2000; revised March 3, 2001)