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A Stein–Tomas restriction theorem for general measures

By THEMIS MITSIS (Jyväskylä)

Abstract. We prove a general Stein–Tomas type restriction theorem for measures
of given dimension and Fourier exponent.

1. Introduction

Let dσ be normalized surface measure on the (n − 1)-dimensional
sphere Sn−1. For an integrable function f : Sn−1 → C, consider the
Fourier transform

f̂dσ(ξ) =
∫

Sn−1
f(x)e−2πix·ξdσ(x).

The classical Stein–Tomas restriction theorem is the following statement.

Theorem 1.1. For every p ≥ 2(n + 1)/(n− 1) there exists a constant

Cp,n > 0 such that

‖f̂dσ‖p ≤ Cp,n‖f‖L2(dσ)

for all f ∈ L2(dσ). Moreover, the above range of exponents is best possible.

This result has been extended to various more general situations where
the sphere is replaced by smooth manifolds satisfying certain curvature
hypotheses. For proofs and more details the reader may consult Stein [2]
and the references contained there.
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The purpose of this paper is to prove an analogous restriction theorem
for general measures. By the term measure we will always mean a positive,
finite, compactly supported Borel measure in Rn. For such a measure µ,
we denote by spt(µ) its support. The Fourier transform of µ is defined by

µ̂(ξ) =
∫

e−2πix·ξdµ(x).

Similarly, if f : Rn → C is a µ-integrable function, we define

f̂dµ(ξ) =
∫

f(x)e−2πix·ξdµ(x).

Letting B(x, r) be the closed ball of radius r centered at the point x, we
can state our main result as follows.

Theorem 1.2. Let µ be a measure in Rn such that

µ(B(x, r)) ≤ rα, ∀x ∈ Rn, r > 0

and

|µ̂(ξ)| ≤ 1
|ξ|β/2

for some 0 < α, β < n. Then for every p > 2(2n− 2α + β)/β, there exists

a constant Cp,n,α,β > 0 such that

‖f̂dµ‖p ≤ Cp,n,α,β‖f‖L2(dµ)

for all f ∈ L2(dµ).

The example of a bounded flat hypersurface, in which case restriction
fails, makes it clear that the decay condition on µ̂ is, in a certain sense,
indispensable and that no general restriction theorem can be based only
on dimensionality or even smoothness considerations. We will address this
issue again in Section 3.

Throughout this paper, x . y means x ≤ Cy, where C is a positive
constant depending on the context and whose value is irrelevant. Similarly,
x ' y means (x . y & y . x). If A is a subset of Rn then χA is
the indicator function. Finally, we will denote α-dimensional Hausdorff
measure by Hα.
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2. The main result

Theorem 1.2 will be a consequence of the following

Proposition 2.1. Let µ be a measure in Rn such that

(1) µ(B(x, r)) ≤ rα, ∀x ∈ Rn, r > 0

and

(2) |µ̂(ξ)| ≤ 1
|ξ|β/2

for some 0 < α, β < n. Then for every p > 2(2n− 2α + β)/β

‖µ̂ ∗ f‖p . ‖f‖p′

for all f in the Schwartz space S. Here p′ is the conjugate exponent
p′ = p/(p− 1).

Proof. Let µ̌(x) = µ̂(−x) and f̃(x) = f(−x). Then

µ̂ ∗ f(x) = µ̌ ∗ f̃(−x).

Therefore, it is enough to show that ‖µ̌ ∗ f‖p . ‖f‖p′ .
Let ψ be a C∞ function which is equal to 1 when |x| ≥ 1 and to 0

when |x| ≤ 1/2, and let φ(x) = ψ(2x)− ψ(x). Then

supp(φ) ⊂ {x : 1/4 ≤ |x| ≤ 1}
and ∞∑

j=0

φ(2−jx) = 1, if |x| ≥ 1.

We now decompose µ̌ as follows.

µ̌ = K−∞ +
∞∑

j=0

Kj

where

Kj(x) = φ(2−jx)µ̌(x),

K−∞(x) =
(

1−
∞∑

j=0

φ(2−jx)
)

µ̌(x).
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We are going to estimate ‖Kj ∗ f‖∞ and ‖Kj ∗ f‖2.
Using (2) and the support property of φ we get

(3) ‖Kj ∗ f‖∞ ≤ ‖Kj‖∞‖f‖1 . 2−j β
2 ‖f‖1.

To estimate ‖Kj ∗ f‖2, let φj(x) = φ(2−jx) and choose N > α. Then,
using the property of distribution functions and the fact that φ̂ is rapidly
decreasing, we get

|K̂j(ξ)| = |φ̂j ∗ µ(ξ)| =
∣∣∣∣
∫

φ̂j(ξ − y)dµ(y)
∣∣∣∣

≤ CN2jn

∫
dµ(y)

(1 + |2j(ξ − y)|)N

= CN2jn

∫ ∞

0

µ

({
y :

1

(1 + |2j(ξ − y)|)N
≥ r

})
dr

= CN2jn

∫ ∞

0

µ

({
y : 1 + 2j |ξ − y| ≤ 1

r1/N

})
dr

= CN2jn

∫ 1

0

µ

({
y : 1 + 2j |ξ − y| ≤ 1

r1/N

})
dr

≤ CN2jn

∫ 1

0

µ

({
y : |ξ − y| ≤ 1

2jr1/N

})
dr

= CN2jn

∫ 1

0

µ

(
B

(
ξ,

1
2jr1/N

))
dr

by (1) ≤ CN2jn2−jα

∫ 1

0

dr

rα/N

. 2j(n−α).

It follows that ‖K̂j‖∞ . 2j(n−α). Therefore

(4) ‖Kj ∗ f‖2 = ‖K̂j f̂‖2 ≤ ‖K̂j‖∞‖f̂‖2 . 2j(n−α)‖f‖2.

Now, (3) and (4) allow us to think of convolution with the kernel Kj as an
operator from L1 to L∞ and from L2 to L2. Therefore, we can interpolate
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between (3) and (4) using the Riesz–Thorin theorem. This gives

‖Kj ∗ f‖p(θ) . A(θ)‖f‖q(θ), 0 ≤ θ ≤ 1,

where

p(θ) = 2/θ, q(θ) = 2/(2− θ), A(θ) = 2j(n−α)θ−j β
2 (1−θ).

Equivalently
‖Kj ∗ f‖p . 2jc(n,α,β,p)‖f‖p′ , p ≥ 2,

where

c(n, α, β, p) =
2(n− α)

p
− β

2

(
1− 2

p

)
.

Further, note that since K−∞ is a C∞ function with compact support we
have

‖K−∞ ∗ f‖p . ‖f‖p′ , p ≥ 2

by Young’s inequality.
To complete the proof, notice that the sum

K−∞ ∗ f +
∑

j

Kj ∗ f

converges pointwise to µ̌ ∗ f since f is a Schwartz function. Moreover,
the exponent c(n, α, β, p) is negative provided that p > 2(2n− 2α + β)/β.
Therefore

‖µ̌ ∗ f‖p ≤ ‖K−∞ ∗ f‖p +
∞∑

j=0

‖Kj ∗ f‖p

.
∞∑

j=0

2jc(n,α,β,p)‖f‖p′ . ‖f‖p′ . ¤

To prove Theorem 1.2, let f ∈ L2(dµ) and g ∈ S. Then
∫

f̂dµ(ξ)g(ξ)dξ =
∫

ĝ(y)f(y)dµ(y) ≤ ‖ĝ‖L2(dµ)‖f‖L2(dµ)

= ‖f‖L2(dµ)

(∫
ĝ(y)ĝ(y)dµ(y)

)1/2
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= ‖f‖L2(dµ)

(∫
µ̂ ∗ g(x)g(x)dx

)1/2

≤ ‖f‖L2(dµ) (‖µ̂ ∗ g‖p‖g‖p′)
1/2 . ‖f‖L2(dµ)‖g‖p′

where the last inequality follows from Proposition 2.1. Since S is dense in
Lp′ , we conclude that

‖f̂dµ‖p . ‖f‖L2(dµ).

3. Remarks

1. It is a standard fact that the condition |µ̂(ξ)| ≤ |ξ|−β/2 implies
that the Hausdorff dimension of the support of µ is at least β. This can
be shown using the formulas

Iα(µ) = C(n, α)
∫ |µ̂(ξ)|2
|ξ|n−α

dξ

and

dimH(A) = sup{α : ∃µ, such that spt(µ) ⊂ A, Iα(µ) < ∞},
for all Borel sets A ⊂ Rn. Here

Iα(µ) =
∫∫

dµ(x)dµ(y)
|x− y|α

is the α-energy of µ and dimH denotes Hausdorff dimension (see Matti-
la [1]).

Another natural notion of dimension is the so-called Fourier dimen-
sion, denoted by dimF . It is defined as the unique number in [0, n] such
that for any 0 < s < dimF A, there exists a non-zero measure µ with
spt(µ) ⊂ A and µ̂(ξ) ≤ |ξ|−s/2, and that for dimF A < s < n, no such
measure exists. By the remarks above, we have that for any Borel set
A ⊂ Rn, dimF A ≤ dimH A. Sets A for which dimF A = dimH A are
called Salem sets.

We further note that |µ̂(ξ)| ≤ |ξ|−β/2 implies that µ(B(x, r)) . rβ/2.
To see this, choose φ ∈ S such that φ ≥ 0, φ & 1 on B(0, 1) and φ̂ = 0
outside B(0, δ) for some δ > 0. Let

φx,r(y) = φ

(
x− y

r

)
.
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Then

µ(B(x, r)) .
∫

φx,r(y)dµ(y) =
∫

φ̂x,r(ξ)µ̂(−ξ)dξ

≤ rn

∫

|rξ|≤δ

|φ̂(rξ)| 1
|ξ|β/2

dξ

= rβ/2

∫

|ξ|≤δ

|φ̂(ξ)| 1
|ξ|β/2

dξ . rβ/2.

Thus, we obtain the following version of Theorem 1.2 if we only know the
rate of decay of µ̂.

Corollary 3.1. Let µ be a measure in Rn such that

|µ̂(ξ)| ≤ 1
|ξ|β/2

for some 0 < β < n. Then for every p > 4n/β, there exists a constant

Cp,n,β > 0 such that

‖f̂dµ‖p ≤ Cp,n,β‖f‖L2(dµ)

for all f ∈ L2(dµ).

2. The argument for the L2 estimate in the proof of Proposition 2.1
was based only on dimensionality considerations. This suggests that there
should be an L2 bound for f̂dµ valid under very general conditions. This
was first observed by Strichartz [3] in a different context. He showed
that if µ satisfies µ(B(x, r)) ≤ rα then

sup
x0∈Rn, r>0

1
rn−α

∫

B(x0,r)

|f̂dµ(ξ)|2dξ . ‖f‖2L2(dµ).

His approach involved the fractional Hardy–Littlewood maximal function.
Here we will give a simple, direct proof of a more general result.

Theorem 3.1. Let µ be a measure in Rn satisfying µ(B(x, r)) ≤ h(r),
for some non-negative function h. Then there exists a constant C > 0 such

that ∫

B(x0,r)

|f̂dµ(ξ)|2dξ . rnh(C/r)‖f‖2L2(dµ)
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for all x0 ∈ Rn, r > 0, f ∈ L2(dµ).

Proof. We will prove the theorem in the case where B(x0, r) is cen-
tered at the origin. The general case then follows by multiplying f by a
character.

Let φ be a radial Schwartz function such that φ ≥ 1 on B(0, 1), φ̂ = 0
outside B(0, C), for some C > 0 and let φr(x) = φ(x/r). Then
∫

B(0,r)

|f̂dµ(ξ)|2dξ ≤
∫
|φr(ξ)f̂dµ(−ξ)|2dξ =

∫
|φ̂r ∗ (fdµ)(x)|2dx

=
∫ ∣∣∣∣

∫
φ̂r(x− y)f(y)dµ(y)

∣∣∣∣
2

dx

≤
∫∫

|φ̂r(x− y)|dµ(y)
∫
|φ̂r(x− y)| |f(y)|2dµ(y)dx.

For a fixed x we have
∫
|φ̂r(x− y)|dµ(y) = rn

∫

B(x,C/r)

|φ̂(r(x− y))|dµ(y)

≤ rn‖φ̂‖∞µ(B(x,C/r)) . rnh(C/r).

Therefore
∫

B(0,r)

|f̂dµ(ξ)|2dξ . rnh(C/r)
∫
|f(y)|2

∫
rn|φ̂(r(x− y))|dxdµ(y)

= rnh(C/r)‖φ̂‖1
∫
|f(y)|2dµ(y) . rnh(C/r)‖f‖2L2(dµ). ¤

3. For expository reasons it will be convenient to make the following
definition. If 0 < α, β < n then the restriction exponent p(n, α, β) is
defined by

p(n, α, β) = inf{q : (∀µ with µ(B(x, r)) ≤ rα and |µ̂(ξ)|2 ≤ 1/|ξ|β)

(∀f ∈ L2(dµ))(‖f̂dµ‖q . ‖f‖L2(dµ))}.

For general values of α, β it is unknown whether Theorem 1.2 is optimal,
that is, whether p(n, α, β) = 2(2n− 2α + β)/β. We do, however, have the
following lower bound.
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Proposition 3.1. If 0 < α, β < n then

p(n, α, β) ≥ 2n

α
.

Proof. Let A = spt(µ) and notice that µ(B(x, r)) ≤ rα implies that
µ is absolutely continuous with respect to Hα | A with bounded density.
Therefore µ = hHα | A for some h ∈ L∞(Hα | A). Let ε > 0 be such that
0 < Hα({x ∈ A : h(x) ≥ ε}) < ∞ and put C = {x ∈ A : h(x) ≥ ε}. Then
for Hα-almost all x ∈ C (see Mattila [1]) we have

lim sup
r

Hα(C ∩B(x, r))
rα

≥ 2α.

It follows that there exists x0 ∈ spt(µ) such that

lim sup
r

µ(B(x0, r))
rα

≥ ε2α.

Choose a sequence rk such that rk ↘ 0, µ(B(x0, rk)) ' rα
k and put

fk = χB(x0,rk).

Now let φ be a Schwartz function which equals 1 on B(0, 1) and define

φr(x) = φ

(
x− x0

r

)
.

Suppose we have restriction for some exponent q. Then

rα
k '

∫
fk(x)dµ(x) =

∫
φrk

(x)fk(x)dµ(x) =
∫

φ̂rk
(ξ)f̂kdµ(−ξ)dξ

= rn
k

∫
e−2πiξ·x0 φ̂(rkξ)f̂kdµ(−ξ)dξ

≤ r
n
q

k ‖φ̂‖q′‖f̂kdµ‖q . r
n
q

k ‖fk‖L2(dµ) ' r
n
q + α

2
k .

Since rk ↘ 0 we conclude that

q ≥ 2n

α
. ¤
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Note that the optimality of the range of exponents in the original
Stein–Tomas theorem is intimately related to the fact that dσ has two
special regularity properties: It is a rectifiable (n − 1)-dimensional mea-
sure and its Fourier transform has the best possible decay rate. Here, by
the term rectifiable measure, we mean a measure whose support can be
covered by a countable union

⋃∞
i=0 fi(Rn−1) of graphs of Lipschitz maps

fi : Rn−1 → Rn, plus a set of zero (n − 1)-dimensional Hausdorff mea-
sure (the reader is refered to Mattila [1] for a complete discussion of the
notion of rectifiability). It might, therefore, be of some interest to try to
determine the values of α < n for which there exists a measure µ in Rn

such that

(5) µ(B(x, r)) ' rα, x ∈ spt(µ), 0 ≤ r ≤ 1

and

(6) |µ̂(ξ)| ≤ 1
|ξ|α/2

.

Clearly, the support of a measure satisfying the above conditions must be
a Salem set. It is, however, unknown whether any such measure exists for
non-integral values of α. On the other hand, we remark that if there exists
a measure µ satisfying (5) and (6) with α < 2n/3 then the support of µ

fails to be translation invariant in the sense that

µ× µ({(y, z) : x− y − z ∈ spt(µ)}) = 0, ∀x ∈ spt(µ).

To see this, suppose that for some x0 ∈ spt(µ) we have

µ× µ
({(y, z) : x0 − y − z ∈ spt(µ)}) > 0

and let φx0,r be as in the discussion preceding Corollary 3.1. Then

rα .
∫∫

µ(B(x0 − y − z, r))dµ(y)dµ(z) = µ ∗ µ ∗ µ(B(x0, r))

.
∫

φx0,r(y)d(µ ∗ µ ∗ µ)(y) ≤ rn

∫

|rξ|≤δ

|φ̂(rξ)| |µ̂(−ξ)|3dξ

≤ r3α/2

∫

|ξ|≤δ

|φ̂(ξ)| 1
|ξ|3α/2

dξ . r3α/2
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for all r ≤ 1, which is a contradiction.
No information on the nature of the geometric restrictions that (5)

and (6) impose on µ, other than the above-essentially trivial-remark, is
currently available.

References

[1] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge
University Press, 1995.

[2] E. M. Stein, Harmonic Analysis, Princeton University Press, 1993.

[3] R. S. Strichartz, Fourier asymptotics of fractal measures, J. Funct. Anal. 89
(1990), 154–187.

THEMIS MITSIS
DEPARTMENT OF MATHEMATICS AND STATISTICS
UNIVERSITY OF JYVÄSKYLÄ
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