Publ. Math. Debrecen 60 / 1-2 (2002), 157–166

A rigidity theorem for the three dimensional critical point equation

By SEUNGSU HWANG (Koyang)

Abstract. On a compact 3-dimensional manifold M^3 , a critical point of the total scalar curvature functional, restricted to the space of metrics with constant scalar curvature of volume 1, satifies the critical point equation (CPE), given by $U_g^*(f) = z_g$. It has been conjectured that a solution (g, f) of CPE is Einstein. In this paper, we prove that, if CPE has two distinct solution functions and Weyl–Schouten tensor vanishes on a certain hypersurface of M^3 , (M^3, g) is isometric to a standard 3-sphere.

1. Introduction

Let (M^3, g) be a 3-dimensional compact manifold and \mathcal{M}_1 the set of smooth Riemannian structures on M^3 of volume 1. The total scalar curvature functional $\mathcal{S} : \mathcal{M}_1 \to \mathbb{R}$ is defined by

$$\mathcal{S}(g) = \int_{M^3} s_g dv_g$$

where dv_g is the volume form determined by the metric and s_g the scalar curvature of the metric g. It is well known that a critical point of this functional is Einstein. On the other hand, there has been a conjecture (Conjecture A) that a critical point of this functional S restricted to Cis Einstein [1, Chp 4, F], where C is the set of constant scalar curvature metrics given by

$$\mathcal{C} = \{g \in \mathcal{M}_1 \mid s_g \text{ constant}\}$$

Mathematics Subject Classification: 53C25, 58E11.

Key words and phrases: total scalar curvature functional, critical point, Einstein metric, Fisher–Marsden conjecture.

Seungsu Hwang

This paper is concerned with a study of a sufficient condition that Conjecture A holds.

The Euler-Lagrange equations for a critical point g of S restricted to C may be represented as the following critical point equation (CPE, hereafter):

(1)
$$U_g^*(f) = z_g \equiv r_g - \frac{s_g}{3}g$$

where f is a function on M^n . Since

$$U_g^*(f) \equiv D_g df - (\Delta_g f)g - fr_g$$

and $\Delta_g f = -\frac{s_g}{2} f$, CPE may also be given as

(2)
$$(1+f)z_g = D_g df + \frac{s_g f}{6}g.$$

J. LAFONTAINE showed that Conjecture A holds if a solution metric g of CPE is conformally flat [7]. The author showed that Conjecture A holds if a solution function f of CPE is greater than or equal to -1 [4]. Furthermore, Conjecture A holds if CPE has two distinct solution functions and certain two surfaces of M^3 are disjoint [5]. M. OBATA showed that, if the solution metric of CPE is Einstein, it is isometric to a standard 3-sphere [9]. This paper is partially motivated by considering a generalization of the results of authors mentioned above, LAFONTAINE [7] and HWANG [5]. More precisely, we prove the following theorem in the present paper:

Main Theorem. Let CPE have two distinct non-trivial solutions f_1 and f_2 on (M^3, g) . Assume that Weyl–Schouten tensor vanishes on Γ where $\Gamma = \varphi^{-1}(0)$ for $\varphi = f_1 - f_2$. Then (M^3, g) is isometric to a 3sphere.

Remark 1. (i) Fisher and Marsden showed that Γ in our Main Theorem is an embedded surface of M^3 [2]. It is easy to see that Γ exists in M^3 , since we have

$$\int_{M^3} \varphi = -\frac{2}{s_g} \int_{M^3} \Delta_g \varphi = 0$$

where the first equation follows from the equation $\Delta_g \varphi = -\frac{s_g}{2} \varphi$, which may be obtained by taking the trace of the equation (3) in Section 2. For the significance of the surface Γ , see [5].

(*ii*) Our Main Theorem is a partial answer to the conjecture of [5] which states that (M^3, g) is isometric to a standard 3-sphere if CPE has two distinct non-trivial solutions f_1 and f_2 on (M^3, g) .

II. The proof of Main Theorem

This section is devoted to the proof of our Main Theorem. Throughout the present paper, we assume that there exist two distinct solutions f_1 and f_2 of CPE on (M^3, g) . Then, it is easy to see that $U_g^*(\varphi) = 0$ in virtue of (1), or equivalently we have

(3)
$$0 = D_g d\varphi - (\Delta_g \varphi)g - \varphi r_g.$$

Definition. For a given 3-dimensional manifold (M^3, g) , let $H = r_g - \frac{s_g}{4}g$. and $d^D H$ be the Wely–Schouten tensor field defined by the differential operator from $C^{\infty}(S^2(M))$ into $\Lambda^2 M \otimes T^* M$, given by

(4)
$$d^{D}H(x, y, z) = D_{x}H(y, z) - D_{y}H(x, z).$$

Remark 2. When n = 3, we note that a metric g is conformally flat if and only if Weyl–Schouten tensor $d^D H$ vanishes identically on M^3 . Therefore, our metric g is Einstein if Weyl–Schouten tensor $d^D H$ vanishes identically on M^3 , in virtue of the result in the introduction of LAFONTAINE [7]. Our Main Theorem states that our metric g is Einstein, if there are two distinct solutions of CPE and $d^D H$ vanishes on the hypersurface Γ of M^3 .

The proof of Main Theorem consists of several lemmas and corollaries. It may be sketched as follows. In the first, we derive three relations involving $|z|^2$, which hold on M^3 or Γ (Lemmas 1 and 2). Lemma 2 implies that z is diagonalized on Γ as in (15). In the second, we prove Lemma 3, in virtue of which we may choose a solution function f_{α} of CPE such that its gradient df_{α} is tangent to a connected component Γ_{α} of Γ . Using this fact and (15), it may be shown that $|z|^2$ and $d^D H$ are related as in (16) on Γ^r_{α} (Corollary 2). Finally, using (16) and Lemma 4 we first show that $z_g = 0$ on Γ , and then prove that $z_g = 0$ on $M^3 = M_{0,\varphi} \cup \Gamma \cup M^0_{\varphi}$ (Proof of Main Theorem).

For $\varphi \in Ker U_g^*$, let $\Phi = |d\varphi|^2$ and $N_{\varphi} = \Phi^{-1/2} d\varphi$. For any solution f of CPE, let $W = |df|^2$, $N_f = W^{-1/2} df$, and h = 1 + f. In the following lemma, we prove that the equation (5) holds for any solution function f of CPE.

Seungsu Hwang

Lemma 1. The following equations hold on (M^3, g) :

(5)
$$8Wh^2|z|^2 = h^4|d^DH|^2 + 3\left|dW + \frac{sf}{3}df\right|^2$$

(6)
$$8\Phi\varphi^2|z|^2 = \varphi^4|d^DH|^2 + 3\left|d\Phi + \frac{s\varphi}{3}d\varphi\right|^2$$

SKETCH OF PROOF. The full detailed proof of (5) is given in [3]. In a given coordinate system $\{e_a\}_{a=1,2,3}$, (4) can be rewritten as

$$d^{D}H_{cba} = r_{ab;c} - r_{ac;b} - \frac{1}{4}(g_{ab}s_{;c} - g_{ac}s_{;b}) = r_{ab;c} - r_{ac;b}$$

since s is constant. In virtue of the relation

$$hr_{ab} = f_{;ab} + \frac{2+3f}{6}sg_{ab}$$

obtained from (2) and the Ricci identity $f_{;abc} - f_{;acb} = R_{bcla}f^{;l}$ with

$$R_{ijkl} = -\frac{s}{2}(g_{ik}g_{jl} - g_{il}g_{jk}) + (r_{ik}g_{jl} + r_{jl}g_{ik} - r_{il}g_{jk} - r_{jk}g_{il})$$

for n = 3, we may conclude that

(7)
$$h^4 |d^D H|^2 = -s^2 f^2 W - 2sf \langle df, dW \rangle - 3|dW|^2 + 8|D_g df|^2 W.$$

Since (2) gives

(8)
$$h^2 |z_g|^2 = |D_g df|^2 - \frac{s^2 f^2}{12}$$

the equation (5) follows from (7) and (8). The proof of the equation (6) is similar. $\hfill \Box$

On Γ the equation (6) is reduced to (9) as in the following lemma:

Lemma 2. On $\Gamma = \varphi^{-1}(0)$ we have

(9)
$$|z|^2 = \frac{3}{2}z(N_{\varphi}, N_{\varphi})^2.$$

PROOF. Since the relation

(10)
$$d\Phi + \frac{s\varphi}{3}d\varphi = 2D_{d\varphi}d\varphi + \frac{s\varphi}{3}d\varphi = 2\varphi z(d\varphi, \cdot)$$

A rigidity theorem for the three dimensional critical point equation 161

holds in virtue of (3), on $\varphi^{-1}(c)$ with any constant c we have

(11)
$$\left| d\Phi + \frac{s\varphi}{3} d\varphi \right|^2 = 4\varphi^2 \sum_{i=1}^3 z (d\varphi, e_i)^2$$

in a given orthonormal basis $\{e_a\}_{i=1,2,3}$ with $e_3 = N_{\varphi}$. Substitution of (11) into (6) gives

(12)
$$8\Phi|z|^2 = 12\sum_{i=1}^2 z(d\varphi, e_i)^2 + 12\,z(d\varphi, N_{\varphi})^2 \quad \text{on } \Gamma.$$

In what follows we claim that the first term of the right-hand side of (12)vanishes. This implies that (12) is reduced to (9), completing the proof of our lemma. In virtue of (3), we have in a neighborhood of Γ

(13)
$$\varphi z(d\varphi, X) = \langle D_X d\varphi, d\varphi \rangle = \frac{1}{2} \langle d\Phi, X \rangle$$

for any vector field X tangent to Γ . Taking the Lie derivative of (13) with respect to N_{φ} on Γ , we have

(14)
$$\Phi^{1/2}z(d\varphi,e_i) = \frac{1}{2} \langle D_{N_{\varphi}}d\Phi,e_i \rangle + \frac{1}{2} \langle d\Phi,D_{N_{\varphi}}e_i \rangle.$$

On the other hand, we note that

$$\langle D_{N_{\varphi}}d\Phi, e_i \rangle = \langle D_{e_i}d\Phi, N_{\varphi} \rangle = e_i \langle d\Phi, N_{\varphi} \rangle - \langle d\Phi, D_{e_i}N_{\varphi} \rangle = 0$$

and $d\Phi = \frac{1}{2} \langle D_g d\varphi, d\varphi \rangle = 0$ on Γ . Hence, the right-hand side of (14) vanishes, completing the proof of our claim.

As a consequence of Lemma 2, we have the following result:

Corollary 1. For any vector field X tangent to Γ , $z(X, d\varphi) = 0$ on Γ .

PROOF. With respect to a given orthonormal basis $\{e_a\}_{i=1,2,3}$ with $e_3 = N_{\varphi}$, Lemma 2 implies that on Γ

(15)
$$z(e_1, e_1) = z(e_2, e_2) = -\frac{1}{2}z(N_{\varphi}, N_{\varphi})$$
 and $z(e_i, e_j) = 0$ for $i \neq j$

since for $z_{ij} = z(e_i, e_j)$ we have

$$0 = |z|^{2} - \frac{3}{2}z(N_{\varphi}, N_{\varphi})^{2} = \sum_{i,j} z(e_{i}, e_{j})^{2} - \frac{3}{2}z(N_{\varphi}, N_{\varphi})^{2}$$
$$= z_{11}^{2} + z_{22}^{2} - \frac{1}{2}z_{33}^{2} + 2(z_{12}^{2} + z_{23}^{2} + z_{31}^{2})$$
$$= z_{11}^{2} + z_{22}^{2} - \frac{1}{2}(z_{11} + z_{22})^{2} + 2(z_{12}^{2} + z_{23}^{2} + z_{31}^{2})$$
$$= \frac{1}{2}(z_{11} - z_{22})^{2} + 2(z_{12}^{2} + z_{23}^{2} + z_{31}^{2})$$

where use of the fact that $z_{33} = -(z_{11} + z_{22})$ is made in the fourth equality. Hence, the proof of the corollary follows from (15).

Let Γ_{α} be a connected component of Γ . Then one can find a solution of CPE so that its gradient is tangent to Γ_{α} , as shown in the following lemma. In fact, the proof of Lemma 3 is given in [5]. However, we include its proof here again for the sake of completeness.

Lemma 3. There exists a solution f_{α} of CPE such that $\langle df_{\alpha}, d\varphi \rangle = 0$ on Γ_{α} .

PROOF. First we claim that both $\Phi = |d\varphi|^2$ and $\eta = \langle df, d\varphi \rangle$ are constant along Γ_{α} , where f is f_1 or f_2 . The first statement follows from the fact that we have in virtue of (3)

$$\xi(\Phi) = 2\langle D_{\xi}d\varphi, d\varphi \rangle = -s_g \langle \xi, d\varphi \rangle \varphi + 2\varphi r_g(\xi, d\varphi) = 0$$

for any tangent vector ξ to Γ . The second statement follows from the fact that for any tangent vector field X to Γ_{α} we have

$$X(\eta) = \langle D_X df, d\varphi \rangle + \langle df, D_X d\varphi \rangle = \langle D_X df, d\varphi \rangle = (1+f)z(X, d\varphi) = 0$$

which are the results of (2) and Corollary 1.

Now, let $f_{\alpha} = f - \Phi_{\alpha}^{-1} \eta_{\alpha} \varphi$, where $\Phi_{\alpha} = \Phi_{|\Gamma_{\alpha}}$ and $\eta_{\alpha} = \eta_{|\Gamma_{\alpha}}$. Then, clearly f_{α} is a solution of CPE, since $U_q^*(\varphi) = 0$. Also, along Γ_{α} we have

$$\langle df_{\alpha}, d\varphi \rangle = \langle df, d\varphi \rangle - \Phi_{\alpha}^{-1} \eta_{\alpha} \langle d\varphi, d\varphi \rangle = \eta_{\alpha} - \eta_{\alpha} = 0.$$

This implies that the gradient of f_{α} is tangent to Γ_{α} , and hence the proof of Lemma 3 is completed.

Corollary 2. Let $\Gamma_{\alpha}^{r} = \{x \in \Gamma_{\alpha} \mid df_{\alpha} \neq 0\}$. Then we have

(16)
$$6W_{\alpha}|z|^2 = h_{\alpha}^2 |d^D H|^2 \quad \text{on } \Gamma_{\alpha}^r$$

where $W_{\alpha} = |df_{\alpha}|^2$ and $h_{\alpha} = 1 + f_{\alpha}$.

PROOF. We first note that we may take $e_2 = N_{f_{\alpha}} = |df_{\alpha}|^{-1/2} df_{\alpha}$ on Γ_{α}^r in virtue of Lemma 3 and hence that (15) gives

(17)
$$z(N_{\varphi}, N_{\varphi}) = -2z(N_{f_{\alpha}}, N_{f_{\alpha}}) \quad \text{on } \Gamma_{\alpha}^{r}.$$

In the next, we also note that

(18)
$$\left| dW_{\alpha} + \frac{sf_{\alpha}}{3} df_{\alpha} \right|^2 = 4h_{\alpha}^2 \sum_{i=1}^3 z (df_{\alpha}, e_i)^2$$

since (2) implies that $dW_{\alpha} + \frac{sf_{\alpha}}{3}df_{\alpha} = 2Ddf_{\alpha} + \frac{sf_{\alpha}}{3}df_{\alpha} = 2h_{\alpha}z(df_{\alpha}, \cdot)$. Hence, in virtue of (15) and (17), (18) becomes

(19)
$$\left| dW_{\alpha} + \frac{sf_{\alpha}}{3} df_{\alpha} \right|^2 = 4h_{\alpha}^2 W_{\alpha} z (N_f, N_f)^2$$
$$= h_{\alpha}^2 W_{\alpha} z (N_{\varphi}, N_{\varphi})^2 = \frac{2}{3} h_{\alpha}^2 W_{\alpha} |z|^2 \text{ on } \Gamma_{\alpha}^r$$

where the last equality comes from (9). Consequently, substitution of (19) into (5) gives (16). $\hfill \Box$

In Corollary 2 the behavior of $|z|^2$ on Γ^r_{α} was studied. In the following final lemma we investigate the behavior of $|z|^2$ on the set $\Gamma^c_{\alpha} = \Gamma_{\alpha} \setminus \Gamma^r_{\alpha}$ when Γ^c_{α} is not of measure zero. Note that if Γ^c_{α} is not of measure zero, there exists an open subset Ω of Γ^c_{α} .

Lemma 4. If the set Γ_{α}^{c} is not of measure zero, $|z|^{2}$ is constant on any open subset Ω of Γ_{α}^{c} .

PROOF. Since $df_{\alpha} = 0$ on Ω , f_{α} is constant on Ω and $\langle df_{\alpha}, \xi \rangle = 0$ on Ω for any tangent vector field $\xi \in T\Omega \subset T\Gamma_{\alpha}$. Thus, for $p \in \Omega$ and $\eta \in T_p\Omega \subset T_p\Gamma_{\alpha}$, it follows that $\eta \langle df_{\alpha}, \xi \rangle(p) = 0$, and hence

$$\langle D_{\eta} df_{\alpha}, \xi \rangle_p = \eta \langle df_{\alpha}, \xi \rangle(p) - \langle df_{\alpha}, D_{\eta} \xi \rangle_p = 0.$$

Seungsu Hwang

Since $p \in \Omega$ is arbitrary, we may conclude that $D_g df_\alpha(e_i, e_i) = 0$, where $e_i \in T\Omega$ for i = 1, 2. Thus, in virtue of (15), we have $h_\alpha z(e_i, e_i) = D_g df_\alpha(e_i, e_i) + \frac{sf_\alpha}{6} = \frac{sf_\alpha}{6}$ and

(20)
$$h_{\alpha}z(N_{\varphi},N_{\varphi}) = -2h_{\alpha}z(e_i,e_i) = -\frac{sf_{\alpha}}{3}$$

on Ω . Note that $h_{\alpha} = 1 + f_{\alpha} \neq 0$ on Ω in virtue of (20). Therefore on Ω we have

(21)
$$|z|^2 = \frac{3}{2}z(N_{\varphi}, N_{\varphi})^2 = \frac{s^2 f_{\alpha}^2}{6h_{\alpha}^2}$$

which is a constant.

Now we are ready to prove our Main Theorem.

PROOF of Main Theorem. Since an Einstein solution metric g is isometric to a 3-sphere due to the result in the introduction of OBATA [9], it suffices to show that $z_g \equiv 0$ on $M^3 = M_{0,\varphi} \cup \Gamma \cup M_{\varphi}^0$.

We first show that $z_g = 0$ on each connected component Γ_{α} of $\Gamma = \bigcup_{\alpha} \Gamma_{\alpha}$. It follows from Lemma 3 that there exists a solution function f_{α} of CPE such that $df_{\alpha} \in T\Gamma_{\alpha}$. Since the right-hand side of (16) vanishes for this f_{α} in virtue of the assumption, we have

(22)
$$|z|^2 = 0 \quad \text{on } \Gamma^r_\alpha.$$

Furthermore, if the set $\Gamma_{\alpha}^{c} = \Gamma_{\alpha} \setminus \Gamma_{\alpha}^{r}$ is of measure zero, it is clear that $|z|^{2} = 0$ on Γ_{α}^{c} by the continuity of $|z|^{2}$. In the case that Γ_{α}^{c} is not of measure zero, Lemma 4 gives that $|z|^{2}$ is constant on any connected component of Γ_{α}^{c} . Hence, by the continuity of $|z|^{2}$, we also have $|z|^{2} = 0$ on Γ_{α}^{c} even when Γ_{α}^{c} is not of measure zero. This proves that regardless of the measure of Γ_{α}^{c} we have $z_{g} = 0$ on $\Gamma_{\alpha} = \Gamma_{\alpha}^{c} \cup \Gamma_{\alpha}^{r}$ in virtue of (21). Therefore, $z_{g} = 0$ on $\Gamma = \bigcup_{\alpha} \Gamma_{\alpha}$.

In order to show that $z_g = 0$ on all of M^3 , we next prove that $z_g = 0$ on both

$$M_{0,\varphi} = \{ x \in M^3 \mid \varphi(x) < 0 \} \text{ and } M_{\varphi}^0 = \{ x \in M^3 \mid \varphi(x) > 0 \}.$$

164

Let $M'_{0,\varphi}$ be a connected component of $M_{0,\varphi}$ with $\partial M'_{0,\varphi} = \bigcup_{\beta} \Gamma_{\beta}$ for some $\{\beta\} \subset \{\alpha\}$. Integration by parts gives

$$\int_{M'_{0,\varphi}} \varphi |z|^2 = \int_{M'_{0,\varphi}} \left(D_g d\varphi + \frac{s\varphi}{6} g \right)_{ij} z^{ij} = \int_{M'_{0,\varphi}} (D_g d\varphi)_{ij} z^{ij}$$
$$= \int_{M'_{0,\varphi}} div(z(d\varphi, \cdot)) - \int_{M'_{0,\varphi}} (d\varphi)_i (\delta z)^{ik}_k$$
$$= \int_{\partial M'_{0,\varphi}} z(d\varphi, N_\varphi) = \sum_{\beta} \int_{\Gamma_\beta} z(d\varphi, N_\varphi) = 0$$

where δ is the codifferential. Here, the fourth equality comes from the Stokes theorem and the fact that

$$\delta z_g = \delta \left(r_g - \frac{s_g}{3} g \right) = \delta r_g + d \left(\frac{s_g}{3} \right) = \delta r_g = -\frac{1}{2} d(s_g) = 0.$$

Therefore $z_g = 0$ on each connected component $M'_{0,\varphi}$ of $M_{0,\varphi}$, since $\varphi < 0$ on $M'_{0,\varphi}$. Thus $z_g = 0$ on all of $M_{0,\varphi}$. Applying the similar arguments to M^0_{φ} , we have $z_g = 0$ on each connected component of M^0_{φ} , and so on all of M^0_{φ} . Consequently, we may conclude that $z_g = 0$ on $M^3 = M_{0,\varphi} \cup \Gamma \cup M^0_{\varphi}$, or equivalently that g is Einstein.

Now that we have proved that $z_g \equiv 0$ on M^3 , the proof of our Main Theorem is now completed.

References

- [1] A. L. BESSE, Einstein Manifolds, Springer-Verlag, New York, 1987.
- [2] A. E. FISCHER and J. E. MARSDEN, Manifolds of Riemannian Metrics with Prescribed Scalar Curvature, Bull. Am. Math. Soc. 80 (1974), 479-484.
- [3] S. HWANG, Critical points and conformally flat metrics, Bull. Korean Math. Soc. **37** no. 3 (2000), 641–648.
- [4] S. HWANG, Critical points of the scalar curvature functionals on the space of metrics of constant scalar curvature, Manuscripta Math. 103 (2000), 135–142.
- [5] S. HWANG, The Critical Point Equations on a 3-dimensional compact manifold, (preprint).
- [6] O. KOBAYASHI, A differential equation arising from scalar curvature function, J. Math. Soc. Japan 34 no. 4 (1982), 665–675.
- [7] J. LAFONTAINE, Sur la géométrie d'une généralisation de l'équation différentielle d'Obata, J. Math. Pures Appliquées 62 (1983), 63-72.

- 166 Seungsu Hwang : A rigidity theorem for the three dimensional ...
- [8] W. MEEKS, L. SIMON and S.-T. YAU, Emedded minimal surfaces, exotic spheres, and manifolds with positive Ricci curvature, *Ann. Math.* **116** (1982), 621–659.
- [9] M. OBATA, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan 14 no. 3 (1962), 333–340.
- [10] Y. SHEN, A note on Fisher-Marden's conjecture, Proc. Amer. Math. Soc. 125 no. 3 (1997), 901–905.

SEUNGSU HWANG HANKUK AVIATION UNIVERSITY 200–1 HWAJON-DONG KOYANG, KYONGGI 412–791 KOREA *E-mail*: seungsu@mail.hau.ac.kr

(Received March 9, 2000; revised August 13, 2001)