A rigidity theorem for the three dimensional critical point equation

By SEUNGSU HWANG (Koyang)

Abstract

On a compact 3-dimensional manifold M^{3}, a critical point of the total scalar curvature functional, restricted to the space of metrics with constant scalar curvature of volume 1 , satifies the critical point equation (CPE), given by $U_{g}^{*}(f)=z_{g}$. It has been conjectured that a solution (g, f) of CPE is Einstein. In this paper, we prove that, if CPE has two distinct solution functions and Weyl-Schouten tensor vanishes on a certain hypersurface of $M^{3},\left(M^{3}, g\right)$ is isometric to a standard 3-sphere.

1. Introduction

Let $\left(M^{3}, g\right)$ be a 3 -dimensional compact manifold and \mathcal{M}_{1} the set of smooth Riemannian structures on M^{3} of volume 1. The total scalar curvature functional $\mathcal{S}: \mathcal{M}_{1} \rightarrow \mathbb{R}$ is defined by

$$
\mathcal{S}(g)=\int_{M^{3}} s_{g} d v_{g}
$$

where $d v_{g}$ is the volume form determined by the metric and s_{g} the scalar curvature of the metric g. It is well known that a critical point of this functional is Einstein. On the other hand, there has been a conjecture (Conjecture A) that a critical point of this functional \mathcal{S} restricted to \mathcal{C} is Einstein [1, Chp 4, F], where \mathcal{C} is the set of constant scalar curvature metrics given by

$$
\mathcal{C}=\left\{g \in \mathcal{M}_{1} \mid s_{g} \text { constant }\right\}
$$

Mathematics Subject Classification: 53C25, 58E11.
Key words and phrases: total scalar curvature functional, critical point, Einstein metric, Fisher-Marsden conjecture.

This paper is concerned with a study of a sufficient condition that Conjecture A holds.

The Euler-Lagrange equations for a critical point g of \mathcal{S} restricted to \mathcal{C} may be represented as the following critical point equation (CPE, hereafter):

$$
\begin{equation*}
U_{g}^{*}(f)=z_{g} \equiv r_{g}-\frac{s_{g}}{3} g \tag{1}
\end{equation*}
$$

where f is a function on M^{n}. Since

$$
U_{g}^{*}(f) \equiv D_{g} d f-\left(\Delta_{g} f\right) g-f r_{g}
$$

and $\Delta_{g} f=-\frac{s_{g}}{2} f$, CPE may also be given as

$$
\begin{equation*}
(1+f) z_{g}=D_{g} d f+\frac{s_{g} f}{6} g . \tag{2}
\end{equation*}
$$

J. Lafontaine showed that Conjecture A holds if a solution metric g of CPE is conformally flat [7]. The author showed that Conjecture A holds if a solution function f of CPE is greater than or equal to -1 [4]. Furthermore, Conjecture A holds if CPE has two distinct solution functions and certain two surfaces of M^{3} are disjoint [5]. M. Obata showed that, if the solution metric of CPE is Einstein, it is isometric to a standard 3-sphere [9]. This paper is partially motivated by considering a generalization of the results of authors mentioned above, Lafontaine [7] and Hwang [5]. More precisely, we prove the following theorem in the present paper:

Main Theorem. Let CPE have two distinct non-trivial solutions f_{1} and f_{2} on $\left(M^{3}, g\right)$. Assume that Weyl-Schouten tensor vanishes on Γ where $\Gamma=\varphi^{-1}(0)$ for $\varphi=f_{1}-f_{2}$. Then $\left(M^{3}, g\right)$ is isometric to a 3 sphere.

Remark 1. (i) Fisher and Marsden showed that Γ in our Main Theorem is an embedded surface of $M^{3}[2]$. It is easy to see that Γ exists in M^{3}, since we have

$$
\int_{M^{3}} \varphi=-\frac{2}{s_{g}} \int_{M^{3}} \Delta_{g} \varphi=0
$$

where the first equation follows from the equation $\Delta_{g} \varphi=-\frac{s_{g}}{2} \varphi$, which may be obtained by taking the trace of the equation (3) in Section 2. For the significance of the surface Γ, see [5].
(ii) Our Main Theorem is a partial answer to the conjecture of [5] which states that $\left(M^{3}, g\right)$ is isometric to a standard 3 -sphere if CPE has two distinct non-trivial solutions f_{1} and f_{2} on $\left(M^{3}, g\right)$.

II. The proof of Main Theorem

This section is devoted to the proof of our Main Theorem. Throughout the present paper, we assume that there exist two distinct solutions f_{1} and f_{2} of CPE on $\left(M^{3}, g\right)$. Then, it is easy to see that $U_{g}^{*}(\varphi)=0$ in virtue of (1), or equivalently we have

$$
\begin{equation*}
0=D_{g} d \varphi-\left(\Delta_{g} \varphi\right) g-\varphi r_{g} \tag{3}
\end{equation*}
$$

Definition. For a given 3-dimensional manifold $\left(M^{3}, g\right)$, let $H=r_{g}-$ $\frac{s_{g}}{4} g$. and $d^{D} H$ be the Wely-Schouten tensor field defined by the differential operator from $C^{\infty}\left(S^{2}(M)\right)$ into $\Lambda^{2} M \otimes T^{*} M$, given by

$$
\begin{equation*}
d^{D} H(x, y, z)=D_{x} H(y, z)-D_{y} H(x, z) . \tag{4}
\end{equation*}
$$

Remark 2. When $n=3$, we note that a metric g is conformally flat if and only if Weyl-Schouten tensor $d^{D} H$ vanishes identically on M^{3}. Therefore, our metric g is Einstein if Weyl-Schouten tensor $d^{D} H$ vanishes identically on M^{3}, in virtue of the result in the introduction of Lafontaine [7]. Our Main Theorem states that our metric g is Einstein, if there are two distinct solutions of CPE and $d^{D} H$ vanishes on the hypersurface Γ of M^{3}.

The proof of Main Theorem consists of several lemmas and corollaries. It may be sketched as follows. In the first, we derive three relations involving $|z|^{2}$, which hold on M^{3} or Γ (Lemmas 1 and 2). Lemma 2 implies that z is diagonalized on Γ as in (15). In the second, we prove Lemma 3, in virtue of which we may choose a solution function f_{α} of CPE such that its gradient $d f_{\alpha}$ is tangent to a connected component Γ_{α} of Γ. Using this fact and (15), it may be shown that $|z|^{2}$ and $d^{D} H$ are related as in (16) on Γ_{α}^{r} (Corollary 2). Finally, using (16) and Lemma 4 we first show that $z_{g}=0$ on Γ, and then prove that $z_{g}=0$ on $M^{3}=M_{0, \varphi} \cup \Gamma \cup M_{\varphi}^{0}$ (Proof of Main Theorem).

For $\varphi \in \operatorname{Ker} U_{g}^{*}$, let $\Phi=|d \varphi|^{2}$ and $N_{\varphi}=\Phi^{-1 / 2} d \varphi$. For any solution f of CPE, let $W=|d f|^{2}, N_{f}=W^{-1 / 2} d f$, and $h=1+f$. In the following lemma, we prove that the equation (5) holds for any solution function f of CPE.

Lemma 1. The following equations hold on $\left(M^{3}, g\right)$:

$$
\begin{align*}
8 W h^{2}|z|^{2} & =h^{4}\left|d^{D} H\right|^{2}+3\left|d W+\frac{s f}{3} d f\right|^{2} \tag{5}\\
8 \Phi \varphi^{2}|z|^{2} & =\varphi^{4}\left|d^{D} H\right|^{2}+3\left|d \Phi+\frac{s \varphi}{3} d \varphi\right|^{2} . \tag{6}
\end{align*}
$$

Sketch of proof. The full detailed proof of (5) is given in [3]. In a given coordinate system $\left\{e_{a}\right\}_{a=1,2,3}$, (4) can be rewritten as

$$
d^{D} H_{c b a}=r_{a b ; c}-r_{a c ; b}-\frac{1}{4}\left(g_{a b} s_{; c}-g_{a c} s_{; b}\right)=r_{a b ; c}-r_{a c ; b}
$$

since s is constant. In virtue of the relation

$$
h r_{a b}=f_{; a b}+\frac{2+3 f}{6} s g_{a b}
$$

obtained from (2) and the Ricci identity $f_{; a b c}-f_{; a c b}=R_{b c l a} f^{; l}$ with

$$
R_{i j k l}=-\frac{s}{2}\left(g_{i k} g_{j l}-g_{i l} g_{j k}\right)+\left(r_{i k} g_{j l}+r_{j l} g_{i k}-r_{i l} g_{j k}-r_{j k} g_{i l}\right)
$$

for $n=3$, we may conclude that

$$
\begin{equation*}
h^{4}\left|d^{D} H\right|^{2}=-s^{2} f^{2} W-2 s f\langle d f, d W\rangle-3|d W|^{2}+8\left|D_{g} d f\right|^{2} W \tag{7}
\end{equation*}
$$

Since (2) gives

$$
\begin{equation*}
h^{2}\left|z_{g}\right|^{2}=\left|D_{g} d f\right|^{2}-\frac{s^{2} f^{2}}{12} \tag{8}
\end{equation*}
$$

the equation (5) follows from (7) and (8). The proof of the equation (6) is similar.

On Γ the equation (6) is reduced to (9) as in the following lemma:
Lemma 2. On $\Gamma=\varphi^{-1}(0)$ we have

$$
\begin{equation*}
|z|^{2}=\frac{3}{2} z\left(N_{\varphi}, N_{\varphi}\right)^{2} . \tag{9}
\end{equation*}
$$

Proof. Since the relation

$$
\begin{equation*}
d \Phi+\frac{s \varphi}{3} d \varphi=2 D_{d \varphi} d \varphi+\frac{s \varphi}{3} d \varphi=2 \varphi z(d \varphi, \cdot) \tag{10}
\end{equation*}
$$

holds in virtue of (3), on $\varphi^{-1}(c)$ with any constant c we have

$$
\begin{equation*}
\left|d \Phi+\frac{s \varphi}{3} d \varphi\right|^{2}=4 \varphi^{2} \sum_{i=1}^{3} z\left(d \varphi, e_{i}\right)^{2} \tag{11}
\end{equation*}
$$

in a given orthonormal basis $\left\{e_{a}\right\}_{i=1,2,3}$ with $e_{3}=N_{\varphi}$. Substitution of (11) into (6) gives

$$
\begin{equation*}
8 \Phi|z|^{2}=12 \sum_{i=1}^{2} z\left(d \varphi, e_{i}\right)^{2}+12 z\left(d \varphi, N_{\varphi}\right)^{2} \quad \text { on } \Gamma \text {. } \tag{12}
\end{equation*}
$$

In what follows we claim that the first term of the right-hand side of (12) vanishes. This implies that (12) is reduced to (9), completing the proof of our lemma. In virtue of (3), we have in a neighborhood of Γ

$$
\begin{equation*}
\varphi z(d \varphi, X)=\left\langle D_{X} d \varphi, d \varphi\right\rangle=\frac{1}{2}\langle d \Phi, X\rangle \tag{13}
\end{equation*}
$$

for any vector field X tangent to Γ. Taking the Lie derivative of (13) with respect to N_{φ} on Γ, we have

$$
\begin{equation*}
\Phi^{1 / 2} z\left(d \varphi, e_{i}\right)=\frac{1}{2}\left\langle D_{N_{\varphi}} d \Phi, e_{i}\right\rangle+\frac{1}{2}\left\langle d \Phi, D_{N_{\varphi}} e_{i}\right\rangle . \tag{14}
\end{equation*}
$$

On the other hand, we note that

$$
\left\langle D_{N_{\varphi}} d \Phi, e_{i}\right\rangle=\left\langle D_{e_{i}} d \Phi, N_{\varphi}\right\rangle=e_{i}\left\langle d \Phi, N_{\varphi}\right\rangle-\left\langle d \Phi, D_{e_{i}} N_{\varphi}\right\rangle=0
$$

and $d \Phi=\frac{1}{2}\left\langle D_{g} d \varphi, d \varphi\right\rangle=0$ on Γ. Hence, the right-hand side of (14) vanishes, completing the proof of our claim.

As a consequence of Lemma 2, we have the following result:
Corollary 1. For any vector field X tangent to $\Gamma, z(X, d \varphi)=0$ on Γ.
Proof. With respect to a given orthonormal basis $\left\{e_{a}\right\}_{i=1,2,3}$ with $e_{3}=N_{\varphi}$, Lemma 2 implies that on Γ
(15) $z\left(e_{1}, e_{1}\right)=z\left(e_{2}, e_{2}\right)=-\frac{1}{2} z\left(N_{\varphi}, N_{\varphi}\right) \quad$ and $\quad z\left(e_{i}, e_{j}\right)=0 \quad$ for $i \neq j$
since for $z_{i j}=z\left(e_{i}, e_{j}\right)$ we have

$$
\begin{aligned}
0 & =|z|^{2}-\frac{3}{2} z\left(N_{\varphi}, N_{\varphi}\right)^{2}=\sum_{i, j} z\left(e_{i}, e_{j}\right)^{2}-\frac{3}{2} z\left(N_{\varphi}, N_{\varphi}\right)^{2} \\
& =z_{11}^{2}+z_{22}^{2}-\frac{1}{2} z_{33}^{2}+2\left(z_{12}^{2}+z_{23}^{2}+z_{31}^{2}\right) \\
& =z_{11}^{2}+z_{22}^{2}-\frac{1}{2}\left(z_{11}+z_{22}\right)^{2}+2\left(z_{12}^{2}+z_{23}^{2}+z_{31}^{2}\right) \\
& =\frac{1}{2}\left(z_{11}-z_{22}\right)^{2}+2\left(z_{12}^{2}+z_{23}^{2}+z_{31}^{2}\right)
\end{aligned}
$$

where use of the fact that $z_{33}=-\left(z_{11}+z_{22}\right)$ is made in the fourth equality. Hence, the proof of the corollary follows from (15).

Let Γ_{α} be a connected component of Γ. Then one can find a solution of CPE so that its gradient is tangent to Γ_{α}, as shown in the following lemma. In fact, the proof of Lemma 3 is given in [5]. However, we include its proof here again for the sake of completeness.

Lemma 3. There exists a solution f_{α} of CPE such that $\left\langle d f_{\alpha}, d \varphi\right\rangle=0$ on Γ_{α}.

Proof. First we claim that both $\Phi=|d \varphi|^{2}$ and $\eta=\langle d f, d \varphi\rangle$ are constant along Γ_{α}, where f is f_{1} or f_{2}. The first statement follows from the fact that we have in virtue of (3)

$$
\xi(\Phi)=2\left\langle D_{\xi} d \varphi, d \varphi\right\rangle=-s_{g}\langle\xi, d \varphi\rangle \varphi+2 \varphi r_{g}(\xi, d \varphi)=0
$$

for any tangent vector ξ to Γ. The second statement follows from the fact that for any tangent vector field X to Γ_{α} we have

$$
X(\eta)=\left\langle D_{X} d f, d \varphi\right\rangle+\left\langle d f, D_{X} d \varphi\right\rangle=\left\langle D_{X} d f, d \varphi\right\rangle=(1+f) z(X, d \varphi)=0
$$

which are the results of (2) and Corollary 1.
Now, let $f_{\alpha}=f-\Phi_{\alpha}^{-1} \eta_{\alpha} \varphi$, where $\Phi_{\alpha}=\Phi_{\mid \Gamma_{\alpha}}$ and $\eta_{\alpha}=\eta_{\mid \Gamma_{\alpha}}$. Then, clearly f_{α} is a solution of CPE, since $U_{g}^{*}(\varphi)=0$. Also, along Γ_{α} we have

$$
\left\langle d f_{\alpha}, d \varphi\right\rangle=\langle d f, d \varphi\rangle-\Phi_{\alpha}^{-1} \eta_{\alpha}\langle d \varphi, d \varphi\rangle=\eta_{\alpha}-\eta_{\alpha}=0 .
$$

This implies that the gradient of f_{α} is tangent to Γ_{α}, and hence the proof of Lemma 3 is completed.

Corollary 2. Let $\Gamma_{\alpha}^{r}=\left\{x \in \Gamma_{\alpha} \mid d f_{\alpha} \neq 0\right\}$. Then we have

$$
\begin{equation*}
6 W_{\alpha}|z|^{2}=h_{\alpha}^{2}\left|d^{D} H\right|^{2} \quad \text { on } \Gamma_{\alpha}^{r} \tag{16}
\end{equation*}
$$

where $W_{\alpha}=\left|d f_{\alpha}\right|^{2}$ and $h_{\alpha}=1+f_{\alpha}$.
Proof. We first note that we may take $e_{2}=N_{f_{\alpha}}=\left|d f_{\alpha}\right|^{-1 / 2} d f_{\alpha}$ on Γ_{α}^{r} in virtue of Lemma 3 and hence that (15) gives

$$
\begin{equation*}
z\left(N_{\varphi}, N_{\varphi}\right)=-2 z\left(N_{f_{\alpha}}, N_{f_{\alpha}}\right) \quad \text { on } \Gamma_{\alpha}^{r} . \tag{17}
\end{equation*}
$$

In the next, we also note that

$$
\begin{equation*}
\left|d W_{\alpha}+\frac{s f_{\alpha}}{3} d f_{\alpha}\right|^{2}=4 h_{\alpha}^{2} \sum_{i=1}^{3} z\left(d f_{\alpha}, e_{i}\right)^{2} \tag{18}
\end{equation*}
$$

since (2) implies that $d W_{\alpha}+\frac{s f_{\alpha}}{3} d f_{\alpha}=2 D d f_{\alpha}+\frac{s f_{\alpha}}{3} d f_{\alpha}=2 h_{\alpha} z\left(d f_{\alpha}, \cdot\right)$. Hence, in virtue of (15) and (17), (18) becomes

$$
\begin{align*}
\left|d W_{\alpha}+\frac{s f_{\alpha}}{3} d f_{\alpha}\right|^{2} & =4 h_{\alpha}^{2} W_{\alpha} z\left(N_{f}, N_{f}\right)^{2} \tag{19}\\
& =h_{\alpha}^{2} W_{\alpha} z\left(N_{\varphi}, N_{\varphi}\right)^{2}=\frac{2}{3} h_{\alpha}^{2} W_{\alpha}|z|^{2} \text { on } \Gamma_{\alpha}^{r}
\end{align*}
$$

where the last equality comes from (9). Consequently, substitution of (19) into (5) gives (16).

In Corollary 2 the behavior of $|z|^{2}$ on Γ_{α}^{r} was studied. In the following final lemma we investigate the behavior of $|z|^{2}$ on the set $\Gamma_{\alpha}^{c}=\Gamma_{\alpha} \backslash \Gamma_{\alpha}^{r}$ when Γ_{α}^{c} is not of measure zero. Note that if Γ_{α}^{c} is not of measure zero, there exists an open subset Ω of Γ_{α}^{c}.

Lemma 4. If the set Γ_{α}^{c} is not of measure zero, $|z|^{2}$ is constant on any open subset Ω of Γ_{α}^{c}.

Proof. Since $d f_{\alpha}=0$ on Ω, f_{α} is constant on Ω and $\left\langle d f_{\alpha}, \xi\right\rangle=0$ on Ω for any tangent vector field $\xi \in T \Omega \subset T \Gamma_{\alpha}$. Thus, for $p \in \Omega$ and $\eta \in T_{p} \Omega \subset T_{p} \Gamma_{\alpha}$, it follows that $\eta\left\langle d f_{\alpha}, \xi\right\rangle(p)=0$, and hence

$$
\left\langle D_{\eta} d f_{\alpha}, \xi\right\rangle_{p}=\eta\left\langle d f_{\alpha}, \xi\right\rangle(p)-\left\langle d f_{\alpha}, D_{\eta} \xi\right\rangle_{p}=0
$$

Since $p \in \Omega$ is arbitrary, we may conclude that $D_{g} d f_{\alpha}\left(e_{i}, e_{i}\right)=0$, where $e_{i} \in T \Omega$ for $i=1,2$. Thus, in virtue of (15), we have $h_{\alpha} z\left(e_{i}, e_{i}\right)=$ $D_{g} d f_{\alpha}\left(e_{i}, e_{i}\right)+\frac{s f_{\alpha}}{6}=\frac{s f_{\alpha}}{6}$ and

$$
\begin{equation*}
h_{\alpha} z\left(N_{\varphi}, N_{\varphi}\right)=-2 h_{\alpha} z\left(e_{i}, e_{i}\right)=-\frac{s f_{\alpha}}{3} \tag{20}
\end{equation*}
$$

on Ω. Note that $h_{\alpha}=1+f_{\alpha} \neq 0$ on Ω in virtue of (20). Therefore on Ω we have

$$
\begin{equation*}
|z|^{2}=\frac{3}{2} z\left(N_{\varphi}, N_{\varphi}\right)^{2}=\frac{s^{2} f_{\alpha}^{2}}{6 h_{\alpha}^{2}} \tag{21}
\end{equation*}
$$

which is a constant.
Now we are ready to prove our Main Theorem.
Proof of Main Theorem. Since an Einstein solution metric g is isometric to a 3 -sphere due to the result in the introduction of Obata [9], it suffices to show that $z_{g} \equiv 0$ on $M^{3}=M_{0, \varphi} \cup \Gamma \cup M_{\varphi}^{0}$.

We first show that $z_{g}=0$ on each connected component Γ_{α} of $\Gamma=$ $\bigcup_{\alpha} \Gamma_{\alpha}$. It follows from Lemma 3 that there exists a solution function f_{α} of CPE such that $d f_{\alpha} \in T \Gamma_{\alpha}$. Since the right-hand side of (16) vanishes for this f_{α} in virtue of the assumption, we have

$$
\begin{equation*}
|z|^{2}=0 \quad \text { on } \Gamma_{\alpha}^{r} . \tag{22}
\end{equation*}
$$

Furthermore, if the set $\Gamma_{\alpha}^{c}=\Gamma_{\alpha} \backslash \Gamma_{\alpha}^{r}$ is of measure zero, it is clear that $|z|^{2}=0$ on Γ_{α}^{c} by the continuity of $|z|^{2}$. In the case that Γ_{α}^{c} is not of measure zero, Lemma 4 gives that $|z|^{2}$ is constant on any connected component of Γ_{α}^{c}. Hence, by the continuity of $|z|^{2}$, we also have $|z|^{2}=0$ on Γ_{α}^{c} even when Γ_{α}^{c} is not of measure zero. This proves that regardless of the measure of Γ_{α}^{c} we have $z_{g}=0$ on $\Gamma_{\alpha}=\Gamma_{\alpha}^{c} \cup \Gamma_{\alpha}^{r}$ in virtue of (21). Therefore, $z_{g}=0$ on $\Gamma=\bigcup_{\alpha} \Gamma_{\alpha}$.

In order to show that $z_{g}=0$ on all of M^{3}, we next prove that $z_{g}=0$ on both

$$
M_{0, \varphi}=\left\{x \in M^{3} \mid \varphi(x)<0\right\} \quad \text { and } \quad M_{\varphi}^{0}=\left\{x \in M^{3} \mid \varphi(x)>0\right\} .
$$

Let $M_{0, \varphi}^{\prime}$ be a connected component of $M_{0, \varphi}$ with $\partial M_{0, \varphi}^{\prime}=\bigcup_{\beta} \Gamma_{\beta}$ for some $\{\beta\} \subset\{\alpha\}$. Integration by parts gives

$$
\begin{aligned}
\int_{M_{0, \varphi}^{\prime}} \varphi|z|^{2} & =\int_{M_{0, \varphi}^{\prime}}\left(D_{g} d \varphi+\frac{s \varphi}{6} g\right)_{i j} z^{i j}=\int_{M_{0, \varphi}^{\prime}}\left(D_{g} d \varphi\right)_{i j} z^{i j} \\
& =\int_{M_{0, \varphi}^{\prime}} \operatorname{div}(z(d \varphi, \cdot))-\int_{M_{0, \varphi}^{\prime}}(d \varphi)_{i}(\delta z)_{k}^{i k} \\
& =\int_{\partial M_{0, \varphi}^{\prime}} z\left(d \varphi, N_{\varphi}\right)=\sum_{\beta} \int_{\Gamma_{\beta}} z\left(d \varphi, N_{\varphi}\right)=0
\end{aligned}
$$

where δ is the codifferential. Here, the fourth equality comes from the Stokes theorem and the fact that

$$
\delta z_{g}=\delta\left(r_{g}-\frac{s_{g}}{3} g\right)=\delta r_{g}+d\left(\frac{s_{g}}{3}\right)=\delta r_{g}=-\frac{1}{2} d\left(s_{g}\right)=0
$$

Therefore $z_{g}=0$ on each connected component $M_{0, \varphi}^{\prime}$ of $M_{0, \varphi}$, since $\varphi<0$ on $M_{0, \varphi}^{\prime}$. Thus $z_{g}=0$ on all of $M_{0, \varphi}$. Applying the similar arguments to M_{φ}^{0}, we have $z_{g}=0$ on each connected component of M_{φ}^{0}, and so on all of M_{φ}^{0}. Consequently, we may conclude that $z_{g}=0$ on $M^{3}=M_{0, \varphi} \cup \Gamma \cup M_{\varphi}^{0}$, or equivalently that g is Einstein.

Now that we have proved that $z_{g} \equiv 0$ on M^{3}, the proof of our Main Theorem is now completed.

References

[1] A. L. Besse, Einstein Manifolds, Springer-Verlag, New York, 1987.
[2] A. E. Fischer and J. E. Marsden, Manifolds of Riemannian Metrics with Prescribed Scalar Curvature, Bull. Am. Math. Soc. 80 (1974), 479-484.
[3] S. Hwang, Critical points and conformally flat metrics, Bull. Korean Math. Soc. 37 no. 3 (2000), 641-648.
[4] S. Hwang, Critical points of the scalar curvature functionals on the space of metrics of constant scalar curvature, Manuscripta Math. 103 (2000), 135-142.
[5] S. Hwang, The Critical Point Equations on a 3-dimensional compact manifold, (preprint).
[6] O. Kobayashi, A differential equation arising from scalar curvature function, J. Math. Soc. Japan 34 no. 4 (1982), 665-675.
[7] J. Lafontaine, Sur la géométrie d'une généralisation de l'équation différentielle d’Obata, J. Math. Pures Appliquées 62 (1983), 63-72.
[8] W. Meeks, L. Simon and S.-T. Yau, Emedded minimal surfaces, exotic spheres, and manifolds with positive Ricci curvature, Ann. Math. 116 (1982), 621-659.
[9] M. Оbata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan 14 no. 3 (1962), 333-340.
[10] Y. Shen, A note on Fisher-Marden's conjecture, Proc. Amer. Math. Soc. 125 no. 3 (1997), 901-905.

SEUNGSU HWANG
HANKUK AVIATION UNIVERSITY
200-1 HWAJON-DONG
KOYANG, KYONGGI 412-791
kOREA
E-mail: seungsu@mail.hau.ac.kr
(Received March 9, 2000; revised August 13, 2001)

