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A rigidity theorem for the three dimensional
critical point equation

By SEUNGSU HWANG (Koyang)

Abstract. On a compact 3-dimensional manifold M3, a critical point of the total
scalar curvature functional, restricted to the space of metrics with constant scalar cur-
vature of volume 1, satifies the critical point equation (CPE), given by U∗g (f) = zg . It

has been conjectured that a solution (g, f) of CPE is Einstein. In this paper, we prove
that, if CPE has two distinct solution functions and Weyl–Schouten tensor vanishes on
a certain hypersurface of M3, (M3, g) is isometric to a standard 3-sphere.

1. Introduction

Let (M3, g) be a 3-dimensional compact manifold and M1 the set
of smooth Riemannian structures on M3 of volume 1. The total scalar
curvature functional S : M1 → R is defined by

S(g) =
∫

M3
sgdvg

where dvg is the volume form determined by the metric and sg the scalar
curvature of the metric g. It is well known that a critical point of this
functional is Einstein. On the other hand, there has been a conjecture
(Conjecture A) that a critical point of this functional S restricted to C
is Einstein [1, Chp 4, F], where C is the set of constant scalar curvature
metrics given by

C = {g ∈M1 | sg constant}
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This paper is concerned with a study of a sufficient condition that Con-
jecture A holds.

The Euler–Lagrange equations for a critical point g of S restricted
to C may be represented as the following critical point equation (CPE,
hereafter):

(1) U∗
g (f) = zg ≡ rg − sg

3
g

where f is a function on Mn. Since

U∗
g (f) ≡ Dgdf − (∆gf)g − frg

and ∆gf = − sg

2 f , CPE may also be given as

(2) (1 + f)zg = Dgdf +
sgf

6
g.

J. Lafontaine showed that Conjecture A holds if a solution metric g of
CPE is conformally flat [7]. The author showed that Conjecture A holds
if a solution function f of CPE is greater than or equal to −1 [4]. Further-
more, Conjecture A holds if CPE has two distinct solution functions and
certain two surfaces of M3 are disjoint [5]. M. Obata showed that, if the
solution metric of CPE is Einstein, it is isometric to a standard 3-sphere
[9]. This paper is partially motivated by considering a generalization of
the results of authors mentioned above, Lafontaine [7] and Hwang [5].
More precisely, we prove the following theorem in the present paper:

Main Theorem. Let CPE have two distinct non-trivial solutions f1

and f2 on (M3, g). Assume that Weyl–Schouten tensor vanishes on Γ
where Γ = ϕ−1(0) for ϕ = f1 − f2. Then (M3, g) is isometric to a 3-
sphere.

Remark 1. (i) Fisher and Marsden showed that Γ in our Main The-
orem is an embedded surface of M3 [2]. It is easy to see that Γ exists in
M3, since we have ∫

M3
ϕ = − 2

sg

∫

M3
∆gϕ = 0

where the first equation follows from the equation ∆gϕ = − sg

2 ϕ, which
may be obtained by taking the trace of the equation (3) in Section 2. For
the significance of the surface Γ, see [5].

(ii) Our Main Theorem is a partial answer to the conjecture of [5]
which states that (M3, g) is isometric to a standard 3-sphere if CPE has
two distinct non-trivial solutions f1 and f2 on (M3, g).



A rigidity theorem for the three dimensional critical point equation 159

II. The proof of Main Theorem

This section is devoted to the proof of our Main Theorem. Throughout
the present paper, we assume that there exist two distinct solutions f1 and
f2 of CPE on (M3, g). Then, it is easy to see that U∗

g (ϕ) = 0 in virtue of
(1), or equivalently we have

(3) 0 = Dgdϕ− (∆gϕ)g − ϕrg.

Definition. For a given 3-dimensional manifold (M3, g), let H = rg −
sg

4 g. and dDH be the Wely–Schouten tensor field defined by the differential
operator from C∞(S2(M)) into Λ2M ⊗ T ∗M , given by

(4) dDH(x, y, z) = DxH(y, z)−DyH(x, z).

Remark 2. When n = 3, we note that a metric g is conformally flat if
and only if Weyl–Schouten tensor dDH vanishes identically on M3. There-
fore, our metric g is Einstein if Weyl–Schouten tensor dDH vanishes identi-
cally on M3, in virtue of the result in the introduction of Lafontaine [7].
Our Main Theorem states that our metric g is Einstein, if there are two
distinct solutions of CPE and dDH vanishes on the hypersurface Γ of M3.

The proof of Main Theorem consists of several lemmas and corollar-
ies. It may be sketched as follows. In the first, we derive three relations
involving |z|2, which hold on M3 or Γ (Lemmas 1 and 2). Lemma 2 implies
that z is diagonalized on Γ as in (15). In the second, we prove Lemma 3,
in virtue of which we may choose a solution function fα of CPE such that
its gradient dfα is tangent to a connected component Γα of Γ. Using this
fact and (15), it may be shown that |z|2 and dDH are related as in (16)
on Γr

α (Corollary 2). Finally, using (16) and Lemma 4 we first show that
zg = 0 on Γ, and then prove that zg = 0 on M3 = M0,ϕ ∪ Γ ∪M0

ϕ (Proof
of Main Theorem).

For ϕ ∈ Ker U∗
g , let Φ = |dϕ|2 and Nϕ = Φ−1/2dϕ. For any solution

f of CPE, let W = |df |2, Nf = W−1/2df , and h = 1 + f . In the following
lemma, we prove that the equation (5) holds for any solution function f

of CPE.
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Lemma 1. The following equations hold on (M3, g):

8Wh2|z|2 = h4|dDH|2 + 3
∣∣∣∣dW +

sf

3
df

∣∣∣∣
2

(5)

8Φϕ2|z|2 = ϕ4|dDH|2 + 3
∣∣∣dΦ +

sϕ

3
dϕ

∣∣∣
2

.(6)

Sketch of proof. The full detailed proof of (5) is given in [3]. In
a given coordinate system {ea}a=1,2,3, (4) can be rewritten as

dDHcba = rab;c − rac;b − 1
4
(gabs;c − gacs;b) = rab;c − rac;b

since s is constant. In virtue of the relation

hrab = f;ab +
2 + 3f

6
sgab

obtained from (2) and the Ricci identity f;abc − f;acb = Rbclaf ;l with

Rijkl = −s

2
(gikgjl − gilgjk) + (rikgjl + rjlgik − rilgjk − rjkgil)

for n = 3, we may conclude that

(7) h4|dDH|2 = −s2f2W − 2sf〈df, dW 〉 − 3|dW |2 + 8|Dgdf |2W.

Since (2) gives

(8) h2|zg|2 = |Dgdf |2 − s2f2

12

the equation (5) follows from (7) and (8). The proof of the equation (6) is
similar. ¤

On Γ the equation (6) is reduced to (9) as in the following lemma:

Lemma 2. On Γ = ϕ−1(0) we have

(9) |z|2 =
3
2
z(Nϕ, Nϕ)2.

Proof. Since the relation

(10) dΦ +
sϕ

3
dϕ = 2Ddϕdϕ +

sϕ

3
dϕ = 2ϕz(dϕ, ·)
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holds in virtue of (3), on ϕ−1(c) with any constant c we have

(11)
∣∣∣dΦ +

sϕ

3
dϕ

∣∣∣
2

= 4ϕ2
3∑

i=1

z(dϕ, ei)2

in a given orthonormal basis {ea}i=1,2,3 with e3 = Nϕ. Substitution of
(11) into (6) gives

(12) 8Φ|z|2 = 12
2∑

i=1

z(dϕ, ei)2 + 12 z(dϕ,Nϕ)2 on Γ.

In what follows we claim that the first term of the right-hand side of (12)
vanishes. This implies that (12) is reduced to (9), completing the proof of
our lemma. In virtue of (3), we have in a neighborhood of Γ

(13) ϕz(dϕ, X) = 〈DXdϕ, dϕ〉 =
1
2
〈dΦ, X〉

for any vector field X tangent to Γ. Taking the Lie derivative of (13) with
respect to Nϕ on Γ, we have

(14) Φ1/2z(dϕ, ei) =
1
2
〈DNϕdΦ, ei〉+

1
2
〈dΦ, DNϕei〉.

On the other hand, we note that

〈DNϕdΦ, ei〉 = 〈DeidΦ, Nϕ〉 = ei〈dΦ, Nϕ〉 − 〈dΦ, DeiNϕ〉 = 0

and dΦ = 1
2 〈Dgdϕ, dϕ〉 = 0 on Γ. Hence, the right-hand side of (14)

vanishes, completing the proof of our claim. ¤

As a consequence of Lemma 2, we have the following result:

Corollary 1. For any vector field X tangent to Γ, z(X, dϕ) = 0 on Γ.

Proof. With respect to a given orthonormal basis {ea}i=1,2,3 with
e3 = Nϕ, Lemma 2 implies that on Γ

(15) z(e1, e1) = z(e2, e2) = −1
2
z(Nϕ, Nϕ) and z(ei, ej) = 0 for i 6= j
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since for zij = z(ei, ej) we have

0 = |z|2 − 3
2
z(Nϕ, Nϕ)2 =

∑

i,j

z(ei, ej)2 − 3
2
z(Nϕ, Nϕ)2

= z2
11 + z2

22 −
1
2
z2
33 + 2(z2

12 + z2
23 + z2

31)

= z2
11 + z2

22 −
1
2
(z11 + z22)2 + 2(z2

12 + z2
23 + z2

31)

=
1
2
(z11 − z22)2 + 2(z2

12 + z2
23 + z2

31)

where use of the fact that z33 = −(z11+z22) is made in the fourth equality.
Hence, the proof of the corollary follows from (15). ¤

Let Γα be a connected component of Γ. Then one can find a solution
of CPE so that its gradient is tangent to Γα, as shown in the following
lemma. In fact, the proof of Lemma 3 is given in [5]. However, we include
its proof here again for the sake of completeness.

Lemma 3. There exists a solution fα of CPE such that 〈dfα, dϕ〉 = 0
on Γα.

Proof. First we claim that both Φ = |dϕ|2 and η = 〈df, dϕ〉 are
constant along Γα, where f is f1 or f2. The first statement follows from
the fact that we have in virtue of (3)

ξ(Φ) = 2〈Dξdϕ, dϕ〉 = −sg〈ξ, dϕ〉ϕ + 2ϕrg(ξ, dϕ) = 0

for any tangent vector ξ to Γ. The second statement follows from the fact
that for any tangent vector field X to Γα we have

X(η) = 〈DXdf, dϕ〉+ 〈df, DXdϕ〉 = 〈DXdf, dϕ〉 = (1 + f)z(X, dϕ) = 0

which are the results of (2) and Corollary 1.
Now, let fα = f − Φ−1

α ηαϕ, where Φα = Φ|Γα
and ηα = η|Γα

. Then,
clearly fα is a solution of CPE, since U∗

g (ϕ) = 0. Also, along Γα we have

〈dfα, dϕ〉 = 〈df, dϕ〉 − Φ−1
α ηα〈dϕ, dϕ〉 = ηα − ηα = 0.

This implies that the gradient of fα is tangent to Γα, and hence the proof
of Lemma 3 is completed. ¤
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Corollary 2. Let Γr
α = {x ∈ Γα | dfα 6= 0}. Then we have

(16) 6Wα|z|2 = h2
α|dDH|2 on Γr

α

where Wα = |dfα|2 and hα = 1 + fα.

Proof. We first note that we may take e2 = Nfα = |dfα|−1/2dfα on
Γr

α in virtue of Lemma 3 and hence that (15) gives

(17) z(Nϕ, Nϕ) = −2z(Nfα , Nfα) on Γr
α.

In the next, we also note that

(18)
∣∣∣∣dWα +

sfα

3
dfα

∣∣∣∣
2

= 4h2
α

3∑

i=1

z(dfα, ei)2

since (2) implies that dWα + sfα

3 dfα = 2Ddfα + sfα

3 dfα = 2hαz(dfα, ·).
Hence, in virtue of (15) and (17), (18) becomes

∣∣∣∣dWα +
sfα

3
dfα

∣∣∣∣
2

= 4h2
αWαz(Nf , Nf )2(19)

= h2
αWαz(Nϕ, Nϕ)2 =

2
3
h2

αWα|z|2 on Γr
α

where the last equality comes from (9). Consequently, substitution of (19)
into (5) gives (16). ¤

In Corollary 2 the behavior of |z|2 on Γr
α was studied. In the following

final lemma we investigate the behavior of |z|2 on the set Γc
α = Γα \ Γr

α

when Γc
α is not of measure zero. Note that if Γc

α is not of measure zero,
there exists an open subset Ω of Γc

α.

Lemma 4. If the set Γc
α is not of measure zero, |z|2 is constant on

any open subset Ω of Γc
α.

Proof. Since dfα = 0 on Ω, fα is constant on Ω and 〈dfα, ξ〉 = 0
on Ω for any tangent vector field ξ ∈ TΩ ⊂ TΓα. Thus, for p ∈ Ω and
η ∈ TpΩ ⊂ TpΓα, it follows that η〈dfα, ξ〉(p) = 0, and hence

〈Dηdfα, ξ〉p = η〈dfα, ξ〉(p)− 〈dfα, Dηξ〉p = 0.
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Since p ∈ Ω is arbitrary, we may conclude that Dgdfα(ei, ei) = 0, where
ei ∈ TΩ for i = 1, 2. Thus, in virtue of (15), we have hαz(ei, ei) =
Dgdfα(ei, ei) + sfα

6 = sfα

6 and

(20) hαz(Nϕ, Nϕ) = −2hαz(ei, ei) = −sfα

3

on Ω. Note that hα = 1 + fα 6= 0 on Ω in virtue of (20). Therefore on Ω
we have

(21) |z|2 =
3
2
z(Nϕ, Nϕ)2 =

s2f2
α

6h2
α

which is a constant. ¤

Now we are ready to prove our Main Theorem.

Proof of Main Theorem. Since an Einstein solution metric g is iso-
metric to a 3-sphere due to the result in the introduction of Obata [9], it
suffices to show that zg ≡ 0 on M3 = M0,ϕ ∪ Γ ∪M0

ϕ.
We first show that zg = 0 on each connected component Γα of Γ =⋃

α Γα. It follows from Lemma 3 that there exists a solution function fα

of CPE such that dfα ∈ TΓα. Since the right-hand side of (16) vanishes
for this fα in virtue of the assumption, we have

(22) |z|2 = 0 on Γr
α.

Furthermore, if the set Γc
α = Γα \ Γr

α is of measure zero, it is clear that
|z|2 = 0 on Γc

α by the continuity of |z|2. In the case that Γc
α is not

of measure zero, Lemma 4 gives that |z|2 is constant on any connected
component of Γc

α. Hence, by the continuity of |z|2, we also have |z|2 = 0
on Γc

α even when Γc
α is not of measure zero. This proves that regardless

of the measure of Γc
α we have zg = 0 on Γα = Γc

α ∪ Γr
α in virtue of (21).

Therefore, zg = 0 on Γ =
⋃

α Γα.
In order to show that zg = 0 on all of M3, we next prove that zg = 0

on both

M0,ϕ = {x ∈ M3 | ϕ(x) < 0} and M0
ϕ = {x ∈ M3 | ϕ(x) > 0}.
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Let M ′
0,ϕ be a connected component of M0,ϕ with ∂M ′

0,ϕ =
⋃

β Γβ for
some {β} ⊂ {α}. Integration by parts gives

∫

M ′
0,ϕ

ϕ|z|2 =
∫

M ′
0,ϕ

(
Dgdϕ +

sϕ

6
g
)

ij
zij =

∫

M ′
0,ϕ

(Dgdϕ)ijz
ij

=
∫

M ′
0,ϕ

div(z(dϕ, ·))−
∫

M ′
0,ϕ

(dϕ)i(δz)ik
k

=
∫

∂M ′
0,ϕ

z(dϕ,Nϕ) =
∑

β

∫

Γβ

z(dϕ,Nϕ) = 0

where δ is the codifferential. Here, the fourth equality comes from the
Stokes theorem and the fact that

δzg = δ
(
rg − sg

3
g
)

= δrg + d
(sg

3

)
= δrg = −1

2
d(sg) = 0.

Therefore zg = 0 on each connected component M ′
0,ϕ of M0,ϕ, since ϕ < 0

on M ′
0,ϕ. Thus zg = 0 on all of M0,ϕ. Applying the similar arguments to

M0
ϕ, we have zg = 0 on each connected component of M0

ϕ, and so on all of
M0

ϕ. Consequently, we may conclude that zg = 0 on M3 = M0,ϕ∪Γ∪M0
ϕ,

or equivalently that g is Einstein.
Now that we have proved that zg ≡ 0 on M3, the proof of our Main

Theorem is now completed. ¤

References

[1] A. L. Besse, Einstein Manifolds, Springer-Verlag, New York, 1987.

[2] A. E. Fischer and J. E. Marsden, Manifolds of Riemannian Metrics with Pre-

scribed Scalar Curvature, Bull. Am. Math. Soc. 80 (1974), 479–484.

[3] S. Hwang, Critical points and conformally flat metrics, Bull. Korean Math. Soc.

37 no. 3 (2000), 641–648.

[4] S. Hwang, Critical points of the scalar curvature functionals on the space of metrics

of constant scalar curvature, Manuscripta Math. 103 (2000), 135–142.

[5] S. Hwang, The Critical Point Equations on a 3-dimensional compact manifold,

(preprint).

[6] O. Kobayashi, A differential equation arising from scalar curvature function, J.

Math. Soc. Japan 34 no. 4 (1982), 665–675.
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