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A rigidity theorem for the three dimensional
critical point equation

By SEUNGSU HWANG (Koyang)

Abstract. On a compact 3-dimensional manifold M3, a critical point of the total
scalar curvature functional, restricted to the space of metrics with constant scalar cur-
vature of volume 1, satifies the critical point equation (CPE), given by U (f) = 24. It
has been conjectured that a solution (g, f) of CPE is Einstein. In this paper, we prove
that, if CPE has two distinct solution functions and Weyl-Schouten tensor vanishes on
a certain hypersurface of M3, (M3, g) is isometric to a standard 3-sphere.

1. Introduction

Let (M3, g) be a 3-dimensional compact manifold and M; the set
of smooth Riemannian structures on M3 of volume 1. The total scalar
curvature functional S : M; — R is defined by

S(g):/ Sqdvy
M3

where dv, is the volume form determined by the metric and s, the scalar
curvature of the metric g. It is well known that a critical point of this
functional is Einstein. On the other hand, there has been a conjecture
(Conjecture A) that a critical point of this functional S restricted to C
is Einstein [1, Chp 4, F|, where C is the set of constant scalar curvature
metrics given by

C ={g € M, | sy constant}
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This paper is concerned with a study of a sufficient condition that Con-
jecture A holds.

The Euler-Lagrange equations for a critical point g of S restricted
to C may be represented as the following critical point equation (CPE,
hereafter):

Sg

(1) Ug*(f):ZgETg_gg

where f is a function on M"™. Since
Ug*(f) = Dydf — (Agf)g — fry
and Ay f = —% f, CPE may also be given as

(2) (14 )2y = Dydf + 22 g
J. LAFONTAINE showed that Conjecture A holds if a solution metric g of
CPE is conformally flat [7]. The author showed that Conjecture A holds
if a solution function f of CPE is greater than or equal to —1 [4]. Further-
more, Conjecture A holds if CPE has two distinct solution functions and
certain two surfaces of M? are disjoint [5]. M. OBATA showed that, if the
solution metric of CPE is Einstein, it is isometric to a standard 3-sphere
[9]. This paper is partially motivated by considering a generalization of
the results of authors mentioned above, LAFONTAINE [7] and HWANG [5].
More precisely, we prove the following theorem in the present paper:

Main Theorem. Let CPE have two distinct non-trivial solutions f;
and fo on (M3, g). Assume that Weyl-Schouten tensor vanishes on T
where T' = ¢~ 1(0) for ¢ = fi1 — fo. Then (M?3,g) is isometric to a 3-
sphere.

Remark 1. (i) Fisher and Marsden showed that I" in our Main The-
orem is an embedded surface of M? [2]. It is easy to see that I' exists in

M3, since we have
2
/ p=—— [ Agp=0
M3 Sg Jms3

where the first equation follows from the equation Agp = —3¢, which
may be obtained by taking the trace of the equation (3) in Section 2. For
the significance of the surface I', see [5].

(ii) Our Main Theorem is a partial answer to the conjecture of [5]
which states that (M3, g) is isometric to a standard 3-sphere if CPE has
two distinct non-trivial solutions f; and fo on (M3, g).
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II. The proof of Main Theorem

This section is devoted to the proof of our Main Theorem. Throughout
the present paper, we assume that there exist two distinct solutions f, and
f2 of CPE on (M?,g). Then, it is easy to see that Uy (¢) = 0 in virtue of
(1), or equivalently we have

(3) 0=Dydp — (Agp)g — pry.

Definition. For a given 3-dimensional manifold (M3, g), let H = r, —
%" g. and dP H be the Wely-Schouten tensor field defined by the differential
operator from C'°°(S?(M)) into A2M ® T*M, given by

(4) dPH(x,y,2) = D, H(y,2) — DyH(x, 2).

Remark 2. When n = 3, we note that a metric g is conformally flat if
and only if Weyl-Schouten tensor d” H vanishes identically on M?. There-
fore, our metric g is Einstein if Weyl-Schouten tensor d” H vanishes identi-
cally on M3, in virtue of the result in the introduction of LAFONTAINE [7].
Our Main Theorem states that our metric g is Einstein, if there are two
distinct solutions of CPE and d” H vanishes on the hypersurface I' of M?3.

The proof of Main Theorem consists of several lemmas and corollar-
ies. It may be sketched as follows. In the first, we derive three relations
involving |z|?, which hold on M3 or I' (Lemmas 1 and 2). Lemma 2 implies
that z is diagonalized on I' as in (15). In the second, we prove Lemma 3,
in virtue of which we may choose a solution function f,, of CPE such that
its gradient df,, is tangent to a connected component I'y, of I'. Using this
fact and (15), it may be shown that |z|?> and d” H are related as in (16)
on I'l, (Corollary 2). Finally, using (16) and Lemma 4 we first show that
z, =0 on I, and then prove that z;, = 0 on M3 = My ,UI'U Mg (Proof
of Main Theorem).

For ¢ € KerU}, let ® = |dp|* and N, = ®~1/2dp. For any solution
f of CPE, let W = |df|?, Ny = W~/2df, and h = 1 + f. In the following
lemma, we prove that the equation (5) holds for any solution function f
of CPE.
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Lemma 1. The following equations hold on (M3, g):

2

(5) 8Wh2|z|? = h*dPH|? + 3 'dW + %df
2
(6) 80 2|22 = GA|dPH|? + 3 ‘d@ + %dw‘ .

SKETCH OF PROOF. The full detailed proof of (5) is given in [3]. In
a given coordinate system {e,},=123, (4) can be rewritten as

1
D
d cha = Tab;c — Tac;b — 7(gab3;c - gacs;b) = Tab;c — Tac;b

4
since s is constant. In virtue of the relation
2+ 3f
hray = f;ab + SGab

6
obtained from (2) and the Ricci identity f.ape — fiach = Rbeiaf! with

S

Rijr = —5

(9ikgj1 — 9agjk) + (rikgji + rj19ik — Tigik — TjkYil)
for n = 3, we may conclude that

(1) hYdPHP? = —s*f2W — 2sf(df,dW) — 3|dW |* + 8| D, df|* W .
Since (2) gives

s2 f2

(8) hQ‘Zg‘Q = |ngf’2 - 12

the equation (5) follows from (7) and (8). The proof of the equation (6) is
similar. g

On T the equation (6) is reduced to (9) as in the following lemma:

Lemma 2. On T = ¢~ 1(0) we have

(9) 2=

iz(NSD,Ng@)Q.

PROOF. Since the relation

(10) 4o + %dgp = 2Dy, dp + %dgo = 202(dp, ")
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holds in virtue of (3), on ¢ ~!(c) with any constant ¢ we have
sp . |2 >
(11) 40+ Fdp| = 40* Y 2(di, )

i=1

in a given orthonormal basis {e,}i=1,2,3 with e3 = N,,. Substitution of
(11) into (6) gives

2
(12) 80[2|? = 12 Zz(dgp, e;)? +122(dp, N,)> onT.

i=1

In what follows we claim that the first term of the right-hand side of (12)
vanishes. This implies that (12) is reduced to (9), completing the proof of
our lemma. In virtue of (3), we have in a neighborhood of I"

(13) pz(dp, X) = (Dxdyp,dp) = %<d‘1>,X>

for any vector field X tangent to I'. Taking the Lie derivative of (13) with
respect to N, on I', we have

1 1
(14) DY 22(dp, ;) = 5(Dn,d®,e;) + 5(d®, Dy, e:).

On the other hand, we note that
(Dn,d®,e;) = (D, d®, Ny) = e;{(d®, N,) — (d®, D.,N,) = 0

and d® = }(Dydp,dp) = 0 on I'. Hence, the right-hand side of (14)
vanishes, completing the proof of our claim. O

As a consequence of Lemma 2, we have the following result:
Corollary 1. For any vector field X tangent toI', z(X,dp) =0 onT.

PrOOF. With respect to a given orthonormal basis {eq }i=1,2,3 with
ez = N, Lemma 2 implies that on T’

1
(15) z(e1,e1) = z(ea,e2) = _QZ(NWNSO) and z(e;j,e;) =0 fori#j
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since for z;; = z(e;, e;) we have

3 3
0=|e* = Sa(Ng, No)* = 3 2(eir)® — S2(No, Ny)?

1,3

1
= Z%l + 252 - §Z§3 + 2(2%2 + 233 + Z:%l)

1
= Z%l + 232 - 5(211 + 222)2 + 2(2'%2 + 2'%3 + Z:?l)

1

= 5z~ 292)% + 2(215 + 235 + 231)
where use of the fact that z33 = —(211+ 222) is made in the fourth equality.
Hence, the proof of the corollary follows from (15). O

Let I', be a connected component of I'. Then one can find a solution
of CPE so that its gradient is tangent to I'y, as shown in the following
lemma. In fact, the proof of Lemma 3 is given in [5]. However, we include
its proof here again for the sake of completeness.

Lemma 3. There exists a solution f, of CPE such that {(df,,dy) =0
onT,.

PRrROOF. First we claim that both ® = |dp|* and n = (df,dy) are
constant along I',, where f is fi or fa. The first statement follows from
the fact that we have in virtue of (3)

§(®) = 2(Dedip, dp) = —s4(§,dp)p + 21y (€, dp) = 0

for any tangent vector £ to I'. The second statement follows from the fact
that for any tangent vector field X to I', we have

X(n) = (Dxdf,dp) + {df, Dxdp) = (Dxdf,dp) = (1 + f)z(X,dp) = 0

which are the results of (2) and Corollary 1.
Now, let fo = f — ®_ 104, where &, = @, and 7o = np,. Then,
clearly f, is a solution of CPE, since U;(¢) = 0. Also, along I, we have

(dfo,dp) = (df, dp) — @ o (dp, dp) = 1o — N = 0.

This implies that the gradient of f, is tangent to I',, and hence the proof
of Lemma 3 is completed. O
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Corollary 2. Let I'}, = {z € 'y | dfo, # 0}. Then we have
(16) 6Wo|z|> = h2|d°H|* onT7,

where W, = |df.|? and hy = 1+ fa,.

PrROOF. We first note that we may take es = Ny, = |dfs|"1/2df, on
I'7 in virtue of Lemma 3 and hence that (15) gives

(17) 2(Ny, Ny) = —22(Ny,,Ny,) onI¥,.
In the next, we also note that

5 fa

(18) ’dWa + dfa

3
= Z dfou z

since (2) implies that dW, + *L=df, = 2Ddf, + *=df, = 2h,2(dfa,").
Hence, in virtue of (15) and (17), (18) becomes

sfa = 4h2W,z(Ny, Ny)?

(19) ‘dWa—Ir dfa

2
= h2Wa2(N,, N,)? = ghiWa]z\z on I

where the last equality comes from (9). Consequently, substitution of (19)
into (5) gives (16). O

In Corollary 2 the behavior of |z]? on I'", was studied. In the following
final lemma we investigate the behavior of |2|? on the set I'¢ = 'y, \ T'%,
when I'¢, is not of measure zero. Note that if I'{ is not of measure zero,
there exists an open subset {2 of I'¢,.

2

Lemma 4. If the set I'C is not of measure zero, |z|* is constant on
o b

any open subset §) of I'C .

PROOF. Since df, = 0 on 2, f, is constant on Q and (df,,&) = 0
on () for any tangent vector field & € T2 C TT,. Thus, for p € 2 and
n e T, C T,T,, it follows that n(df.,&)(p) = 0, and hence

<Dndfaa‘5>p = 77<dfa7€>(p) - <dfomD77§>p =
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Since p € Q is arbitrary, we may conclude that Dydf,(e;,e;) = 0, where
e; € TQ for i = 1,2. Thus, in virtue of (15), we have hyz(e;,e;) =
Dydfa(ei,e;) + 2o = 2l and

st

(20) hoaz(Ngy, Ny) = —2hz(e;,e;) = 3

on Q. Note that ho, =14 fo # 0 on Q in virtue of (20). Therefore on
we have

_ s’ fa
- 6h2

(21) o2 = 2

§Z(N¢7N¢)2

which is a constant. 0
Now we are ready to prove our Main Theorem.

PROOF of Main Theorem. Since an Einstein solution metric g is iso-
metric to a 3-sphere due to the result in the introduction of OBATA [9], it
suffices to show that z, =0 on M3 = My, UT'U Mg.

We first show that z; = 0 on each connected component I', of I' =
Uq Ta- It follows from Lemma 3 that there exists a solution function fq
of CPE such that df, € TT,. Since the right-hand side of (16) vanishes
for this f, in virtue of the assumption, we have

(22) |z =0 onT7.

Furthermore, if the set I'C, = T',, \ '}, is of measure zero, it is clear that
|z]2 = 0 on 'S by the continuity of |z|2. In the case that I'¢ is not
of measure zero, Lemma 4 gives that |z|? is constant on any connected
component of I'¢. Hence, by the continuity of |2|?, we also have |z|> = 0
on I'S even when I'¢ is not of measure zero. This proves that regardless
of the measure of I'S, we have z;, = 0 on I'y, = I'C, UTY, in virtue of (21).
Therefore, z; =0onI' = J, Ta.

In order to show that z, = 0 on all of M 3, we next prove that 24 =0
on both

Mo, ={z € M° | p(x) <0} and M= {xec M’ |p(zx)>0}.
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Let Mg, be a connected component of Mo, with OMg , = (JzI'g for
some {#} C {a}. Integration by parts gives

I,

4 ij ij
o= [ (Dot Eg) 27— [ (Dydg)ie
MO’M vJ M

N
/M6,¢

- /aMé~ 2(de Ne) = Z/ 2(dip, Ny) = 0

g /s

’
0,¢

div(z(dip, ) — / (d):(62)iF

/
Mg .,

where ¢ is the codifferential. Here, the fourth equality comes from the
Stokes theorem and the fact that

0zg =19 ('rg — %’g) =0ry+d (%g) =0ry = —%d(sg) =0.

Therefore z, = 0 on each connected component Mé,cp of My,,, since ¢ <0
on Mé,w‘ Thus z, = 0 on all of My ,. Applying the similar arguments to
M 2, we have z, = 0 on each connected component of M 2, and so on all of
Mg. Consequently, we may conclude that z, = 0 on M3 = My, , U FUMS,,
or equivalently that ¢ is Einstein.

Now that we have proved that z, = 0 on M?, the proof of our Main
Theorem is now completed. U
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