Publ. Math. Debrecen 60 / 3-4 (2002), 283–290

Some characterizations of π -solvable and supersolvable groups using θ -pairs

By T. K. DUTTA (Calcutta) and P. SEN (Calcutta)

Abstract. For a finite group G, $D_p(G)$ is a generalization of the Frattini subgroup of G. We obtain some results on π -solvable and supersolvable groups with the help of $D_p(G)$ using θ -pairs.

1. Introduction

In the process of developing various conditions characterizing solvable groups, some characteristic groups were defined as the generalization of Frattini subgroup $\phi(G)$ of G. Working in this context in [4] we have introduced a characteristic subgroup $D_p(G)$ and studied its influence on the solvable groups. In [5] N. P. MUKHERJEE and PRABIR BHATTACHARYA obtained some results characterizing supersolvable groups using the class of maximal subgroups M with composite index and $[G:M]_p = 1$ where p is a given prime. In the present paper we obtained a condition characterizing supersolvable groups with the help of θ -pairs introduced by MUKHERJEE and BHATTACHARYA in 1990. Here the maximal subgroups considered are of composite index and the normal index is coprime to p where p is a prime. The family of such maximal subgroups has already been considered in [4]. The paper also contains characterization of π -solvable groups with the help of θ -pairs for a maximal subgroup M in $\delta_p(G)$.

All groups considered here are finite and we have used standard notations as in GORENSTEIN (1968). The notation $M \ll G$ is used to denote that M is a maximal subgroup of G.

Mathematics Subject Classification: Primary 20D10, 20D25; Secondary 20F16. Key words and phrases: group, π -solvable group, supersolvable group.

T. K. Dutta and P. Sen

2. Preliminaries

Definition 2.1. Let M be a maximal subgroup of a group G, and Hand K two normal subgroups of G with $K \subset H$. The factor group H/Kis called a *chief factor* of G if there does not exist any normal subgroup Aof G such that $K \subset A \subset H$ with proper inclusion. H is called a *normal* supplement of M in G if MH = G. The normal index of M in G is defined as the order of a chief factor H/K where H is minimal in the set of normal supplements of M in G, and is denoted by $\eta(G : M)$. It is proved that $\eta(G:M)$ is uniquely determined by M (DESKINS 1959, 2.1) [3].

Definition 2.2. Let G be any group and p any prime. The characteristic subgroup L(G) and $D_p(G)$ are defined as follows:

$$L(G) = \bigcap \{ M : M \in \wedge(G) \}, \quad D_p(G) = \bigcap \{ M : M \in \delta_p(G) \}$$

where $\wedge(G) = \{M : M \leq G \text{ and } [G : M] \text{ is composite} \}$ and $\delta_p(G) = \{M : M \leq G \text{ and } [G : M] \text{ is composite and } \eta(G : M)_p = 1\}.$

In case $\wedge(G)$ or $\delta_p(G)$ is empty we set G = L(G) or $G = D_p(G)$ respectively.

Theorem 2.3 [2, Theorem 3]. L(G) is supersolvable.

Lemma 2.4 [1, Lemma 2]. If N is a normal subgroup of a group G and M is a maximal subgroup of G such that $N \subseteq M$ then $\eta(G/N : M/N) = \eta(G : M)$.

Definition 2.5 [6]. For a maximal subgroup M of a group G, let $\theta(M) = \{(C,D) : C \leq G, D \triangleleft G, D \subsetneq C, \langle M,C \rangle = G, \langle M,D \rangle = M$ and C/D contains properly no nontrivial normal subgroup of G/D.

Lemma 2.6 [6, Lemma 2.1]. If (C, D) is a maximal θ -pair in $\theta(M)$ and $N \triangleleft G$, $N \subset D$ then (C/N, D/N) is a maximal θ -pair in $\theta(M/N)$ and vice versa.

Definition 2.7. Let L be a non-empty subset of a group G, the core of L or normal interior of L in G denoted by L_G , is defined to be the join of all the normal subgroups of G that are contained in L, with the convention that $L_G = 1$ if there are no such subgroups. Again $H_G = \bigcap_{g \in G} g^{-1}Hg$ where H is a subgroup.

Lemma 2.8 [3, 2.5]. [G:M] divides $\eta(G:M)$.

Lemma 2.9 [4, Corollary 3.5]. Let N be a normal subgroup of G. If $N \subseteq D_p(G)$ then $D_p(G/N) = D_p(G)/N$.

Theorem 2.10 [4, Theorem 3.6]. If $|D_p(G)|_p = 1$ then G is supersolvable if and only if $G/D_p(G)$ is supersolvable.

Theorem 2.11 [4, Theorem 4.1]. Let p be a prime taken in the definition of $D_p(G)$. Then $D_p(G)$ is solvable if G is a p-solvable group.

Definition 2.12. A finite group G is called p-solvable if it has a subnormal series $1 = V_0 \subset V_1 \subset \cdots \subset V_n = G$ in which each factor group V_{i+1}/V_i , $i = 0, 1, \ldots, n-1$, is either a p-group or a p'-group.

Theorem 2.13 [7, Theorem 1]. If M is a maximal subgroup of a group G and M is normal in G then $\eta(G:M) = [G:M] = a$ prime.

3. Some conditions characterizing π -solvable groups

In the present article, we prove some results using θ -pairs in the case when M is a maximal subgroup of composite index such that $\eta(G:M)_p = 1$ where p is a given prime.

Theorem 3.1. Let G be a p-solvable group. G is π -solvable if and only if for each M in $\delta_p(G)$, every maximal θ -pair (C, D) in $\theta(M)$ is such that C/D is π -solvable.

PROOF. Let G be a counter example of minimal order satisfying the hypothesis of the theorem. If $\delta_p(G)$ is empty or G is simple then we can show that G is π -solvable, a contradiction. So $\delta_p(G) \neq \phi$ and G is not simple. Let N be a minimal normal subgroup of G. Since G is p-solvable then G/N is p-solvable. We can assume that $\delta_p(G/N)$ is non-empty. Let M/N be any maximal subgroup of G/N in $\delta_p(G/N)$ and (C/N, D/N)be a maximal θ -pair in $\theta(M/N)$. Then by Lemma 2.6, it follows that (C, D) is a maximal θ -pair in $\theta(M)$ where M is in $\delta_p(G)$. Then by the hypothesis C/D is π -solvable. Since C/N/D/N is isomorphic to C/D, it follows that C/N/D/N is π -solvable. Thus G/N satisfies the hypothesis of the theorem. Since |G/N| < |G|, G/N is π -solvable. If possible let N_1 be any other minimal normal subgroup of G. Then as above, it can be shown that G/N_1 is π -solvable. Again G, which is isomorphic to a subgroup of the π -solvable group $G/N \times G/N_1$, is π -solvable, a contradiction. So, we now assume that N is the unique minimal normal subgroup of G. Again as above it can be shown that G/N is π -solvable. Now if $N \subseteq D_p(G)$, then N is solvable and hence N is π -solvable. Consequently, G is π -solvable, a contradiction. We now assume that $N \not\subset D_p(G)$. Then there exists M in $\delta_p(G)$ such that $N \not\subset M$. So G = MN and $\operatorname{Core}_G M = \langle 1 \rangle$. We claim that $(N, \langle 1 \rangle)$ is a maximal θ -pair in $\theta(M)$. Now $(N, \langle 1 \rangle)$ is a θ -pair in $\theta(M)$ and if possible let (C, D) be a θ -pair such that $(N, \langle 1 \rangle) \subset (C, D)$. Then we must have $D = \langle 1 \rangle$. For, if not, let $D \neq \langle 1 \rangle$. Since M is core free $D \not\subset M$. So G = MD = M, a contradiction. Then we have $(N, \langle 1 \rangle) \subset (C, \langle 1 \rangle)$ which implies that $N/\langle 1 \rangle = N \subset C = C/\langle 1 \rangle$, again a contradiction as $C/\langle 1 \rangle$ cannot contain any non-trivial normal subgroup of $G/\langle 1 \rangle$. Hence $(N, \langle 1 \rangle)$ is a maximal θ -pair in $\theta(M)$. So by hypothesis $N = N/\langle 1 \rangle$ is π solvable. Also G/N is π -solvable. Hence G is π -solvable, a contradiction. All these contradictions prove the theorem.

The converse is obvious.

Theorem 3.2. Let G be a p-solvable group. G is π -solvable if and only if for each M in $\delta_p(G)$, there exists a normal maximal θ -pair (C, D) in $\theta(M)$ such that C/D is π -solvable.

PROOF. Let G satisfy the hypothesis of the theorem. If possible let G be a counter example of minimal order. It can be shown that $\delta_p(G)$ is non-empty, and G is not simple. Let N be a minimal normal subgroup of G. Then, we can assume that $\delta_p(G/N) \neq \phi$. Let $M/N \in \delta_p(G/N)$. Then $M \in \delta_p(G)$. By hypothesis there exists a normal maximal θ -pair (C, D) in $\theta(M)$ such that C/D is π -solvable. If $N \subseteq D$ then (C/N, D/N)is a normal maximal θ -pair in $\theta(M/N)$ and C/N/D/N is π -solvable. If $N \not\subset D$, we claim that $N \not\subset C$. If possible let $N \subseteq C$, then $D \subseteq DN \subseteq C$. Since C/D contains no proper non-trivial normal subgroup of G/D, either D = DN or, DN = C. If D = DN, then $N \subseteq DN = D$, a contradiction. So DN = C. Then $G = \langle M, C \rangle = \langle M, DN \rangle = M$, a contradiction. Hence $N \not\subset C$. Now since C/D is π -solvable, CN/DN is also π -solvable. Let K be a maximal proper normal subgroup of G contained in $CN \cap M$ and containing DN. We now claim that CN/K is not a minimal normal subgroup of G/K. For, if not then $(CN, K) \in \theta(M)$. Also $(C, D) \leq$ (CN, K). Since (C, D) is a maximal θ -pair we have C = CN. So $N \subseteq C$, a contradiction. Let H/K be a minimal normal subgroup of G/K such

that $H/K \subset CN/K$. We have $H \not\subset M$. So G = MH. Therefore (H, K)belongs to $\theta(M)$. Since $DN \subset K \subset H \subset CN$, so H/DN is a subgroup of the π -solvable group CN/DN. Therefore H/DN is π -solvable. Since H/K is an epimorphic image of the π -solvable group H/DN so H/K is π -solvable. Now if (H, K) is a maximal pair in $\theta(M)$ then (H/N, K/N)is a normal maximal pair in $\theta(M/N)$ and H/N/K/N is π -solvable. If (H, K) is not a maximal pair in $\theta(M)$ then let $(H, K) < (H_1, K_1)$ where (H_1, K_1) is a maximal pair in $\theta(M)$ and consequently $H \subset H_1$. Also $K_1 \subsetneq HK_1$. For if $K_1 = HK_1$, then $H \subseteq K_1 \subset M$ and $G = \langle M, H \rangle = M$, a contradiction. Now $HK_1 = H_1$. For if $HK_1 \neq H_1$ then $K_1 \subset HK_1 \subset H_1$ and $HK_1/K_1 \triangleleft G/K_1$ and $HK_1/K_1 \subset H_1/K_1$, a contradiction. Now, $K \subseteq$ K_1 , so either $K = K_1$ or $K \subset K_1$. If $K = K_1$ then $H_1 = HK_1 = HK = H$, a contradiction. Hence $K \subset K_1$. Again it can be shown that $H/H \cap K_1$ is an epimorphic image of π -solvable group H/K and hence is π -solvable. Since $H_1/K_1 = HK_1/K_1 \cong H/H \cap K_1$ we have H_1/K_1 π -solvable. Thus $(H_1/N, K_1/N)$ is a normal maximal pair in $\theta(M/N)$ by Lemma 2.6, and $H_1/N/K_1/N$ is π -solvable. So by minimality G/N is π -solvable. Now as in Theorem 3.1 we can assume that N is the unique minimal normal subgroup of G. Let $N \subseteq D_p(G)$. Thus N is solvable, so N is π -solvable. So G is π -solvable as G/N is π -solvable. We now suppose that $N \not\subset D_p(G)$. Then there exists a core-free maximal subgroup M in $\delta_p(G)$. By hypothesis, there exists a normal maximal θ -pair (C, D) in $\theta(M)$ such that C/D is π solvable. Since M is Core-free, $D = \langle 1 \rangle$ and consequently C is a minimal normal subgroup of G. By uniqueness of N, we get N = C. This implies that N is π -solvable, and hence G is π -solvable, a contradiction. All these contradictions prove the theorem.

The converse is obvious.

287

Theorem 3.3. Let G be a p-solvable group. G is π -solvable if and only if for any two distinct maximal subgroups M_1 and M_2 in $\delta_p(G)$, whenever $\theta(M_1)$ and $\theta(M_2)$ have a common maximal θ -pair (C, D), it follows that C/D is π -solvable.

PROOF. Let G be a counter example of minimal order satisfying the hypothesis of the theorem. We can assume that $\delta_p(G) \neq \phi$. Let $\delta_p(G)$ consists of a single element M. Then $D_p(G) = M$. So M is a normal subgroup of G. By Theorem 2.13, we have $\eta(G:M) = [G:M] = a$ prime, a contradiction as $M \in \delta_p(G)$. So we assume that $\delta_p(G)$ consists of at least two elements, M_1 and M_2 . We can assume that G is not simple. Let N be a minimal normal subgroup of G. As above we can show that $\delta_p(G/N)$ contains more than one element. Let $M_1/N, M_2/N \in \delta_p(G/N)$ and (C/N, D/N) be a common maximal θ -pair in $\theta(M_1/N)$ and $\theta(M_2/N)$. Then M_1 and M_2 are maximal subgroups of G and by Lemma 2.6 we have (C, D) a maximal θ -pair in $\theta(M_1)$ and $\theta(M_2)$. Thus (C, D) is a common maximal θ -pair in $\theta(M_1)$ and $\theta(M_2)$ and by hypothesis we have C/D is π -solvable. Then we have C/N/D/N is π -solvable. Since |G/N| < |G|, we have G/N is π -solvable. As in Theorem 3.1 it can be assumed that N is the unique minimal normal subgroup of G. Since G is p-solvable, by Definition 2.12, we have N is either a p-group or a p'-group. If N is a *p*-group, then it is solvable. This implies that N is π -solvable. Now let N be a p'-group i.e., $|N|_p = 1$. If $N \subseteq D_p(G)$ then N is solvable as $D_p(G)$ is solvable by 2.11. Consequently N is π -solvable. If $N \not\subset D_p(G)$, then there exists $M_1 \in \delta_p(G)$ such that $N \not\subset M_1$ and so $G = M_1 N$. Then $\eta(G: M_1) = |N|$. Since N is the unique minimal normal subgroup of G, core of M_1 in G is $\langle 1 \rangle$. If $N \subset L(G)$, then N is π -solvable. We now assume that $N \not\subset L(G)$. Then there exists M_2 in $\wedge(G)$ such that $N \not\subset M_2$. Then $G = M_2 N$ and $\operatorname{Core}_G M_2 = \langle 1 \rangle$. Also we have $\eta(G: M_2) = |N|$. So $\eta(G: M_2)_p = |N|_p = 1$. As $M_2 \in \wedge(G), [G: M_2]$ is composite. This shows that $M_2 \in \delta_p(G)$. Again as in Theorem 3.1 it can be verified that $(N, \langle 1 \rangle)$ is a common maximal θ -pair in $\theta(M_1)$ and $\theta(M_2)$. By hypothesis $N = N/\langle 1 \rangle$ is π -solvable. Consequently G is π -solvable, a contradiction. All these contradictions prove the theorem. Converse is obvious.

Theorem 3.4. Let G be a p-solvable group with a π -solvable maximal subgroup M. Then G is π -solvable if each maximal θ -pair (C, D) in $\theta(M)$ is such that $D_p(G/D) \neq \langle \overline{1} \rangle$, where $\overline{1}$ denotes the identity element of G/D.

PROOF. Let us consider that G satisfies the hypothesis of the theorem. We assume that G is not simple. Let $H = \operatorname{Core}_G M \neq \langle 1 \rangle$. Since M is a π -solvable maximal subgroup of G, we have M/H is also a π -solvable maximal subgroup of G/H. Let (C/H, D/H) be a maximal θ -pair in $\theta(M/H)$. Then by Lemma 2.6 it follows that (C, D) is a maximal θ -pair in $\theta(M)$. Then by hypothesis we have $D_p(G/D) \neq \langle \overline{1} \rangle$. Since $G/H/D/H \cong G/D$ we have $D_p(G/H/D/H) \neq \langle \overline{1} \rangle$. Thus G/Hsatisfies the hypothesis of the theorem, so by induction G/H is π -solvable. Again since $H \subseteq M$ and M is π -solvable, H is π -solvable. Hence G is

289

 π -solvable. Let us now suppose that $H = \operatorname{Core}_G M = \langle 1 \rangle$. Let N be a minimal normal subgroup of G. Then $N \not\subset M$ and G = MN. Since $G/N = MN/N \cong M/M \cap N$ and M is π -solvable, we get G/N is π solvable. We now assume that N is the unique minimal normal subgroup of G. As in Theorem 3.1, it can be verified that $(N, \langle 1 \rangle)$ is a maximal θ -pair in $\theta(M)$ and so by hypothesis we have $D_p(G) = D_p(G/\langle 1 \rangle) \neq \langle 1 \rangle$. Since $D_p(G)$ is a normal subgroup and N is the unique minimal normal subgroup of G, so, $N \subset D_p(G)$ and hence N is π -solvable. Thus G/N and N are π -solvable which implies that G is π -solvable. Hence the theorem.

4. A supersolvability condition

In [5] MUKHERJEE and BHATTACHARYA proved some supersolvability conditions for a group where the hypothesis is satisfied by only the maximal subgroups of composite indices. Here we examine a supersolvability condition where the hypothesis is satisfied by maximal subgroups of composite indices of even smaller class.

Theorem 4.1. Let G be a group with $|D_p(G)|_p = 1$. G is supersolvable if for every maximal subgroup M of $\delta_p(G)$, each θ -pair (C, D) in $\theta(M)$ is such that $D_p(G/D) \neq \langle \bar{1} \rangle$, where $\bar{1}$ denotes the identity element of G/D.

PROOF. Let $\delta_p(G)$ be empty. Then $G = D_p(G)$. We now claim that $\wedge(G)$ is also empty. If possible, let there exists M in $\wedge(G)$. Then [G:M]is composite. Also by hypothesis $|G|_p = |D_p(G)|_p = 1$. Since $\eta(G:M)$ divides |G|, then $\eta(G:M)_p = 1$. Hence M is in $\delta_p(G)$ which contradicts the fact that $\delta_p(G)$ is empty. Hence $\wedge(G)$ is empty and then by definition G = L(G). Since L(G) is supersolvable (by 2.3), G is supersolvable. We now assume that $\delta_p(G)$ has at least one element M. Then G cannot be simple. For, if G is simple, then for each M in $\delta_p(G)$, $(G, \langle 1 \rangle)$ is a θ -pair in $\theta(M)$ and by hypothesis we have $D_p(G/\langle 1 \rangle) \neq \langle \bar{1} \rangle$ i.e., $D_p(G) \neq \langle 1 \rangle$. Since G is simple, we get $G = D_p(G) \subseteq M$, a contradiction. So G is not simple. If $D_p(G) = \langle 1 \rangle$, then for any minimal normal subgroup N of G we have $N \not\subset D_p(G)$. This implies that there exists M in $\delta_p(G)$ such that $N \not\subset M$, so G = MN. It can be shown that $(N, \langle 1 \rangle)$ is a θ -pair in $\theta(M)$ and by hypothesis we have $D_p(G/\langle 1 \rangle) \neq \langle \overline{1} \rangle$ i.e., $D_p(G) \neq \langle 1 \rangle$, a contradiction. So $D_p(G) \neq \langle 1 \rangle$. Let N be a minimal normal subgroup of G such that $N \subseteq D_p(G).$

290 T. K. Dutta and P. Sen : Some characterizations of π -solvable ...

Then by Lemma 2.9, $|D_p(G/N)| = |D_p(G)/N| = \frac{|D_p(G)|}{|N|}$. Therefore, $|D_p(G)| = |D_p(G/N)| |N|$. Since $|D_p(G)|_p = 1$, therefore, $|D_p(G/N)|_p = 1$. Let (C/N, D/N) be a θ -pair in $\theta(M/N)$ where M/N is in $\delta_p(G/N)$. Then $M \in \delta_p(G)$. Also by Lemma 2.6 we have (C, D) is a θ -pair in $\theta(M)$. Then by hypothesis we have $D_p(G/D) \neq \langle \overline{1} \rangle$. So $D_p(G/N/D/N) \neq \langle \overline{1} \rangle$. Hence by induction we get G/N is supersolvable. Now an epimorphism $\phi: G/N \to G/D_p(G)$ can be defined as $\phi(gN) = gD_p(G) \quad \forall g \in G$. So $G/D_p(G)$ is an epimorphic image of the supersolvable group G/N. So $G/D_p(G)$ is supersolvable. Also $|D_p(G)|_p = 1$. So by Theorem 2.10 we have G is supersolvable. Hence the theorem.

References

- BEIDLEMAN and SPENCER, The normal index of maximal subgroups in a finite group, *Illinois*, J. Math. 16 (1972), 95–101.
- [2] P. BHATTACHARYA and N. P. MUKHERJEE, On the intersection of a class of maximal subgroups of a finite group, II, J. Pure Appl. Algebra 42 (1986), 117–124.
- [3] W. E. DESKINS, On maximal subgroups, Proc. Symp. Pure Math. Amer. Math. Soc. 1 (1959), 100–104.
- [4] T. K. DUTTA and P. SEN, Some characterizations of solvable groups using maximal θ-pairs, Bull. Cal. Math. Soc. 88 (1996), 295–302.
- [5] N. P. MUKHERJEE and PRABIR BHATTACHARYA, The normal index of a maximal subgroup of a finite group, Proc. Amer. Math. Soc. 106 no. 1 (May 1989), 25–32.
- [6] N. P. MUKHERJEE and P. BHATTACHARYA, On theta pairs for a maximal subgroup, *Proc. Amer. Math. Soc.* **109** (1990), 589–596.
- [7] N. P. MUKHERJEE, A note on normal index and maximal subgroups in finite groups, *Illinois J. Math.* 75 (1975), 173–178.

T. K. DUTTA DEPARTMENT OF PURE MATHEMATICS UNIVERSITY OF CALCUTTA 35, BALLYGUNGE CIRCULAR ROAD KOLKATA-700 019 INDIA

P. SEN 529, DUM DUM PARK KOLKATA-700 055 INDIA

(Received March 2, 1999; revised October 19, 2001)