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Paley–Wiener type theorems
for Chébli–Trimèche transforms

By J. J. BETANCOR (Tenerife), J. D. BETANCOR (Tenerife) and

J. M. R. MÉNDEZ (Tenerife)

Abstract. In this note we establish new Paley–Wiener type theorems for the
Chébli–Trimèche transform. We use exclusively real methods to prove our Paley–Wiener
theorems, in contrast with the complex procedures that appear in the literature.

1. Introduction

In this note we investigate new properties for the generalized Fourier
transformation (also called Chébli–Trimèche transformation) F defined,
when f is a suitable function defined on (0,∞), by

F(f)(y) =
∫ ∞

0

ψy(x)f(x)A(x)dx, y ≥ 0,

where, for every y ≥ 0, ψy represents the solution of the equation

(1.1) ∆ψy(x) = (y2 + ρ2)ψy(x), x > 0,

satisfying that

ψy(0) = 1 and
d

dx
ψy(0) = 0.

Here ρ ≥ 0, ∆ denotes the differential operator

(1.2) ∆ = − 1
A(x)

d

dx

(
A(x)

d

dx

)
,

Mathematics Subject Classification: 44A15.
Key words and phrases: Paley–Wiener, Chébli–Trimèche, integral transforms.
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and we suppose that the function A is continuous on [0,∞), twice contin-
uously differentiable on (0,∞) and fulfils the following conditions

(i) A(0) = 0 and A(x) > 0, x > 0,

(ii) A is increasing and unbounded on (0,∞),

(iii) There exist α > − 1
2 , δ > 0 and an odd C∞-function B on R such that

A′(x)
A(x)

=
2α + 1

x
+ B(x), x ∈ (0, δ).

Moreover there exist η and M > 0 and a smooth function C, whose deriva-
tives of any order are bounded on (0,∞), in such a way that

A′(x)
A(x)

=

{ 2ρ + e−ηxC(x), if ρ > 0
2α + 1

x
+ e−ηxC(x), if ρ = 0,

for every x ∈ (M,∞).

(iv) A′
A is a decreasing C∞-function on (0,∞). Hence there exists
limx→∞

A′(x)
A(x) ≥ 0.

In the sequel the positive real number ρ appearing in (1.1) is defined
by

ρ =
1
2

lim
x→∞

A′(x)
A(x)

,

when ∆ is given by (1.2).
In particular, the generalized Fourier transform F reduces to the Han-

kel transform ([8]) when A(x) = x2α+1, x ∈ [0,∞), and α > − 1
2 . Also, the

Jacobi transform ([6] and [9]), that can be interpreted in certain cases
as the spherical transform on noncompact symmetric spaces of rank one,
appears when A(x) = sinh2α+1 x cosh2β+1 x, x ∈ [0,∞), with α ≥ β ≥ − 1

2

and α 6= − 1
2 .

The inversion formula of the transformation F is given by [5]

f(x) =
∫ ∞

0

ψy(x)F(f)(y)
dy

|c(y)|2

where c(y) is a continuous function without zeros on [0,∞). The function
c(y) can be seen as a Harish–Chandra type function and we refer to [3]
and [4] for details.



Paley–Wiener type theorems for Chébli–Trimèche transforms 349

For the Chébli–Trimèche transform the following Plancherel formula
([12] and [2, Theorem 2.2.13]) holds

(1.3)
∫ ∞

0

|f(x)|2A(x)dx =
∫ ∞

0

|F(f)(y)|2 dy

|c(y)|2 ,

for every f ∈ L2((0,∞), A(x)dx). As usual, for every 1 ≤ p ≤ ∞, by
Lp((0,∞), dµ(x)) we represent the Lebesgue p-space on (0,∞) with respect
to the positive measure µ.

It is well-known that F maps L1((0,∞), A(x)dx) into the space C0

of the continuous functions on R vanishing in ∞. Hence, by (1.3), Riesz–
Thorin interpolation theorem implies that F can be extended as a bounded
operator from Lp((0,∞), A(x)dx) into Lp′((0,∞), dy

|c(y)|2 ), provided that
1 ≤ p ≤ 2, where p′ denotes the exponent conjugated to p.

As in [11, Section 6], for every a > 0, the space Da(R) is constituted
by all those even and C∞-functions φ on R such that φ(x) = 0, |x| ≥ a.
In [11, Théorème 7.2, (i)] it was proved that a function φ is in Da(R) if,
and only if, F(φ) is an even entire function and, for every m ∈ N,

sup
y∈C

(1 + |y|2)m|F(φ)(y)|e−a| Im y| < ∞.

Also the image by F of the (even) distributions of compact support was
characterized ([11, Théorème 7.2, (ii)]).

In Section 2 of this paper we obtain new versions of the Paley–Wiener
theorem for the Chébli–Trimèche transform. Our results, that extend other
ones proved by V. K. Tuam [14] for the Hankel transform, are established
by using real methods in contrast with the complex procedure followed
in [5] and [11].

Throughout this work by C we always represent a positive constant
not necessarily the same in each occurrence.

2. Paley–Wiener theorems for Chébli–Trimèche transform

H. Chébli [5] and K. Trimèche [11] established a Paley–Wiener the-
orem for the Chébli–Trimèche transform that extends the classical Paley–
Wiener theorem for the Fourier transform ([10]) and the Griffith’s theo-
rem for the Hankel transform ([7]). In this Section, inspired in the results
obtained by V. K. Tuam for the Hankel transform ([14]) and the Airy
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transform ([13]), we obtain new Paley–Wiener theorems for the Chébli–
Trimèche transform. We use a real procedure in contrast with the complex
method employed in [5] and [11].

W. Bloom and Z. Xu [3] studied the generalized Fourier transform
on Schwartz spaces. They introduced the space Sp((0,∞), A), for each
0 < p ≤ 2, as follows. A complex valued function φ defined on (0,∞) is
in Sp((0,∞), A) if, and only if, there exists an even function Φ ∈ C∞(R)
such that φ = Φ, on (0,∞), and

µp
n,m(φ) = sup

x∈(0,∞)

(1 + x2)mψ0(x)−2/p

∣∣∣∣
dn

dxn
φ(x)

∣∣∣∣ < ∞,

for every n,m ∈ N. The image by the Chébli–Trimèche transform of
Sp((0,∞), A) is characterized in [3, Proposition 4.26]. Note that if ρ = 0
then the space Sp((0,∞), A) is actually independent of p ∈ (0, 2]. More-
over, when ρ = 0 the space Sp((0,∞), A) coincides with the space Seven(R)
that is constituted by all those even functions in the Schwartz space S(R)
([12]). The topology of Seven(R) is defined by the family {µn,m}n,m∈N of
seminorms, where, for every n, m ∈ N,

µn,m(φ) = sup
x∈(0,∞)

(1 + x2)m

∣∣∣∣
dn

dxn
φ(x)

∣∣∣∣, φ ∈ Seven(R).

We now establish our first Paley–Wiener type result. Previously we
need to show a useful property concerning the topology of Seven(R).

Lemma 2.1. Let 1 ≤ q ≤ ∞ and ρ = 0. For every n,m ∈ N we define

the seminorm γq
n,m on Seven(R) by

γq
n,m(φ) = ‖(1 + x2)m∆nφ(x)‖Lq((0,∞),A(x)dx), φ ∈ Seven(R).

Then the family {γq
n,m}n,m∈N of seminorms generates the topology of

Seven(R).

Proof. The family of seminorms {γn,m}n,m∈N where, for every
n,m ∈ N,

γn,m(φ) = sup
x∈(0,∞)

∣∣∣∣
dn

dxn
((1 + x2)mφ(x))

∣∣∣∣, φ ∈ Seven(R),
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generates the topology of Seven(R) as well. Indeed, it is clear that the topol-
ogy defined by {µn,m}n,m∈N is finer than the one generated by {γn,m}n,m∈N.
Moreover, {µn,m}n,m∈N and {γn,m}n,m∈N define Fréchet topologies on
Seven(R). Hence, the open mapping theorem implies that {γn,m}n,m∈N
and {µn,m}n,m∈N generate the same topology of Seven(R).

By proceeding as in the proof of [3, Proposition 4.24] we can obtain,
for every n, m ∈ N, and φ ∈ Seven(R),

dn

dyn
(y2m(Fφ)(y)) =

∫ ∞

0

∆mφ(x)
dn

dyn
(ψy(x))A(x)dx, y ∈ (0,∞).

Let 1 ≤ q ≤ ∞. According to [3, Lemma 3.4, (iv), and (3.5)], and by
using Hölder’s inequality, it follows

sup
y∈(0,∞)

∣∣∣∣
dn

dyn

(
y2m(Fφ)(y)

)∣∣∣∣ ≤ C‖(1 + x2)l∆mφ(x)‖Lq((0,∞),A(x)dx),

φ ∈ Seven(R),

for certain C > 0 and l ∈ N, that are not depending on φ ∈ Seven(R).
Then, from [3, Theorem 4.27] one infers that the topology defined by

{γq
n,m}n,m∈N is finer than the topology associated to {µn,m}n,m∈N.

On the other hand, by [3, Lemma 4.18 and (3.5)], for every n, m ∈ N,
we get

‖(1 + x2)n∆mφ(x)‖Lq((0,∞),A(x)dx) ≤ C sup
x∈(0,∞)

(1 + x2)l|∆mφ(x)|

≤ C

2m∑

j=0

sup
x∈(0,∞)

(1 + x2)l

∣∣∣∣
dj

dxj
φ(x)

∣∣∣∣, φ ∈ Seven(R),

for certain C > 0 and l ∈ N independent of φ ∈ Seven(R). Hence
{µn,m}n,m∈N defines a topology finer than the one induced by {γq

n,m}n,m∈N.
¤

Proposition 2.2. Let 0 < p < 2, 1 ≤ q ≤ ∞ and φ ∈ Sp((0,∞), A).
Then there exists the following limit

σφ =: lim
k→∞

‖(∆− ρ2)kφ‖1/2k
Lq((0,∞),A(x)dx).
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Moreover, we have that

σφ = sup{|y| : y ∈ supp(Fφ)}, when φ 6= 0,

and

σφ = 0, when φ = 0.

In particular, the support of Fφ is contained in [−σ, σ] if, and only if,

σφ ≤ σ.

Proof. Denote by

wφ = sup{|y| : y ∈ supp(Fφ)}, when φ 6= 0,

and
wφ = 0, when φ = 0.

Suppose firstly that wφ = 0. Then φ = 0 and σφ = 0. Note that, by
virtue of [3, Theorem 4.27], if ρ > 0, then Fφ is a holomorphic function
in the strip {z ∈ C : | Im z| < ρ( 2

p − 1)}. Hence, if ρ > 0 and wφ < ∞ then
φ = 0 and wφ = σφ = 0.

Assume now that wφ > 0. For every k ∈ N, ∆kφ ∈ Sp((0,∞), A) and
by partial integration we obtain

(2.1) F((∆− ρ2)kφ)(y) = y2kF(φ)(y), y ∈ (0,∞).

We divide our proof in different cases.

(i) Let q = 2. From Plancherel’s formula for the Chébli–Trimèche
transformation ([12, Theorem II.4]) and (2.1), it follows that

‖(∆− ρ2)kφ‖2L2((0,∞),A(x)dx) = ‖F((∆− ρ2)kφ)‖2
L2

�
(0,∞),

dy
|c(y)|2

�
=

∫ ∞

0

y4k|F(φ)(y)|2 dy

|c(y)|2 , k ∈ N.

Assume that wφ = +∞. Then, for every k, N ∈ N, we find that
∫ ∞

0

y4k|F(φ)(y)|2 dy

|c(y)|2 ≥
∫ ∞

N

y4k|F(φ)(y)|2 dy

|c(y)|2

≥ N4k

∫ ∞

N

|F(φ)(y)|2 dy

|c(y)|2 .
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Hence,

‖(∆− ρ2)kφ‖1/k
L2((0,∞),A(x)dx) ≥ N2

{∫ ∞

N

|F(φ)(y)|2 dy

|c(y)|2
}1/2k

,

k, N ∈ N.

Since
∫∞

N
|F(φ)(y)|2 dy

|c(y)|2 > 0, for every N ∈ N, we conclude that

lim
k→∞

‖(∆− ρ2)kφ‖1/2k
L2((0,∞),A(x)dx) = +∞.

Suppose now that wφ ∈ (0,∞). Then ρ = 0. Moreover, if 0 < ε < wφ,
we have ∫ wφ

wφ−ε

|F(φ)(y)|2 dy

|c(y)|2 > 0.

Therefore, when 0 < ε < wφ, we are led to

‖∆kφ‖2L2((0,∞),A(x)dx) =
∫ ∞

0

y4k|F(φ)|2 dy

|c(y)|2

≥
∫ wφ

wφ−ε

y4k|F(φ)(y)|2 dy

|c(y)|2

≥ (wφ − ε)4k

∫ wφ

wφ−ε

|F(φ)(y)|2 dy

|c(y)|2 .

Then
lim inf
k→∞

‖∆kφ‖1/2k
L2((0,∞),A(x)dx) ≥ wφ − ε, 0 < ε < wφ.

Thus we conclude that

lim inf
k→∞

‖∆kφ‖1/2k
L2((0,∞),A(x)dx) ≥ wφ.

(ii) Let 2 ≤ q ≤ ∞. As it was mentioned in Section 1, the inverse of
the generalized Fourier transform is given by ([3, p. 91])

f(x) =
∫ ∞

0

ψy(x)F(f)(y)
dy

|c(y)|2 ,

when f is, for instance, in Sp((0,∞), A). We define the transformation
F−1 by

F−1(f)(x) =
∫ ∞

0

ψy(x)f(y)
dy

|c(y)|2 , f ∈ L1
(
(0,∞),

dy

|c(y)|2
)
.
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Since |ψy(x)| ≤ 1, x, y ≥ 0 ([3, Lemma 3.4, (i)]), F−1 is a contin-
uous mapping from L1((0,∞), dy

|c(y)|2 ) into L∞((0,∞), A(x)dx). More-
over Plancherel’s identity for the transformation F ([12]) says that F−1

is an isometry from L2((0,∞), dy
|c(y)|2 ) onto L2((0,∞), A(x)dx). Hence,

Riesz–Thorin interpolation theorem implies that F−1 can be extended
to Lr((0,∞), dy

|c(y)|2 ) as a continuous mapping from Lr((0,∞), dy
|c(y)|2 ) into

Lr′((0,∞), A(x)dx), for each 1 ≤ r ≤ 2. Here, r′ represents the conjugated
of r, that is, the equality 1

r + 1
r′ = 1 holds.

Our next objective will be to prove

lim sup
k→∞

‖(∆− ρ2)kφ‖1/2k
Lq((0,∞),A(x)dx) ≤ wφ.

Note that this inequality is clear when wφ = +∞. So we can assume that
wφ ∈ (0,∞). Hence ρ = 0.

Let k ∈ N. Since φ ∈ Sp((0,∞), A), ∆kφ is also in Sp((0,∞), A), and
consequently y2kF(φ)(y)=F(∆kφ)(y), y ∈ (0,∞), is in L1((0,∞), dy

|c(y)|2 ).
Then, it is inferred that

‖∆kφ‖Lq((0,∞),A(x)dx) = ‖F−1(y2kF(φ)(y))‖Lq((0,∞),A(x)dx)

≤ C‖y2kF(φ)(y)‖Lq′ ((0,∞), dy

|c(y)|2 )

≤ Cw2k
φ ‖F(φ)(y)‖Lq′ ((0,∞), dy

|c(y)|2 ).

Therefore, since ‖F(φ)‖Lq′ ((0,∞), dy

|c(y)|2 ) ∈ (0,∞),

lim sup
k→∞

‖∆kφ‖1/2k
Lq((0,∞),A(x)dx) ≤ wφ.

(iii) Let 1 ≤ q < 2. Suppose firstly that ρ = 0 and wφ ∈ (0,∞). Note
that, according to [3, (3.5)], there exist C > 0 and m ∈ N for which

0 ≤ A(x) ≤ C(1 + x2)m, x ≥ 0.

In this case the space Sp((0,∞), A) = Seven(R). Moreover, Seven(R) =
F(Seven(R)). Hence, according to Lemma 2.1, for every k ∈ N, there exist
C > 0 and β ∈ N for which

‖∆kφ‖Lq((0,∞),A(x)dx) ≤ C max
0≤s≤β

‖(1 + x2)β∆s(x2kF(φ))‖L2((0,∞),A(x)dx).
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According to the hypotheses imposed to the function A we have that

A′(x)
A(x)

=
2α + 1

x
+ B(x), x ∈ (0,∞),

where α > − 1
2 and B is in C∞(0,∞) and ds

dxs B is bounded on (0,∞), for
every s ∈ N. Hence the operator ∆ can be written

∆ = − d2

dx2
− 2α + 1

x

d

dx
−B(x)

d

dx
.

A straighforward manipulation allows us to obtain

max
0≤s≤β

‖(1 + x2)β∆s(x2kF(φ))‖L2((0,∞),A(x)dx) ≤ Cp(k)(1 + w2k
φ ),

where C is a positive constant that is not depending on k and p is a
polynomial.

Therefore we conclude that

(2.2) lim sup
k→∞

‖∆kφ‖1/2k
Lq((0,∞),A(x)dx) ≤ wφ.

On the other hand, if ρ ≥ 0 and wφ = ∞, then (2.2) is clear.
(iv) Let 1 ≤ q ≤ ∞. For every k ∈ N, partial integration and Hölder’s

inequality lead to
∫ ∞

0

|(∆− ρ2)kφ(x)|2A(x)dx =
∫ ∞

0

(∆− ρ2)kφ(x)(∆− ρ2)kφ(x)A(x)dx

=
∫ ∞

0

φ(x)(∆− ρ2)2k(φ(x))A(x)dx

≤ ‖φ‖Lq′ ((0,∞),A(x)dx)‖(∆− ρ2)2kφ(x)‖Lq((0,∞),A(x)dx).

Hence, by (i) and (ii) (case q = 2),

wφ = lim
k→∞

‖(∆− ρ2)kφ(x)‖1/2k
L2((0,∞),A(x)dx)(2.3)

≤ lim inf
k→∞

‖(∆− ρ2)2kφ(x)‖1/4k
Lq((0,∞),A(x)dx).

Also, for every k ∈ N, we have

‖(∆− ρ2)k+1φ(x)‖2L2((0,∞),A(x)dx)

≤ ‖(∆− ρ2)φ(x)‖Lq′ ((0,∞),A(x)dx)‖(∆− ρ2)2k+1φ(x)‖Lq((0,∞),A(x)dx).
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Note that (∆ − ρ2)φ 6= 0. Indeed, if (∆ − ρ2)φ = 0 then y2F(φ)(y) = 0,
y ∈ (0,∞). This implies that F(φ) = 0 and, therefore, φ = 0.

Hence, we can write

wφ = lim
k→∞

‖(∆− ρ2)k+1φ(x)‖1/2(k+1)
L2((0,∞),A(x)dx)(2.4)

= lim
k→∞

‖(∆− ρ2)k+1φ(x)‖1/2k+1
L2((0,∞),A(x)dx)

≤ lim inf
k→∞

‖(∆− ρ2)2k+1φ(x)‖1/2(2k+1)
Lq((0,∞),A(x)dx).

From (2.3) and (2.4) it follows

wφ ≤ lim inf
k→∞

‖(∆− ρ2)kφ(x)‖1/2k
Lq((0,∞),A(x)dx).

(v) Finally, by combining the above results we conclude always that

wφ = lim
k→∞

‖(∆− ρ2)kφ(x)‖1/2k
Lq((0,∞),A(x)dx).

Thus the proof is finished. ¤

By using the relation of the generalized Fourier transform F with the
classical Euclidean Fourier transform on R we can establish the following
result that can be seen as a version for the Chébli–Trimèche transform of
[13, Theorem 3] (see also [1, Theorem 1]).

Proposition 2.3. Assume that φ=F(Φ), where Φ∈D(R)=
⋃

a>0
Da(R).

Then, for every 1 ≤ q ≤ ∞, we have

lim
k→∞

∥∥∥∥
dk

dxk
φ

∥∥∥∥
1/k

Lq((0,∞),dx)

= σφ,

where σφ = sup{y ∈ (0,∞) : y ∈ suppΦ)}, when φ 6= 0, and σφ = 0, when

φ = 0.

Proof. According to [11, Proposition 7.1, (2)], [12, (III,3)] and [3,
Lemma 4.11] we can write

FΦ = F0(AΦ),
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where F0 is the classical Fourier transform on R and A represents the Abel
transformation defined, for every f ∈ D(R), by

A(f)(x) =
∫ ∞

x

f(y)K(y, x)A(y)dy, x ∈ (0,∞).

Here, for each y ∈ (0,∞), K(y, . ) is a nonnegative even continuous func-
tion that is supported in [−y, y], and such that the following representation
for the function ψy

ψy(x) =
∫ x

0

K(x, t) cos(yt)dt, x ∈ (0,∞) and y ∈ C,

holds ([12, Théorème 4.1], [12, (I.2)] and [3, p. 92]).
By [12, Theorem III.1, (iii)] and [3, Lemma 4.10], Φ ∈ Da(R), with

a > 0, if and only if AΦ ∈ Da(R).
Hence, according to [1, Theorem 1], we find that

σφ = lim
k→∞

∥∥∥∥
dk

dxk
φ

∥∥∥∥
1/k

Lq((0,∞),dx)

. ¤
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