Publ. Math. Debrecen
60 / 3-4 (2002), 347-358

Paley-Wiener type theorems for Chébli-Trimèche transforms

By J. J. BETANCOR (Tenerife), J. D. BETANCOR (Tenerife) and J. M. R. MÉNDEZ (Tenerife)

Abstract. In this note we establish new Paley-Wiener type theorems for the Chébli-Trimèche transform. We use exclusively real methods to prove our Paley-Wiener theorems, in contrast with the complex procedures that appear in the literature.

1. Introduction

In this note we investigate new properties for the generalized Fourier transformation (also called Chébli-Trimèche transformation) \mathcal{F} defined, when f is a suitable function defined on $(0, \infty)$, by

$$
\mathcal{F}(f)(y)=\int_{0}^{\infty} \psi_{y}(x) f(x) A(x) d x, \quad y \geq 0
$$

where, for every $y \geq 0, \psi_{y}$ represents the solution of the equation

$$
\begin{equation*}
\Delta \psi_{y}(x)=\left(y^{2}+\rho^{2}\right) \psi_{y}(x), \quad x>0, \tag{1.1}
\end{equation*}
$$

satisfying that

$$
\psi_{y}(0)=1 \quad \text { and } \quad \frac{d}{d x} \psi_{y}(0)=0
$$

Here $\rho \geq 0, \Delta$ denotes the differential operator

$$
\begin{equation*}
\Delta=-\frac{1}{A(x)} \frac{d}{d x}\left(A(x) \frac{d}{d x}\right), \tag{1.2}
\end{equation*}
$$

Mathematics Subject Classification: 44A15.
Key words and phrases: Paley-Wiener, Chébli-Trimèche, integral transforms.
The first and the second author were partially supported by DGICYT Grant PB 97-1489 (Spain).
and we suppose that the function A is continuous on $[0, \infty)$, twice continuously differentiable on $(0, \infty)$ and fulfils the following conditions
(i) $A(0)=0$ and $A(x)>0, x>0$,
(ii) A is increasing and unbounded on $(0, \infty)$,
(iii) There exist $\alpha>-\frac{1}{2}, \delta>0$ and an odd C^{∞}-function B on \mathbb{R} such that

$$
\frac{A^{\prime}(x)}{A(x)}=\frac{2 \alpha+1}{x}+B(x), \quad x \in(0, \delta) .
$$

Moreover there exist η and $M>0$ and a smooth function \mathcal{C}, whose derivatives of any order are bounded on $(0, \infty)$, in such a way that

$$
\frac{A^{\prime}(x)}{A(x)}= \begin{cases}2 \rho+e^{-\eta x} \mathcal{C}(x), & \text { if } \rho>0 \\ \frac{2 \alpha+1}{x}+e^{-\eta x} \mathcal{C}(x), & \text { if } \rho=0\end{cases}
$$

for every $x \in(M, \infty)$.
(iv) $\frac{A^{\prime}}{A}$ is a decreasing C^{∞}-function on $(0, \infty)$. Hence there exists
$\lim _{x \rightarrow \infty} \frac{A^{\prime}(x)}{A(x)} \geq 0$.
In the sequel the positive real number ρ appearing in (1.1) is defined by

$$
\rho=\frac{1}{2} \lim _{x \rightarrow \infty} \frac{A^{\prime}(x)}{A(x)},
$$

when Δ is given by (1.2).
In particular, the generalized Fourier transform \mathcal{F} reduces to the Hankel transform $([8])$ when $A(x)=x^{2 \alpha+1}, x \in[0, \infty)$, and $\alpha>-\frac{1}{2}$. Also, the Jacobi transform ([6] and [9]), that can be interpreted in certain cases as the spherical transform on noncompact symmetric spaces of rank one, appears when $A(x)=\sinh ^{2 \alpha+1} x \cosh ^{2 \beta+1} x, x \in[0, \infty)$, with $\alpha \geq \beta \geq-\frac{1}{2}$ and $\alpha \neq-\frac{1}{2}$.

The inversion formula of the transformation \mathcal{F} is given by [5]

$$
f(x)=\int_{0}^{\infty} \psi_{y}(x) \mathcal{F}(f)(y) \frac{d y}{|c(y)|^{2}}
$$

where $c(y)$ is a continuous function without zeros on $[0, \infty)$. The function $c(y)$ can be seen as a Harish-Chandra type function and we refer to [3] and [4] for details.

For the Chébli-Trimèche transform the following Plancherel formula ([12] and [2, Theorem 2.2.13]) holds

$$
\begin{equation*}
\int_{0}^{\infty}|f(x)|^{2} A(x) d x=\int_{0}^{\infty}|\mathcal{F}(f)(y)|^{2} \frac{d y}{|c(y)|^{2}} \tag{1.3}
\end{equation*}
$$

for every $f \in L^{2}((0, \infty), A(x) d x)$. As usual, for every $1 \leq p \leq \infty$, by $L^{p}((0, \infty), d \mu(x))$ we represent the Lebesgue p-space on $(0, \infty)$ with respect to the positive measure μ.

It is well-known that \mathcal{F} maps $L^{1}((0, \infty), A(x) d x)$ into the space \mathcal{C}_{0} of the continuous functions on \mathbb{R} vanishing in ∞. Hence, by (1.3), RieszThorin interpolation theorem implies that \mathcal{F} can be extended as a bounded operator from $L^{p}((0, \infty), A(x) d x)$ into $L^{p^{\prime}}\left((0, \infty), \frac{d y}{|c(y)|^{2}}\right)$, provided that $1 \leq p \leq 2$, where p^{\prime} denotes the exponent conjugated to p.

As in [11, Section 6], for every $a>0$, the space $\mathcal{D}_{a}(\mathbb{R})$ is constituted by all those even and C^{∞}-functions ϕ on \mathbb{R} such that $\phi(x)=0,|x| \geq a$. In [11, Théorème 7.2, (i)] it was proved that a function ϕ is in $\mathcal{D}_{a}(\mathbb{R})$ if, and only if, $\mathcal{F}(\phi)$ is an even entire function and, for every $m \in \mathbb{N}$,

$$
\sup _{y \in \mathbb{C}}\left(1+|y|^{2}\right)^{m}|\mathcal{F}(\phi)(y)| e^{-a|\operatorname{Im} y|}<\infty .
$$

Also the image by \mathcal{F} of the (even) distributions of compact support was characterized ([11, Théorème 7.2, (ii)]).

In Section 2 of this paper we obtain new versions of the Paley-Wiener theorem for the Chébli-Trimèche transform. Our results, that extend other ones proved by V. K. Tuam [14] for the Hankel transform, are established by using real methods in contrast with the complex procedure followed in [5] and [11].

Throughout this work by C we always represent a positive constant not necessarily the same in each occurrence.

2. Paley-Wiener theorems for Chébli-Trimèche transform

H. Chébli [5] and K. Trimèche [11] established a Paley-Wiener theorem for the Chébli-Trimèche transform that extends the classical PaleyWiener theorem for the Fourier transform ([10]) and the Griffith's theorem for the Hankel transform ([7]). In this Section, inspired in the results obtained by V. K. Tuam for the Hankel transform ([14]) and the Airy
transform ([13]), we obtain new Paley-Wiener theorems for the ChébliTrimèche transform. We use a real procedure in contrast with the complex method employed in [5] and [11].
W. Bloom and Z. Xu [3] studied the generalized Fourier transform on Schwartz spaces. They introduced the space $S_{p}((0, \infty), A)$, for each $0<p \leq 2$, as follows. A complex valued function ϕ defined on $(0, \infty)$ is in $S_{p}((0, \infty), A)$ if, and only if, there exists an even function $\Phi \in C^{\infty}(\mathbb{R})$ such that $\phi=\Phi$, on $(0, \infty)$, and

$$
\mu_{n, m}^{p}(\phi)=\sup _{x \in(0, \infty)}\left(1+x^{2}\right)^{m} \psi_{0}(x)^{-2 / p}\left|\frac{d^{n}}{d x^{n}} \phi(x)\right|<\infty,
$$

for every $n, m \in \mathbb{N}$. The image by the Chébli-Trimèche transform of $S_{p}((0, \infty), A)$ is characterized in [3, Proposition 4.26]. Note that if $\rho=0$ then the space $S_{p}((0, \infty), A)$ is actually independent of $p \in(0,2]$. Moreover, when $\rho=0$ the space $S_{p}((0, \infty), A)$ coincides with the space $S_{\text {even }}(\mathbb{R})$ that is constituted by all those even functions in the Schwartz space $S(\mathbb{R})$ ([12]). The topology of $S_{\text {even }}(\mathbb{R})$ is defined by the family $\left\{\mu_{n, m}\right\}_{n, m \in \mathbb{N}}$ of seminorms, where, for every $n, m \in \mathbb{N}$,

$$
\mu_{n, m}(\phi)=\sup _{x \in(0, \infty)}\left(1+x^{2}\right)^{m}\left|\frac{d^{n}}{d x^{n}} \phi(x)\right|, \quad \phi \in S_{\mathrm{even}}(\mathbb{R}) .
$$

We now establish our first Paley-Wiener type result. Previously we need to show a useful property concerning the topology of $S_{\text {even }}(\mathbb{R})$.

Lemma 2.1. Let $1 \leq q \leq \infty$ and $\rho=0$. For every $n, m \in \mathbb{N}$ we define the seminorm $\gamma_{n, m}^{q}$ on $S_{\text {even }}(\mathbb{R})$ by

$$
\gamma_{n, m}^{q}(\phi)=\left\|\left(1+x^{2}\right)^{m} \Delta^{n} \phi(x)\right\|_{L^{q}((0, \infty), A(x) d x)}, \quad \phi \in S_{\text {even }}(\mathbb{R}) .
$$

Then the family $\left\{\gamma_{n, m}^{q}\right\}_{n, m \in \mathbb{N}}$ of seminorms generates the topology of $S_{\text {even }}(\mathbb{R})$.

Proof. The family of seminorms $\left\{\gamma_{n, m}\right\}_{n, m \in \mathbb{N}}$ where, for every $n, m \in \mathbb{N}$,

$$
\gamma_{n, m}(\phi)=\sup _{x \in(0, \infty)}\left|\frac{d^{n}}{d x^{n}}\left(\left(1+x^{2}\right)^{m} \phi(x)\right)\right|, \quad \phi \in S_{\mathrm{even}}(\mathbb{R}),
$$

generates the topology of $S_{\text {even }}(\mathbb{R})$ as well. Indeed, it is clear that the topology defined by $\left\{\mu_{n, m}\right\}_{n, m \in \mathbb{N}}$ is finer than the one generated by $\left\{\gamma_{n, m}\right\}_{n, m \in \mathbb{N}}$. Moreover, $\left\{\mu_{n, m}\right\}_{n, m \in \mathbb{N}}$ and $\left\{\gamma_{n, m}\right\}_{n, m \in \mathbb{N}}$ define Fréchet topologies on $S_{\text {even }}(\mathbb{R})$. Hence, the open mapping theorem implies that $\left\{\gamma_{n, m}\right\}_{n, m \in \mathbb{N}}$ and $\left\{\mu_{n, m}\right\}_{n, m \in \mathbb{N}}$ generate the same topology of $S_{\text {even }}(\mathbb{R})$.

By proceeding as in the proof of [3, Proposition 4.24] we can obtain, for every $n, m \in \mathbb{N}$, and $\phi \in S_{\text {even }}(\mathbb{R})$,

$$
\frac{d^{n}}{d y^{n}}\left(y^{2 m}(\mathcal{F} \phi)(y)\right)=\int_{0}^{\infty} \Delta^{m} \phi(x) \frac{d^{n}}{d y^{n}}\left(\psi_{y}(x)\right) A(x) d x, \quad y \in(0, \infty) .
$$

Let $1 \leq q \leq \infty$. According to [3, Lemma 3.4, (iv), and (3.5)], and by using Hölder's inequality, it follows

$$
\begin{aligned}
\sup _{y \in(0, \infty)}\left|\frac{d^{n}}{d y^{n}}\left(y^{2 m}(\mathcal{F} \phi)(y)\right)\right| & \leq C\left\|\left(1+x^{2}\right)^{l} \Delta^{m} \phi(x)\right\|_{L^{q}((0, \infty), A(x) d x)}, \\
\phi & \in S_{\mathrm{even}}(\mathbb{R})
\end{aligned}
$$

for certain $C>0$ and $l \in \mathbb{N}$, that are not depending on $\phi \in S_{\text {even }}(\mathbb{R})$.
Then, from [3, Theorem 4.27] one infers that the topology defined by $\left\{\gamma_{n, m}^{q}\right\}_{n, m \in \mathbb{N}}$ is finer than the topology associated to $\left\{\mu_{n, m}\right\}_{n, m \in \mathbb{N}}$.

On the other hand, by [3, Lemma 4.18 and (3.5)], for every $n, m \in \mathbb{N}$, we get

$$
\begin{aligned}
& \left\|\left(1+x^{2}\right)^{n} \Delta^{m} \phi(x)\right\|_{L^{q}((0, \infty), A(x) d x)} \leq C \sup _{x \in(0, \infty)}\left(1+x^{2}\right)^{l}\left|\Delta^{m} \phi(x)\right| \\
& \quad \leq C \sum_{j=0}^{2 m} \sup _{x \in(0, \infty)}\left(1+x^{2}\right)^{l}\left|\frac{d^{j}}{d x^{j}} \phi(x)\right|, \quad \phi \in S_{\mathrm{even}}(\mathbb{R}),
\end{aligned}
$$

for certain $C>0$ and $l \in \mathbb{N}$ independent of $\phi \in S_{\text {even }}(\mathbb{R})$. Hence $\left\{\mu_{n, m}\right\}_{n, m \in \mathbb{N}}$ defines a topology finer than the one induced by $\left\{\gamma_{n, m}^{q}\right\}_{n, m \in \mathbb{N}}$.

Proposition 2.2. Let $0<p<2,1 \leq q \leq \infty$ and $\phi \in S_{p}((0, \infty), A)$. Then there exists the following limit

$$
\sigma_{\phi}=: \lim _{k \rightarrow \infty}\left\|\left(\Delta-\rho^{2}\right)^{k} \phi\right\|_{L^{q}((0, \infty), A(x) d x)}^{1 / 2 k} .
$$

Moreover, we have that

$$
\sigma_{\phi}=\sup \{|y|: y \in \operatorname{supp}(\mathcal{F} \phi)\}, \quad \text { when } \phi \neq 0,
$$

and

$$
\sigma_{\phi}=0, \quad \text { when } \phi=0 .
$$

In particular, the support of $\mathcal{F} \phi$ is contained in $[-\sigma, \sigma]$ if, and only if, $\sigma_{\phi} \leq \sigma$.

Proof. Denote by

$$
w_{\phi}=\sup \{|y|: y \in \operatorname{supp}(\mathcal{F} \phi)\}, \quad \text { when } \phi \neq 0,
$$

and

$$
w_{\phi}=0, \quad \text { when } \phi=0 .
$$

Suppose firstly that $w_{\phi}=0$. Then $\phi=0$ and $\sigma_{\phi}=0$. Note that, by virtue of [3, Theorem 4.27], if $\rho>0$, then $\mathcal{F} \phi$ is a holomorphic function in the strip $\left\{z \in \mathbb{C}:|\operatorname{Im} z|<\rho\left(\frac{2}{p}-1\right)\right\}$. Hence, if $\rho>0$ and $w_{\phi}<\infty$ then $\phi=0$ and $w_{\phi}=\sigma_{\phi}=0$.

Assume now that $w_{\phi}>0$. For every $k \in \mathbb{N}, \Delta^{k} \phi \in S_{p}((0, \infty), A)$ and by partial integration we obtain

$$
\begin{equation*}
\mathcal{F}\left(\left(\Delta-\rho^{2}\right)^{k} \phi\right)(y)=y^{2 k} \mathcal{F}(\phi)(y), \quad y \in(0, \infty) . \tag{2.1}
\end{equation*}
$$

We divide our proof in different cases.
(i) Let $q=2$. From Plancherel's formula for the Chébli-Trimèche transformation ([12, Theorem II.4]) and (2.1), it follows that

$$
\begin{aligned}
\left\|\left(\Delta-\rho^{2}\right)^{k} \phi\right\|_{L^{2}((0, \infty), A(x) d x)}^{2} & =\left\|\mathcal{F}\left(\left(\Delta-\rho^{2}\right)^{k} \phi\right)\right\|_{L^{2}\left((0, \infty), \frac{d y}{|c(y)|^{2}}\right)}^{2} \\
& =\int_{0}^{\infty} y^{4 k}|\mathcal{F}(\phi)(y)|^{2} \frac{d y}{|c(y)|^{2}}, \quad k \in \mathbb{N} .
\end{aligned}
$$

Assume that $w_{\phi}=+\infty$. Then, for every $k, N \in \mathbb{N}$, we find that

$$
\begin{aligned}
\int_{0}^{\infty} y^{4 k}|\mathcal{F}(\phi)(y)|^{2} \frac{d y}{|c(y)|^{2}} & \geq \int_{N}^{\infty} y^{4 k}|\mathcal{F}(\phi)(y)|^{2} \frac{d y}{|c(y)|^{2}} \\
& \geq N^{4 k} \int_{N}^{\infty}|\mathcal{F}(\phi)(y)|^{2} \frac{d y}{|c(y)|^{2}}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
&\left\|\left(\Delta-\rho^{2}\right)^{k} \phi\right\|_{L^{2}((0, \infty), A(x) d x)}^{1 / k} \geq N^{2}\left\{\int_{N}^{\infty}|\mathcal{F}(\phi)(y)|^{2} \frac{d y}{|c(y)|^{2}}\right\}^{1 / 2 k}, \\
& k, N \in \mathbb{N} .
\end{aligned}
$$

Since $\int_{N}^{\infty}|\mathcal{F}(\phi)(y)|^{2} \frac{d y}{|c(y)|^{2}}>0$, for every $N \in \mathbb{N}$, we conclude that

$$
\lim _{k \rightarrow \infty}\left\|\left(\Delta-\rho^{2}\right)^{k} \phi\right\|_{L^{2}((0, \infty), A(x) d x)}^{1 / 2 k}=+\infty .
$$

Suppose now that $w_{\phi} \in(0, \infty)$. Then $\rho=0$. Moreover, if $0<\varepsilon<w_{\phi}$, we have

$$
\int_{w_{\phi}-\varepsilon}^{w_{\phi}}|\mathcal{F}(\phi)(y)|^{2} \frac{d y}{|c(y)|^{2}}>0
$$

Therefore, when $0<\varepsilon<w_{\phi}$, we are led to

$$
\begin{aligned}
\left\|\Delta^{k} \phi\right\|_{L^{2}((0, \infty), A(x) d x)}^{2} & =\int_{0}^{\infty} y^{4 k}|\mathcal{F}(\phi)|^{2} \frac{d y}{|c(y)|^{2}} \\
& \geq \int_{w_{\phi}-\varepsilon}^{w_{\phi}} y^{4 k}|\mathcal{F}(\phi)(y)|^{2} \frac{d y}{|c(y)|^{2}} \\
& \geq\left(w_{\phi}-\varepsilon\right)^{4 k} \int_{w_{\phi}-\varepsilon}^{w_{\phi}}|\mathcal{F}(\phi)(y)|^{2} \frac{d y}{|c(y)|^{2}}
\end{aligned}
$$

Then

$$
\liminf _{k \rightarrow \infty}\left\|\Delta^{k} \phi\right\|_{L^{2}((0, \infty), A(x) d x)}^{1 / 2 k} \geq w_{\phi}-\varepsilon, \quad 0<\varepsilon<w_{\phi}
$$

Thus we conclude that

$$
\liminf _{k \rightarrow \infty}\left\|\Delta^{k} \phi\right\|_{L^{2}((0, \infty), A(x) d x)}^{1 / 2 k} \geq w_{\phi}
$$

(ii) Let $2 \leq q \leq \infty$. As it was mentioned in Section 1, the inverse of the generalized Fourier transform is given by ([3, p. 91])

$$
f(x)=\int_{0}^{\infty} \psi_{y}(x) \mathcal{F}(f)(y) \frac{d y}{|c(y)|^{2}}
$$

when f is, for instance, in $S_{p}((0, \infty), A)$. We define the transformation \mathcal{F}^{-1} by

$$
\mathcal{F}^{-1}(f)(x)=\int_{0}^{\infty} \psi_{y}(x) f(y) \frac{d y}{|c(y)|^{2}}, \quad f \in L^{1}\left((0, \infty), \frac{d y}{|c(y)|^{2}}\right) .
$$

Since $\left|\psi_{y}(x)\right| \leq 1, x, y \geq 0$ ([3, Lemma 3.4, (i) $\left.]\right), \mathcal{F}^{-1}$ is a continuous mapping from $L^{1}\left((0, \infty), \frac{d y}{|c(y)|^{2}}\right)$ into $L^{\infty}((0, \infty), A(x) d x)$. Moreover Plancherel's identity for the transformation $\mathcal{F}([12])$ says that \mathcal{F}^{-1} is an isometry from $L^{2}\left((0, \infty), \frac{d y}{|c(y)|^{2}}\right)$ onto $L^{2}((0, \infty), A(x) d x)$. Hence, Riesz-Thorin interpolation theorem implies that \mathcal{F}^{-1} can be extended to $L^{r}\left((0, \infty), \frac{d y}{|c(y)|^{2}}\right)$ as a continuous mapping from $L^{r}\left((0, \infty), \frac{d y}{|c(y)|^{2}}\right)$ into $L^{r^{\prime}}((0, \infty), A(x) d x)$, for each $1 \leq r \leq 2$. Here, r^{\prime} represents the conjugated of r, that is, the equality $\frac{1}{r}+\frac{1}{r^{\prime}}=1$ holds.

Our next objective will be to prove

$$
\limsup _{k \rightarrow \infty}\left\|\left(\Delta-\rho^{2}\right)^{k} \phi\right\|_{L^{q}((0, \infty), A(x) d x)}^{1 / 2 k} \leq w_{\phi} .
$$

Note that this inequality is clear when $w_{\phi}=+\infty$. So we can assume that $w_{\phi} \in(0, \infty)$. Hence $\rho=0$.

Let $k \in \mathbb{N}$. Since $\phi \in S_{p}((0, \infty), A), \Delta^{k} \phi$ is also in $S_{p}((0, \infty), A)$, and consequently $y^{2 k} \mathcal{F}(\phi)(y)=\mathcal{F}\left(\Delta^{k} \phi\right)(y), y \in(0, \infty)$, is in $L^{1}\left((0, \infty), \frac{d y}{|c(y)|^{2}}\right)$. Then, it is inferred that

$$
\begin{aligned}
\left\|\Delta^{k} \phi\right\|_{L^{q}((0, \infty), A(x) d x)} & =\left\|\mathcal{F}^{-1}\left(y^{2 k} \mathcal{F}(\phi)(y)\right)\right\|_{L^{q}((0, \infty), A(x) d x)} \\
& \leq C\left\|y^{2 k} \mathcal{F}(\phi)(y)\right\|_{L^{q^{\prime}}\left((0, \infty), \frac{d y}{|c(y)|^{2}}\right)} \\
& \leq C w_{\phi}^{2 k}\|\mathcal{F}(\phi)(y)\|_{L^{q^{\prime}}\left((0, \infty), \frac{d y}{|c(y)|^{2}}\right.} .
\end{aligned}
$$

Therefore, since $\|\mathcal{F}(\phi)\|_{L^{q^{\prime}}\left((0, \infty), \frac{d y}{|c(y)|^{2}}\right)} \in(0, \infty)$,

$$
\limsup _{k \rightarrow \infty}\left\|\Delta^{k} \phi\right\|_{L^{q}((0, \infty), A(x) d x)}^{1 / 2 k} \leq w_{\phi} .
$$

(iii) Let $1 \leq q<2$. Suppose firstly that $\rho=0$ and $w_{\phi} \in(0, \infty)$. Note that, according to [3, (3.5)], there exist $C>0$ and $m \in \mathbb{N}$ for which

$$
0 \leq A(x) \leq C\left(1+x^{2}\right)^{m}, \quad x \geq 0
$$

In this case the space $S_{p}((0, \infty), A)=S_{\text {even }}(\mathbb{R})$. Moreover, $S_{\text {even }}(\mathbb{R})=$ $\mathcal{F}\left(S_{\text {even }}(\mathbb{R})\right)$. Hence, according to Lemma 2.1, for every $k \in \mathbb{N}$, there exist $C>0$ and $\beta \in \mathbb{N}$ for which

$$
\left\|\Delta^{k} \phi\right\|_{L^{q}((0, \infty), A(x) d x)} \leq C \max _{0 \leq s \leq \beta}\left\|\left(1+x^{2}\right)^{\beta} \Delta^{s}\left(x^{2 k} \mathcal{F}(\phi)\right)\right\|_{L^{2}((0, \infty), A(x) d x)}
$$

According to the hypotheses imposed to the function A we have that

$$
\frac{A^{\prime}(x)}{A(x)}=\frac{2 \alpha+1}{x}+B(x), \quad x \in(0, \infty),
$$

where $\alpha>-\frac{1}{2}$ and B is in $C^{\infty}(0, \infty)$ and $\frac{d^{s}}{d x^{s}} B$ is bounded on $(0, \infty)$, for every $s \in \mathbb{N}$. Hence the operator Δ can be written

$$
\Delta=-\frac{d^{2}}{d x^{2}}-\frac{2 \alpha+1}{x} \frac{d}{d x}-B(x) \frac{d}{d x} .
$$

A straighforward manipulation allows us to obtain

$$
\max _{0 \leq s \leq \beta}\left\|\left(1+x^{2}\right)^{\beta} \Delta^{s}\left(x^{2 k} \mathcal{F}(\phi)\right)\right\|_{L^{2}((0, \infty), A(x) d x)} \leq C \boldsymbol{p}(k)\left(1+w_{\phi}^{2 k}\right)
$$

where C is a positive constant that is not depending on k and \boldsymbol{p} is a polynomial.

Therefore we conclude that

$$
\begin{equation*}
\limsup _{k \rightarrow \infty}\left\|\Delta^{k} \phi\right\|_{L^{q}((0, \infty), A(x) d x)}^{1 / 2 k} \leq w_{\phi} . \tag{2.2}
\end{equation*}
$$

On the other hand, if $\rho \geq 0$ and $w_{\phi}=\infty$, then (2.2) is clear.
(iv) Let $1 \leq q \leq \infty$. For every $k \in \mathbb{N}$, partial integration and Hölder's inequality lead to

$$
\begin{aligned}
\int_{0}^{\infty} & \left|\left(\Delta-\rho^{2}\right)^{k} \phi(x)\right|^{2} A(x) d x=\int_{0}^{\infty}\left(\Delta-\rho^{2}\right)^{k} \phi(x) \overline{\left(\Delta-\rho^{2}\right)^{k} \phi(x)} A(x) d x \\
& =\int_{0}^{\infty} \overline{\phi(x)}\left(\Delta-\rho^{2}\right)^{2 k}(\phi(x)) A(x) d x \\
& \leq\|\phi\|_{L^{q^{\prime}}((0, \infty), A(x) d x)}\left\|\left(\Delta-\rho^{2}\right)^{2 k} \phi(x)\right\|_{L^{q}((0, \infty), A(x) d x)} .
\end{aligned}
$$

Hence, by (i) and (ii) (case $q=2$),

$$
\begin{align*}
w_{\phi} & =\lim _{k \rightarrow \infty}\left\|\left(\Delta-\rho^{2}\right)^{k} \phi(x)\right\|_{L^{2}((0, \infty), A(x) d x)}^{1 / 2 k} \tag{2.3}\\
& \leq \liminf _{k \rightarrow \infty}\left\|\left(\Delta-\rho^{2}\right)^{2 k} \phi(x)\right\|_{L^{q}((0, \infty), A(x) d x)}^{1 / 4 k} .
\end{align*}
$$

Also, for every $k \in \mathbb{N}$, we have

$$
\begin{gathered}
\left\|\left(\Delta-\rho^{2}\right)^{k+1} \phi(x)\right\|_{L^{2}((0, \infty), A(x) d x)}^{2} \\
\leq\left\|\left(\Delta-\rho^{2}\right) \phi(x)\right\|_{L^{q^{\prime}}((0, \infty), A(x) d x)}\left\|\left(\Delta-\rho^{2}\right)^{2 k+1} \phi(x)\right\|_{L^{q}((0, \infty), A(x) d x)} .
\end{gathered}
$$

Note that $\left(\Delta-\rho^{2}\right) \phi \neq 0$. Indeed, if $\left(\Delta-\rho^{2}\right) \phi=0$ then $y^{2} \mathcal{F}(\phi)(y)=0$, $y \in(0, \infty)$. This implies that $\mathcal{F}(\phi)=0$ and, therefore, $\phi=0$.

Hence, we can write

$$
\begin{align*}
w_{\phi} & =\lim _{k \rightarrow \infty}\left\|\left(\Delta-\rho^{2}\right)^{k+1} \phi(x)\right\|_{L^{2}((0, \infty), A(x) d x)}^{1 / 2(k+1)} \tag{2.4}\\
& =\lim _{k \rightarrow \infty}\left\|\left(\Delta-\rho^{2}\right)^{k+1} \phi(x)\right\|_{L^{2}((0, \infty), A(x) d x)}^{1 / 2 k+1} \\
& \leq \liminf _{k \rightarrow \infty}\left\|\left(\Delta-\rho^{2}\right)^{2 k+1} \phi(x)\right\|_{L^{q}((0, \infty), A(x) d x)}^{1 / 2(2 k+1)} .
\end{align*}
$$

From (2.3) and (2.4) it follows

$$
w_{\phi} \leq \liminf _{k \rightarrow \infty}\left\|\left(\Delta-\rho^{2}\right)^{k} \phi(x)\right\|_{L^{q}((0, \infty), A(x) d x)}^{1 / 2 k} .
$$

(v) Finally, by combining the above results we conclude always that

$$
w_{\phi}=\lim _{k \rightarrow \infty}\left\|\left(\Delta-\rho^{2}\right)^{k} \phi(x)\right\|_{L^{q}((0, \infty), A(x) d x)}^{1 / 2 k} .
$$

Thus the proof is finished.
By using the relation of the generalized Fourier transform \mathcal{F} with the classical Euclidean Fourier transform on \mathbb{R} we can establish the following result that can be seen as a version for the Chébli-Trimèche transform of [13, Theorem 3] (see also [1, Theorem 1]).

Proposition 2.3. Assume that $\phi=\mathcal{F}(\Phi)$, where $\Phi \in \mathcal{D}(\mathbb{R})=\bigcup_{a>0} \mathcal{D}_{a}(\mathbb{R})$. Then, for every $1 \leq q \leq \infty$, we have

$$
\lim _{k \rightarrow \infty}\left\|\frac{d^{k}}{d x^{k}} \phi\right\|_{L^{q}((0, \infty), d x)}^{1 / k}=\sigma_{\phi},
$$

where $\left.\sigma_{\phi}=\sup \{y \in(0, \infty): y \in \operatorname{supp} \Phi)\right\}$, when $\phi \neq 0$, and $\sigma_{\phi}=0$, when $\phi=0$.

Proof. According to [11, Proposition 7.1, (2)], [12, (III,3)] and [3, Lemma 4.11] we can write

$$
\mathcal{F} \Phi=\mathcal{F}_{0}(\mathbb{A} \Phi),
$$

where \mathcal{F}_{0} is the classical Fourier transform on \mathbb{R} and \mathbb{A} represents the Abel transformation defined, for every $f \in \mathcal{D}(\mathbb{R})$, by

$$
\mathbb{A}(f)(x)=\int_{x}^{\infty} f(y) K(y, x) A(y) d y, \quad x \in(0, \infty)
$$

Here, for each $y \in(0, \infty), K(y,$.$) is a nonnegative even continuous func-$ tion that is supported in $[-y, y]$, and such that the following representation for the function ψ_{y}

$$
\psi_{y}(x)=\int_{0}^{x} K(x, t) \cos (y t) d t, \quad x \in(0, \infty) \text { and } y \in \mathbb{C}
$$

holds ([12, Théorème 4.1], [12, (I.2)] and [3, p. 92]).
By [12, Theorem III.1, (iii)] and [3, Lemma 4.10], $\Phi \in \mathcal{D}_{a}(\mathbb{R})$, with $a>0$, if and only if $\mathbb{A} \Phi \in \mathcal{D}_{a}(\mathbb{R})$.

Hence, according to [1, Theorem 1], we find that

$$
\sigma_{\phi}=\lim _{k \rightarrow \infty}\left\|\frac{d^{k}}{d x^{k}} \phi\right\|_{L^{q}((0, \infty), d x)}^{1 / k} .
$$

References

[1] H. H. Bang, A property of infinitely differentiable functions, Proc. Amer. Math. Soc. 108 (1) (1990), 73-76.
[2] W. Bloom and H. Heyer, Harmonic analysis of probability measures on hypergroups, Walter de Gruyter, Berlin-New York, 1995.
[3] W. Bloom and Z. Xu, Fourier transforms of Schwartz functions on Chébli-Trimèche hypergroups, Mh. Math. 125 (1998), 89-109.
[4] O. Bracco, Propriétés de la mesure spectrale pour une classe d'opérateurs différentiels singuliers sur $[0, \infty)$, C.R. Acad. Sci. Paris 329 Série I (1999), 299-302.
[5] H. Chébli, Sur un théorème de Paley-Wiener associé à la decomposition spectrale d'un opérateur de Sturm-Liouville sur (0, ∞), J. Func. Analysis 17 (1974), 447-461.
[6] M. Flensted-Jensen, Paley-Wiener type theorems for a differential operator connected with symmetric spaces, Ark. Math. 10 (1972), 143-162.
[7] J. L. Griffith, Hankel transforms of functions zero outside a finite interval, J. Proc. Roy. Soc. New S. Wales 86 (1955), 109-115.
[8] C. Herz, On the mean inversion of Fourier and Hankel transforms, Proc. Nat. Acad. Sci. USA 40 (1954), 996-999.
[9] T. Koornwinder, A new proof of a Paley-Wiener type theorem for Jacobi transform, Ark. Math. 13 (1) (1975), 145-159.
[10] R. E. A. C. Paley and N. Wiener, Fourier transforms in the complex domain, Amer. Math. Soc. Colloquium Publ., 19, 1934.
[11] K. Trimèche, Transformation integrale de Weyl et théorème de Paley-Wiener associés à un opérateur differentiel singulier sur $(0, \infty)$, J. Math. Pures Appl. (9) 60 (1981), 51-98.
[12] K. Trimèche, Inversion of the Lions transmutation operators using generalized wavelets, Appl. Comput. Harmon. Anal. 4 (1) (1997), 97-112.
[13] V. K. Tuam, Airy integral transform and Paley-Wiener theorem, Transform methods \& special functions, Proceedings, Varna'96, 1996, 23-30.
[14] V. K. Tuam, On the range of Hankel and extended Hankel transforms, J. Math. Anal. Appl. 209 (1997), 460-478.

```
J. J. BETANCOR
DEPARTAMENTO DE ANÁLISIS MATEMÁTICO
UNIVERSIDAD DE LA LAGUNA
38271 - LA LAGUNA, TENERIFE, ISLAS CANARIAS
ESPANNA
E-mail: jbetanco@ull.es
J. D. BETANCOR
DEPARTAMENTO DE ANÁLISIS MATEMÁTICO
UNIVERSIDAD DE LA LAGUNA
38271 - LA LAGUNA, TENERIFE, ISLAS CANARIAS
ESPAÑA
J. M. R. MÉNDEZ
DEPARTAMENTO DE ANÁLISIS MATEMÁTICO
UNIVERSIDAD DE LA LAGUNA
38271 - LA LAGUNA, TENERIFE, ISLAS CANARIAS
ESPAÑA
```

(Received April 30, 2001; revised October 10, 2001)

