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Three theorems connected
with δ-quasi monotone sequences and their application

to an integrability theorem

By L. LEINDLER (Szeged)

Abstract. Three theorems of R. P. Boas Jr. and one of Č. V. Stanojevič and
V. B. Stanojevič are generalized. All of the theorems utilize the benifit of the δ-quasi
monotone sequences, comparing them to the monotone or quasi-monotone sequences.

1. Introduction

In [1] R. P. Boas, Jr. defined the notions of δ-quasi-monotonic and δ-
quasi-positive sequences and showed that they are as useful as the conven-
tional ones for one kind of theorem about trigonometric series. Later sev-
eral authors have used these definitions and the relevant theorems proved
by Boas in [1] at different other topics.

In the present paper we are going to generalize three theorems of
Boas [1] and to exhibit here only one application of our results, but we are
convinced that our generalizations will be applicable at several subjects,
e.g. at summability theory.

As an application we shall generalize an interesting integrability the-
orem Č. V. Stanojevič and V. B. Stanojevič [5] which itself is an
extension of the well-known Sidon–Telyakovskii theorem [4], [6].

A sequence {an} is called δ-quasi-monotonic if an → 0, an > 0 ul-
timately, and ∆an ≥ −δn. Here {δn} is a sequence of positive numbers
whose properties will be selected appropriately in different contexts.
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A sequence {an} is called δ-quasi-positive if it is the sequence of dif-
ferences of a δ-quasi-monotonic sequence {An}.

K and Ki will denote positive constants, not necessarily the same at
each occurrence. Furthermore, sums without limits are over 1 ≤ n < ∞.

If βn ≥ 0 and a sequence {dn} are δ-quasi – monotonic or quasi –
positive then the convergence of

∑
βndn will be denoted by

∑
βndn < ∞.

Now we recall the theorems of Boas to be generalized here.

Theorem A. If {an} is δ-quasi-monotonic with
∑

nγδn < ∞ then∑
nγ−1an < ∞ implies that nγan → 0 (γ 6= 0); if γ = 0, and

∑
δn log n <

∞, the conclusion is that an log n → 0.

Theorem B. If {an} is δ-quasi-monotonic with
∑

nγδn < ∞ (γ ≥ 0),
and

∑
nγ−1an < ∞, then

∑
nγ |∆an| < ∞ (γ > 0),

∑ |∆an| log n < ∞
(γ = 0).

Theorem C. If {an} is δ-quasi-positive with
∑

nγδn < ∞ (γ ≥ 0),
and

∑
nγan < ∞, then

∑
nγ |an| < ∞.

Remark. It seems to me that the statement of Theorem B in the spe-
cial case γ = 0 requires some additional conditions. Namely the sequence

an :=
{ 2/n log2 n, if n = 2k,

1/n log2 n, if n = 2k + 1,

is δ-quasi-monotonic with
∑

δn < ∞ if

δn := 4/n log2 n,

furthermore
∑

an/n clearly converges, but
∑ |∆an| log n = ∞.

Our Theorem 2 will show that a sufficient additional condition is∑
δn log n < ∞.

2. Theorems

Our theorems read as follows.

Theorem 1. Let {αn} be a positive sequence with the property

(2.1) |∆αn| = O
(αn

n

)
.
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If {an} is δ-quasi-monotonic with

∑
nαnδn < ∞,(2.2)

then
∑

αnan < ∞(2.3)

implies that

nαnan → 0.(2.4)

If we assume that αn = γn

n , where {γn} is an increasing sequence of positive

numbers satisfying the condition

(2.5) γn = O(nρn|∆γn|)

with a certain increasing sequence {ρn} of positive numbers, for which

(2.6)
∑

1/nρn = ∞,

then with the condition

(2.7)
∑

(γn+1 − γn)an < ∞

in place of (2.3), we also have the conclusion (2.4).

Remark. By (2.1) we always have γn+1 − γn = O(αn), but at several
case γn+1 − γn = o(αn) also holds, that is, (2.7) claims less than (2.3), in
general.

It is easy to see that if αn = nγ−1, γ 6= 0, then Theorem 1 reduces
to the first part of Theorem A; and its second part with ρn = γn = log n

includes the special case γ = 0 of Theorem A.

Theorem 2. Let {λn} be a positive sequence with the property

(2.8) |∆λn| = O

(
λn

n

)
.
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If {an} is δ-quasi-monotonic with

∑
nλnδn < ∞,(2.9)

then
∑

λnan < ∞(2.10)

implies that
∑

nλn|∆an| < ∞.(2.11)

If {λn} is decreasing and there exists a sequence {ρn} satisfying (2.6)
for which

(2.12)
n∑

i=1

λi = O(ρnnλn),

also holds, then with

(2.13)
∑ (

n∑

i=1

λi

)
δn < ∞

in place of (2.9),

(2.14)
∑ (

n∑

i=1

λi

)
|∆an| < ∞

also maintains.

In the case λn = nγ−1, γ > 0, Theorem 2 withholds Theorem B, and
if γ = 0 then its corrected version.

Theorem 3. If {an} is δ-quasi positive with (2.2) and

(2.15)
∑

nαnan < ∞

then

(2.16)
∑

nαn|an| < ∞.

It is clear that Theorem 3 with αn = nγ−1, γ ≥ 0 reduces to Theo-
rem C.
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3. Proofs

Proof of Theorem 1. Our proof follows similar lines as that of Boas.
Suppose that 0 < m < n. If we add the inequalities

nαn∆an−1 ≥ −nαnδn−1, (n− 1)αn−1∆an−2 ≥ −(n− 1)αn−1δn−2,

. . . , (m + 1)αm+1∆am ≥ −(m + 1)αm+1δm,

we achieve

−nαnan +
n−1∑

k=m+1

ak((k + 1)αk+1 − kαk) + (m + 1)αm+1δm

≥ −
n−1∑

k=m

(k + 1)αk+1δk.

By (2.1)

|(k + 1)αk+1 − kαk| = |k(αk − αk+1)− αk+1| ≤ Kαk,

this, (2.2) and (2.3) imply that

(3.1) nαnan −mαmam ≤ o(1) (m,n →∞).

We cannot have lim inf nαnan > 0, since this leads to a contraction of (2.3).
Next we show that

(3.2) lim sup nαnan = 0

also holds. Namely (2.3) implies that there exists for each positive ε an
infinite sequence of indices m for which

(3.3) mαmam < ε.

Now suppose that lim sup nαnan > 0. Then there exists an infinite se-
quence of indices n such that

(3.4) nαnan > 3ε.

For each m satisfying (3.3) take a large n, n > m, satisfying (3.4) we get
a contradiction of (3.1).
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This proves (3.2), and herewith (2.4) as well.
To prove the special case αn = γn/n we have only to observe that

then
(k + 1)αk+1 − kαk = γk+1 − γk,

and then (2.2) and (2.7) (instead of (2.3)) imply (3.1). Hence the proof
follows the same lines as above with (2.7) in place of (2.3), naturally we
have to utilize the hypotheses (2.5) and (2.6) assumed on {ρn} and {γn}.

The proof is complete. ¤

Proof of Theorem 2. By partial summation we have

n∑

k=1

λkak =
n−1∑

k=1

k∆(λkak) + nλnan.

Theorem 1 with αn = λn implies that nλnan → 0, thus, by (2.10),

(3.5)
∑

λkak =
∑

k∆(λkak) < ∞.

Since

(3.6) k∆(λkak) = kλk∆ak + kak+1∆λk,

furthermore, by (2.8) and (2.10),
∑

kak+1|∆λk| < ∞,

thus (3.5) and (3.6) imply that

(3.7)
∑

kλk∆ak < ∞.

Finally, by (2.9) and (3.7), we get that
∑

kλk|∆ak| =
∑

kλk|∆ak + δk − δk|

≤
∑

kλk(∆ak + δk) +
∑

kλkδk(3.8)

≤
∑

kλk∆ak + 2
∑

kλkδk < ∞,

and this proves (2.11).
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To prove (2.14) we have only to observe that

(3.9)
n∑

k=1

λkak =
n−1∑

k=1

(∆ak)
k∑

i=1

λi + an

n∑

i=1

λi.

Now put γ1 = λ1/2, γn =
∑n−1

i=1 λi, n ≥ 2 and αn = γn/n. Then, by
(2.13) and (2.10), the conditions (2.2) and (2.7) of Theorem 1 hold, thus
the result of Theorem 1 conveys that

(3.10)

(
n∑

i=1

λi

)
an = o(1).

Considering the hypotheses (2.8), the relations (3.9) and (3.10) imply that
∑

γn∆an < ∞.

With this in place of (3.7), the argument used in (3.8) presents the state-
ment (2.14).

We have completed the proof. ¤

Proof of Theorem 3. Since {an} is δ-quasi-positive, thus

An −An+1 = an ≥ −δn

holds. Hence it clearly follows that

|an| = |an + δn − δn| ≤ |an + δn|+ |δn| = an + 2δn.

Thus (2.2) and (2.15) plainly imply (2.16); and this completes the proof.
¤

We remark that our proof is essentially shorter than that of Theo-
rem C.

4. Application

As we have written in the Introduction, as an application of our theo-
rems we shall generalize an interesting integrability theorem of Č. V. Sta-

nojevič and V. B. Stanojevič [5]. We observe again that their following
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theorem is an extension of the well-known Sidon–Telyakovskii theo-
rem [4], [6].

First we recall some definitions and notations.
A complex null sequence {cn} satisfying

∑ |∆(cn − c−n)| log n < ∞
is called weakly even.

The partial sums of the complex trigonometric series
∑∞

n=−∞ cneint

will be denoted by Sn(c) = Sn(c, t) =
∑n

k=−n ckeikt, t ∈ T . If a trigono-
metric series is the Fourier series of some f ∈ L1(T ), then the notations
cn = f̂n and Sn(c, t) = Sn(f, t) will be used.

A weakly even null sequence {cn} of complex number belongs to the
class S∗p if for some 1 < p ≤ 2 and some monotone sequence {An} such
that

∑
An < ∞, the condition

(4.1)
1
n

n∑

k=1

|∆ck|p
Ap

k

= O(1)

holds.
Now we can recall the theorem of Stanojevič’s [5].

Theorem D. Let {cn} ∈ S∗p . Then

(i) for t 6= 0, limn→∞ Sn(c, t) = f(t) exists;

(ii) f ∈ L1(T );

(iii) ‖Sn(f)− f‖ = o(1) is equivalent to f̂n log |n| = o(1).

Now we define a new class S∗p(δ, αn) wider than S∗p .
A weakly even null sequence {cn} of complex numbers belongs to the

class S∗p(δ, αn) if 1 < p ≤ 2, {αn} is a positive sequence fulfilling (2.1),
furthermore there exists a δ-quasi-monotone sequence {An} of positive
numbers with (2.2), plus satisfying the following two conditions

∑
αnAn <

∞ and

(4.2)
n∑

k=1

|∆ck|p
Ap

k

≤ Knαp
n.

It is easy to see that if for every n δn = 0 and αn = 1 then S∗p(δ, αn) ≡
S∗p .

Our result reads as follows.
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Theorem 4. Let {cn} ∈ S∗p(δ, αn). Then

(i) for t 6= 0, limn→∞ Sn(c, t) = f(t) exists;

(ii) f ∈ L1(T );

(iii) ‖Sn(f)− f‖ = o(1) is equivalent to f̂n log |n| = o(1).

Proof of Theorem 4. Our proof follows similar lines as that of its
forerunner in [5].

First we show that {cn} is of bounded variation whence (i) follows.
An Abel rearrangement and Hölder inequality give that

n∑

k=1

|∆ck| =
n−1∑

k=1

|∆Ak|
k∑

i=1

|∆ci|
Ai

+ An

n∑

i=1

|∆ci|
Ai

≤
n−1∑

k=1

k|∆Ak|
(

1
k

k∑

i=1

|∆ci|p
Ap

i

)1/p

+ nAn

(
1
n

n∑

i=1

|∆ci|p
Ap

i

)1/p

≤
n−1∑

k=1

kαk|∆Ak|
(

1
kαp

k

k∑

i=1

|∆ci|p
Ap

i

)1/p

+ nαnAn

(
1

nαp
n

n∑

i=1

|∆ci|p
Ap

i

)1/p

.

Hence, by (4.2),

(4.3)
n∑

k=1

|∆ck| ≤ K

(
n−1∑

k=1

kαk|∆Ak|+ nαnAn

)
.

By Theorem 1 with an = An and Theorem 2 with an = An and λn = αn

the right-hand side of (4.3) is uniformly bounded, thus

∑
|∆ck| < ∞,

as we have stated.
In order to prove (ii) we use the so-called modified trigonometric sums

introduced by J. W. Garrett and Č. V. Stanojevič [3]. Let

Dn(t) = sin(n + 1/2)t/ sin t/2 and En(f) =
n∑

k=0

eikt.
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Then

Sn(c, t)− cnEn(t) + c−nE−n(t) = gn(c, t)

=
n−1∑

k=1

(∆(c−k − ck))(E−k(t)− 1)− c−n +
n+1∑

k=0

(∆ck)Dk(t).

From (i) it follows that for t 6= 0

f(t)− gn(c, t) =
∞∑

k=n

(∆ck)Dk(t) +
∞∑

k=n

(∆(c−k − ck))E−k(t).

Hence

(4.4) ‖f − gn(c)‖ ≤
∫

T

∣∣∣
∞∑

k=n

(∆ck)Dk(t)
∣∣∣dt + K

∞∑

k=n

|∆(c−k − ck)| log k.

Since {cn} is weakly even it remains to show that the integral tends to
zero as n →∞.

If t 6= 0 we use the identity

∞∑

k=n

(∆ck)Dk(f) =
∞∑

k=n−1

∆Ak

k∑

i=1

∆ci

Ai
Di(t)−An

n−1∑

i=1

∆ci

Ai
Di(t)

and get that

(4.5)

∫ π

0

∣∣∣
∞∑

k=n

(∆ck)Dk(t)
∣∣∣dt ≤

∞∑

k=n−1

|∆Ak|
∫ π

0

∣∣∣
k∑

i=1

∆ci

Ai
Di(t)

∣∣∣dt

+ An

∫ π

0

∣∣∣
n∑

i=1

∆ci

Ai
Di(t)

∣∣∣dt.

In [5] it is proved that for any N

(4.6)
∫ π

0

∣∣∣∣∣
N∑

i=1

∆ci

Ai
Di(t)

∣∣∣∣∣dt ≤ KN1− 1
p

(
N∑

i=1

|∆ci|p
Ap

i

)1/p

.
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Using (4.4), (4.5), (4.6) and finally (4.2), we have that

‖f − gn(c)‖ ≤ K

∞∑

k=n−1

|∆Ak|k1− 1
p

(
k∑

i=1

|∆ci|p
Ap

i

)1/p

+ KAnn1− 1
p

(
n∑

i=1

|∆ci|p
Ap

i

)1/p

+ o(1)(4.7)

≤ K

∞∑

k=n−1

kαk|∆Ak|+ KnαnAn + o(1).

Since {cn} ∈ S∗p(δ, αn) thus the assumptions of Theorems 1 and 2 are
satisfied with an = An and αn = λn, therefore the right-hand side of (4.7)
tends to zero, that is,

(4.8) ‖f − gn(c)‖ = o(1)

holds, and since gn(c) is a polynomial, it follows that f is integrable.
Herewith (ii) is also proved.

Finally the proof of (iii) follows from the inequality
∣∣∣‖f − Sn(f)‖ − ‖f̂nEn + f̂−nE−n‖

∣∣∣ ≤ ‖f − gn(c)‖ = o(1)

and from the fact, proved in W. O. Bray and Č. V. Stanojevič [2],
that

‖f̂nEn + f̂−nE−n‖ = o(1)

holds if and only if
f̂n log n = o(1).

Herewith the proof of Theorem 4 is complete. ¤
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LÁSZLÓ LEINDLER
BOLYAI INSTITUTE
UNIVERSITY OF SZEGED
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