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A conditional Cauchy equation on normed spaces

By GY. SZABÓ (Debrecen)

Dedicated to Professor Lajos Tamássy on his 70th birthday

Abstract. Mappings, defined on normed vector spaces and additive on all pairs
of vectors of equal norm, have been studied before only in certain special cases. Here
we derive the additivity of such mappings on spaces of dimension ≥ 3 with the aid of an
interesting connectivity theorem. As a consequence, the additivity of an odd, isosceles
orthogonally additive mapping is proved.

1. Introduction

In a recent paper [2], C. Alsina and J-L. Garcia-Roig considered
the conditional functional equation

(1) f(x + y) = f(x) + f(y), whenever ‖x‖ = ‖y‖,
where the unknown function f : X → Y is a continuous mapping from a
real inner product space X of dimension ≥ 2 into a real topological vector
space Y . As a main result, they derived the linearity of such a mapping
f . Also they recognized the close connection between this equation and
orthogonally additive mappings: a solution is necessarily odd and additive
on orthogonal pairs of vectors. This was proved for Y = Rn without using
the continuity, but in fact the proof works also for an arbitrary Abelian
group Y . Now the theory says (see e.g. Rätz [6]) that an odd, orthogonally
additive mapping from an inner product space (real or complex) into an
Abelian group is necessarily additive. When in addition it is continuous
with values in a real topological vector space, then of course it is linear as
well.
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A much more interesting question arises when we drop the inner prod-
uct and consider equation (1) on a real normed linear space X. Namely
it was just J-L. Garcia-Roig [4], who investigated this rather difficult
problem for the first. He was interested in the positively homogeneous
and norm preserving solution of (1) from a two dimensional real normed
vector space into itself (see also Alsina [1]). Such a solution is always
linear, i.e. a linear isometry. With the aid of a recent description [3] of
the isometry group of a real normed plane, a complete solution was given.

Here we pay attention to equation (1) on higher dimensional normed
linear spaces. As a main result we prove that any solution of equation
(1) on a real normed vector space of dimension ≥ 3 with values in an
Abelian group is necessarily additive. We can perform this using particular
vectors of equal norm. The existence of these vectors can be guaranteed
by certain continuous functions defined on the connected intersection of
spheres of equal radii. Finally we apply the results to mappings additive
with respect to the James’ [5] isosceles orthogonality.

2. Connectivity theorems

Lemma 2.1. Let F ⊂ V ×W be a relation between two metric spaces
V and W . Assume that F is defined on the whole V and

(i) V is connected;
(ii) F (v) is connected for every v ∈ V ;
(iii) for any v0 ∈ V and for all sequences vn ∈ V such that vn →

v0, there is a subsequence vnk
and a convergent sequence of

values wk ∈ F (vnk
) with wk → w0 ∈ F (v0).

Then F is connected.

Proof. First observe that {v} × F (v) ⊂ V ×W is connected for all
v ∈ V . Now, on contrary, assume that F fails to be connected. Then there
exist disjoint open subsets of V ×W , D1 and D2 such that F ⊂ D1 ∪D2

and F∩D1 6= ∅ 6= F∩D2. This means that for some v′i ∈ V and w′i ∈ F (v′i)
we have (v′i, w

′
i) ∈ Di (i = 1, 2). With respect to the above observation,

it follows that for all v ∈ V either {v} × F (v) ⊂ D1 or {v} × F (v) ⊂ D2.
Now using the notation D′

i = {v ∈ V | {v} × F (v) ⊂ Di} (i = 1, 2), we
have V = D′

1 ∪D′
2 and v′i ∈ D′

i (i = 1, 2).
We are going to derive a contradiction to the connectedness of V by

showing the sets D′
1, D

′
2 to be open as well. For this reason take a point

v0 ∈ D′
1 and any sequence vn ∈ V converging to v0. Now by hypothesis

(iii), there is a subsequence vnk
and a convergent sequence wk ∈ F (vnk

)
with wk → w0 ∈ F (v0). Then (vnk

, wk) converges to the point (v0, w0) ∈
D1 and because of the openness of D1, (vnk

, wk) ∈ D1 for sufficiently large
k’s. This means that vnk

∈ D′
1 for these sufficiently large k’s, and because

of the arbitrary choice of the sequence vn, v0 is an interior point of D′
1,
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i.e. it is an open set, and by the same argument, so is D′
2. This completes

the proof.
Corollary 2.2. Let V be a connected while W be a compact metric

space and F ⊂ V ×W be a relation. If F is closed and F (v) is non-empty,
connected set for all v ∈ V , then F is itself connected and so is F (V ).

Proof. We have only to show that the assumption (iii) of the pre-
vious lemma holds true. For this reason take any sequence vn ∈ V with
vn → v0 ∈ V . Now choose an arbitrary sequence of values wn ∈ F (vn).
Since W is compact, the Bolzano-Weierstrass Theorem ensures the ex-
istence of a convergent selection wnk

→ w0 ∈ W . This means that
F 3 (vnk

, wnk
) → (v0, w0) and since F is a closed set, w0 ∈ F (v0), what

was to be proved.
Finally, observe that F (V ) is a projective image of the connected

set F.

In what follows we apply this general result to the intersection of
spheres in normed spaces. Here and further on (X, ‖ · ‖) stands for a real
normed linear space of dimension ≥ 3 and for a vector a ∈ X and scalar
ρ > 0 let Sa(ρ) denote the sphere {x ∈ X | ‖x − a‖ = ρ}. The special
values a = 0 or ρ = 1 are omitted. Thus for S0(1) simply write S. Now
we are going to show that the intersection S ∩ Sa is connected whenever
0 < ‖a‖ ≤ 2. For this reason let u = a/‖a‖ and choosing a vector v ∈
S \ lin{u}, consider the closed halfplane P+

v = {αu+βv | α, β ∈ R, β ≥ 0}
in the plane Pv spanned by u and v. Then we have

Lemma 2.3. The set Kv = S ∩ Sa ∩ P+
v is non-empty, closed and

convex (in fact an interval) and so it is connected.

Proof. Kv is obviously closed. On the other hand, the mapping
ϕ : Pv → R, ϕ(x) = ‖x − a‖ is continuous on the connected set S ∩ P+

v
containing −u, u and because of ϕ(−u) = 1 + ‖a‖ ≥ 1 ≥ |1− ‖a‖| = ϕ(u),
there exists a vector x ∈ S ∩ P+

v with ϕ(x) = 1, i.e. x ∈ Kv.
To prove the convexity of Kv, take vectors x, y ∈ Kv. Then all the

vectors x′ = x− a, y′ = y − a, x′′ = −x, y′′ = −y, x′′′ = −x′, y′′′ = −y′
are in S. We have to show that the line segment [x, y] is contained in Kv.
For x = y there is nothing to prove, while for b = y − x 6= 0 the following
cases have to be dealt with:

Case I. b = βa. Changing the role of x and y if it is necessary,
we may assume that β > 0. Let z ∈]x, y[. Then z = λx + (1 − λ)y
for some 0 < λ < 1. Thus ‖z‖ ≤ λ‖x‖ + (1 − λ)‖y‖ = 1. On the
other hand, a simple computation shows that x = µz + (1 − µ)x′ with
0 < µ = 1/[1 + β(1− λ)] < 1. Hence 1 = ‖x‖ ≤ µ‖z‖+ (1− µ)‖x′‖ which
implies that ‖z‖ ≥ 1, i.e. z ∈ S.

Similarly, z′ = z − a = λx′ + (1 − λ)y′ and so ‖z′‖ ≤ λ‖x′‖ + (1 −
λ)‖y′‖ = 1. Moreover, as it can easily be seen y′ = µz′ + (1 − µ)y with
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0 < µ = 1/[1 + βλ] < 1. Therefore 1 = ‖y′‖ ≤ µ‖z′‖+ (1− µ)‖y‖ whence
‖z′‖ ≥ 1 holds true as well. This means that ‖z − a‖ = 1, i.e. z ∈ Sa and
so z ∈ Kv proving the desired inclusion [x, y] ⊂ Kv.

Case II. a and b are linearly independent. Then x and y can be
expressed as x = αa+βb and y = αa+(β+1)b. Without loss of generality,
we may assume that β ≥ 0. We proceed on by showing that α = 1/2. On
contrary assume that
(i) α < 0: Then for 0 < µ = −α/[β − α] < 1 and σ = 1 + 1/[β − α] we

have σx = µx′ + (1− µ)y which yields the contradiction

1 < σ = ‖σx‖ ≤ ‖µx′‖+ ‖(1− µ)y‖ = 1.

(ii) α > 1: Then for 0 < µ = [α−1]/[α−1+β] < 1 and σ = 1+1/[α−1+β]
we have σx′ = µx + (1− µ)y′ which yields the contradiction

1 < σ = ‖σx′‖ ≤ ‖µx‖+ ‖(1− µ)y′‖ = 1.

(iii) 0 < α < 1/2: Then for 0 < µ=α/[α+β] ≤ 1 and σ=1+[1−2α]/[α+β]
we have σx′′ = µx′ + (1− µ)y′′ which yields the contradiction

1 < σ = ‖σx′′‖ ≤ ‖µx′‖+ ‖(1− µ)y′′‖ = 1.

(iv) 1/2 < α < 1: Then for 0 < µ = [1 − α]/[1 − α + β] ≤ 1 and
σ = 1 + [2α − 1]/[1 − α + β] we have σx′ = µx′′ + (1 − µ)y′ which
yields the contradiction

1 < σ = ‖σx′‖ ≤ ‖µx′′‖+ ‖(1− µ)y′‖ = 1.

(v) α = 0 or α = 1 is impossible because of 1 = ‖x‖ = β‖b‖ < (β+1)‖b‖ =
‖y‖ = 1 or 1 = ‖x′‖ = β‖b‖ < (β + 1)‖b‖ = ‖y′‖ = 1, respectively.
Now let z ∈]x, y[. Then z = λx + (1− λ)y for some 0 < λ < 1. Thus

‖z‖ ≤ λ‖x‖ + (1 − λ)‖y‖ = 1. On the other hand, a simple computation
shows that x = µz + (1 − µ)y′′′ with 0 < µ = [2β + 1]/[2β + 2 − λ] < 1.
Hence 1 = ‖x‖ ≤ µ‖z‖ + (1 − µ)‖y′′′‖ which implies that ‖z‖ ≥ 1, i.e.
z ∈ S.

Similarly, z′ = z − a = λx′ + (1 − λ)y′ and so ‖z′‖ ≤ λ‖x′‖ + (1 −
λ)‖y′‖ = 1. Moreover, as it can easily be seen x′ = µz′ + (1 − µ)y′′ with
0 < µ = [2β+1]/[2β+2−λ] < 1. Therefore 1 = ‖x′‖ ≤ µ‖z′‖+(1−µ)‖y′′‖
whence ‖z′‖ ≥ 1 holds true as well. This means that ‖z−a‖ = 1, i.e. z ∈ Sa

and so z ∈ Kv proving the desired inclusion [x, y] ⊂ Kv.

Theorem 2.4. In a real normed vector space of dimension ≥ 3 the
intersection of spheres of equal radii is connected (or empty).

Proof. Since any sphere is a continuous image of one of unit radius,
we may and do assume that the spheres are S and Sa with 0 < ‖a‖ ≤ 2.
We are going to show that K = S ∩ Sa is connected.
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Let b ∈ K be an arbitrarily fixed vector and for any x ∈ K choose vec-
tors vx1, vx2 ∈ S such that a, b, x ∈ lin{u, vx1, vx2} = Mx with dim Mx = 3.
Then Wx = S ∩Mx is a closed, bounded sphere in the finite dimensional
subspace Mx and so it is compact while in the two dimensional subspace
Lx = lin{vx1, vx2}, the set Vx = S∩Lx is a connected circle. Now consider
the relation Fx ⊂ Vx × Wx defined for any v ∈ Vx by Fx(v) = Kv, the
non-empty, connected set given in the previous lemma. As soon as it will
have been shown that Fx is closed, Corollary 2.2 implies the connectivity
of

Fx(Vx) =
⋃

v∈Vx

(K ∩ P+
v ) = K ∩Mx 3 x, b.

To do this, take a sequence (vn, wn) ∈ Fx converging to some (v0, w0) ∈
Vx ×Wx. Since wn ∈ Kvn

⊂ P+
vn

and vn → v0, we have w0 ∈ P+
v0

. Also
wn ∈ Kvn ⊂ K and because of K is closed, w0 ∈ K, i.e. w0 ∈ K ∩ P+

v0
=

Kv0 = Fx(v0). Thus (v0, w0) ∈ Fx and therefore Fx is closed.
Finally

⋂
x∈K Fx(Vx) is non-empty (namely it contains b), whence

K =
⋃

x∈K

Fx(Vx)

is connected.

3. The main result

Theorem 3.1. Suppose that (X, ‖ · ‖) is a real normed linear space of
dimension ≥ 3 and (Y, +) is an Abelian group. If a mapping f : X → Y
satisfies the conditional Cauchy equation (1), then it is additive.

Proof. Let x, y ∈ X be arbitrarily given. We may and do assume
that ‖x‖ < ‖y‖ = ρ. Next we claim that there exist vectors x1, x2 ∈ X
such that
(a) 2x = x1 + x2

(b) ‖x1‖ = ‖x2‖ = ρ

(c) ‖x1 + y‖ = ‖x2 + y‖.
Indeed, let K denote the connected intersection of spheres S0(ρ) and

S2x(ρ). Then for any z ∈ K we have z′ = 2x − z ∈ K. Consider the
continuous function ϕ : K → R defined by ϕ(z) = ‖y + z‖ − ‖y + z′‖.
Since ϕ(z′) = −ϕ(z), z ∈ K, the function ϕ changes its sign on K and
taking into account the connectivity of K, there is a vector z0 ∈ K with
ϕ(z0) = 0. Then x1 = z0 and x2 = z′0 satisfy all the requirements (a), (b)
and (c).

Finally, we can compute by equation (1) as follows:

f(2x + 2y) =f([x1 + y] + [x2 + y]) = f(x1 + y) + f(x2 + y) =
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=f(x1) + f(y) + f(x2) + f(y) = f(x1 + x2) + 2f(y) =

=f(2x) + f(2y)

which was to be proved.

In the rest of the paper we apply this main theorem to orthogonally
additive mappings. Namely consider the James’ isosceles orthogonality ⊥
on X defined by x ⊥ y ⇐⇒ ‖x+y‖ = ‖x−y‖ (x, y ∈ X). It is known (see
James [5]) that the homogeneity of ⊥ characterizes inner product spaces.
Now a mapping f : X → Y with values in an Abelian group (Y, +) is
said to be (isosceles) orthogonally additive, if it satisfies the conditional
equation

(2) f(x + y) = f(x) + f(y), whenever x ⊥ y.

For large classes of homogeneous orthogonality relation ⊥, the odd solu-
tions are additive (see Rätz–Szabó [7]). Here we derive the same for the
non-homogeneous isosceles orthogonality.

Theorem. Suppose that (X, ‖ · ‖) is a real normed linear space of
dimension ≥ 3 and (Y, +) is an Abelian group. If a mapping f : X → Y
is odd and isosceles orthogonally additive, then it is additive.

Proof. First observe that 0 ⊥ 0 whence f(0) = 0. Moreover f(2x) =
2f(x) holds for all x ∈ X. Indeed, as it can easily be shown, there exists
y ∈ X with ‖x‖ = ‖y‖ and ‖x + y‖ = ‖x − y‖ (just take the continuous
function ϕ : S(‖x‖) → R defined by ϕ(u) = ‖x + u‖ − ‖x − u‖; since its
domain is connected and ϕ(−u) = −ϕ(u), ϕ(y) = 0 for some y ∈ S(‖x‖)).
Then (x + y) ⊥ (x − y), x ⊥ ±y and so using the orthogonal additivity
and oddness of f , we have

f(2x) =f([x + y] + [x− y]) = f(x + y) + f(x− y) =

=[f(x) + f(y)] + [f(x) + f(−y)] = 2f(x).

In what follows we are going to show that f satisfies equation (1). Let
x, y ∈ X with ‖x‖ = ‖y‖. Then for u = x + y and v = x − y we have
u ⊥ ±v and so

f(2x) + f(2y) =f(u + v) + f(u− v) = [f(u) + f(v)] + [f(u) + f(−v)] =

=2f(u) = f(2u) = f(2x + 2y).

This completes the proof.
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