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Isometric or harmonic mappings
of complete Riemannian manifolds

By C. L. BEJAN (Iaşi), T. Q. BINH (Debrecen) and L. TAMÁSSY (Debrecen)

Abstract. We investigate (a) the isometric and (b) the harmonic mappings ϕ of a
complete Riemannian manifold Mn whose sectional curvature is bounded from below,
into euclidean space En+m and in case of (a) also into the unit sphere Sn+m−1 ⊂
En+m. In case of (a) we obtain conditions in terms of the euclidean norm ‖H(ϕ(x))‖
x ∈ Mn of the mean curvature vector of ϕ(Mn) on the radius r of the euclidean ball
B(r) in order that ϕ(Mn) cannot be pinched in any such B(r) (ϕ(Mn) 6⊂ B(r)). In
case of (b) we show that under a mild condition on the Ricci curvature the positivity
of the energy density e(ϕ) is necessary in order that ϕ(Mn) spreads out to infinity.

In [1] the present authors investigated isometric mappings ϕ of com-
plete Riemannian manifolds V n = (M, g) into euclidean space En+m (re-
spectively, into the unit sphere Sn+m−1 ⊂ En+m), where ϕ(V n) cannot be
pinched by certain geodesic balls B(r) of radius r : ϕ(V n) 6⊂ B(r) ⊂ En+m

(respectively ϕ(V n) 6⊂ B(r) ⊂ Sn+m−1).
After an introduction, in Section 1 of this note we make some remarks

on our previous paper [1]. We weaken a condition of the results obtained
in it and we point out that some of them are sharp. In Section 2, we
replace in our problem the isometric mappings by harmonic ones, and
obtain a necessary condition in order that ϕ(V n) cannot be pinched by any
ball B(r) of En+m or, what is the same, ϕ(V n) stretches out to infinity
in En+m.
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1. Isometric mappings

Isometric mappings of compact Riemannian manifolds V n = (M, g)
have a long history, and they were investigated under different conditions
by a number of mathematicians. We mention here only a few them.

S. S. Chern and C. C. Hsiung [3] showed in 1963 that a compact V n

has no isometric and minimal immersion ϕ into euclidean space En+m.
This means also that a euclidean space has no compact minimal submani-
fold. If V n is compact, and ϕ : V n → En+m is not necessarily minimal, but
an isometric immersion only, also then ϕ(V n) is compact, thus bounded,
and so contained in a ball B(R) ⊂ En+m of a sufficiently big radius R.
But how big this radius must be? Under which value of the radius r is
ϕ(V n) ⊂ B(r) ⊂ En+m impossible? Such a bound was found recently by
S. S. Yang [11]. He proved in 1998 that if V n is compact and

(1) ‖H(ϕ(x))‖ <
1√
mr

∀x ∈ V n, m ≥ 1,

where ‖H‖ is the euclidean length of the mean curvature vector H of
ϕ(V n), then no ball B(r) ⊂ En+m can contain ϕ(V n) : ϕ(V n) 6⊂ B(r).
This result is sharp in the case of m = 1. Indeed, let ϕ be the identity,
and V n = Sn(R) a sphere of radius R in En+1. Thus ‖H(ϕ(x))‖ = 1/R.
Then (1) yields r < R, and in fact B(r), r < R are those balls only which
do not contain Sn(R). It is easy to see that (1) is not sharp for every V n

and ϕ. E.g. if ϕ = id, m = n = 1, V 1 is an ellipse E in E2 with main axes a
and b (a > b), then ‖H‖ = κ is the curvature of the ellipse, which is the
biggest namely a/b2, at the endpoint of the big axis. So we obtain from
Yang’s theorem that E 6⊂ B(r) if r < b2/a, however, clearly E 6⊂ B(r) also
if r < a, while a > b2/a. This means that there are balls which are bigger
than those deduced from Yang’s theorem and yet they cannot contain E .
Thus in this example Yang’s result is not sharp.

Chern and Hsiung’s theorem is a consequence of Yang’s theorem. Sup-
pose that V n is compact and ϕ is isometric and minimal as in Chern and
Hsiung’s theorem. Then H(ϕ(x)) vanishes, and ϕ(V n) ⊂ B(R) ⊂ En+m

with a sufficiently big R, since ϕ(V n) is compact and hence bounded.
However these H and R satisfy (1), yet ϕ(V n) ⊂ B(R). This contradicts
Yang’s theorem. So, if V n is compact and ϕ is an isometric immersion,
then ϕ(V n) cannot be minimal.

This problem (i.e. for which r is ϕ(V n) 6⊂ B(r) ⊂ En+m) was investi-
gated under the weaker condition of completeness (instead of compactness)
of V n in our paper [1]. Our result says:
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Theorem A [1]. If V n is complete, its sectional curvature is bounded
from below: K > K0, and ϕ : V n → En+m is an isometric immersion,
then ϕ(V n) 6⊂ B(r) ⊂ En+m, provided that the radius r satisfies

(2) ‖H(ϕ(x))‖ <
1
r

∀x ∈ V n.

This allows a slightly bigger balls B(r) not containing ϕ(V n), for
in contrust to (1), the factor 1/

√
m does not appear on the right-hand

side of (2) in contrary to (1). The above discused example of ϕ = id,
V n = Sn(R) ⊂ En+1 shows that this result is sharp for any m in En+m.
Applying an old result of H. W. E. Jung [6], also a lower bound for the
diameter d of ϕ(V n) can be obtained ([1], Corollary 1), namely

d(ϕ(V n)) ≥
√

2(s + 1)
s

r0, s = n + m,

where r0 is the lim sup of the r satisfying (2). We guess that this is not
the best estimate for the lower bound of the diameter of ϕ(V n).

A result similar to the one of Theorem A concerns the isometric im-
mersion ϕ : V n → Sn+m−1 into the euclidean unit sphere Sn+m−1.

Theorem B [1]. If V n is complete, its sectional curvature K > K0,
and ϕ is an isometric immersion of V n into Sn+m−1, then ϕ(V n) cannot
be contained in any geodesic ball B(r) of Sn+m−1 of radius r: ϕ(V n) 6⊂
B(r) ⊂ Sn+m−1, provided

(3) ‖H(ϕ(x))‖ <
cos r

2 sin r
2

∀x ∈ V n, m ≥ 1.

We remark that the condition in Theorems A and B saying that the
sectional curvature K of V n is bounded from below: K > K0, can be
weakened and replaced by

(4) Ric(X)(x) > c(1 + ρ2 log2(ρ + 2)) ∀x ∈ V n and X ∈ TxV n,

where Ric means the Ricci curvature of V n for an arbitrary unit vector X,
c is a negative constant, and ρ is the distance function on V n from a fixed
point x0 ∈ V n to x ∈ V n. If K(X,Y )(x) > K0 (K0 < 0), ∀X, Y ∈ TxV n,
x ∈ V n, then (4) holds with c = K0. The converse is however not true in
general, (4) allows K to tend to −∞. Thus K > K0 is stronger than (4).

The proof of Theorems A and B with the condition (4) in place of
K > K0 runs exactly the same way as in [1], only we must use in place of
Omori’s theorem ([8], Theorem 1) the following
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Theorem (Q. Chen and Y. L. Xin [2], Theorem 2.2). For any

smooth and bounded function φ on a complete connected Riemannian

manifold Q which satisfies (4), and for any ε > 0 there exists a sequence

of points {xk ∈ Q} such that limk→∞ φ(xk) = supM φ, and for sufficiently

large k ‖(gradφ)(xk)‖ < E, and at these xk the Hessian Hφ of φ is smaller

than ε : Hφ(X, X) < ε for any unit vector X ∈ Txk
Q.

We still note an immediate consequence of Theorem B (either in its
original ([1], Theorem 2) or in its present form). If ϕ(V n) is minimal, then
H = 0. Thus (3) is satisfied by any r ∈ (0, π

2 ). This means that no com-
plete minimal submanifold of a sphere can be contained in a hemisphere.
In case of a compact V n and m = 1 this is a result of S. B. Meyers ([7],
Theorem 4).

Finally we mention that there are investigations which use conditions
on the sectional curvature K and not on ‖H‖ in order to conclude that
ϕ(V n) is not pinched into certain balls B(r). H. Jacobowitz [5] proved
in 1973 that if V n is a compact Riemannian manifold, ϕ : V n → E2n−1 is
an isometric immersion, and everywhere K < 1

r2 , then there exists no ball
B(r) containing ϕ(V n). This is a generalization of a result of S. S. Chern

and N. H. Kuiper [4] from 1952 saying that a compact Riemannian mani-
fold V n with everywhere nonpositive K cannot be isometrically embedded
into E2n−1. Also this result contains as a corollary the old theorem of
C. Tompkins [9] from 1939, according to which the n-dimensional flat
torus cannot be embedded isometrically in E2n−1.

2. Harmonic mappings

We want to replace the isometric immersions of the previous section by
harmonic mappings ϕ : V n → En+m and we investigate conditions under
which the image ϕ(V n) of a complete Riemannian manifold V n = (M, g)
cannot be pinched by a ball B(r) of En+m.

Let e1, . . . , en ∈ TpV
n be an orthonormal system, and E1, . . . , En

their parallel translateds according to the Levi Civita connection ∇ of V n

along geodesics emanating from p = x0 ∈ M in a domain within the range
of a geodesic polar coordinate system centered at p. ϕ(x) = y, x ∈ M is
a point of Er r = n + m with origin 0. We denote the parallel translated
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of
→
0y in Er to y by ~ϕ(x), which is an element of TyEr, and we denote the

canonical scalar product in Er by 〈, 〉. Then

F (x) := 〈~ϕ(x), ~ϕ(x)〉
is a smooth function on M . The Hessian HF (X, X)(p) of F at p for a unit
vector X ∈ X(M) is

HF (X, X)(p) = XX(F )|p − (∇XX)F |p.
We want to calculate XX(F ). The pullback of the tangent bundle τE =
(TEr, π, Er) of Er by ϕ is the bundle

ϕ∗(τE) = M ×Er TEr = {(x, z) | z ∈ π−1(ϕ(x))}.
We denote the pullback of ~ϕ(y) by ϕ∗(~ϕ(y)) ≡ ~ϕ(x), and the pullback (or
associated) connection on ϕ∗(τE) by ∇̂ (see e.g. [10], p. 10). Then

∇̂ϕ̃ =
E

∇ϕ∗X ~ϕ
(∗)
= ϕ∗X,

where ϕ∗ : TxM → Tϕ(x)E
r, and

E

∇ denotes the Levi Civita connection
of Er with respect to 〈 , 〉. (For (∗) compare [1] formula (4).) Also

〈~ϕ, ~ϕ〉(ϕ(x)) = 〈ϕ̃, ϕ̃〉∗(x),

where 〈 , 〉∗ denotes the metric on ϕ∗(τE) induced by 〈 , 〉 ([10], p. 10).
Using these relations we obtain

X(F ) = 〈ϕ̃, ϕ̃〉∗ = 2〈∇̂X ϕ̃, ϕ̃〉∗ = 2〈ϕ∗X, ϕ̃〉∗.
Then

XX(F ) = 2X〈ϕ∗X, ϕ̃〉∗ = 2[〈∇̂Xϕ∗X, ϕ̃〉∗ + 〈ϕ∗X,ϕ∗X〉∗].
Applying this for the vector fields Ei, and taking into account that ∇EiEi

= 0, since Ei are parallel vector fields, we obtain at p

n∑

i=1

HF (Ei, Ei) =
n∑

i=1

EiEi(F )(5)

=
n∑

i=1

2
[
〈∇̂Eiϕ∗Ei − ϕ∗(∇EiEi), ϕ̃〉∗ + 〈ϕ∗Ei, ϕ∗Ei〉∗

]
.
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There are well known the following notions and facts ([10], pp. 10–
13). The energy density e(ϕ) of a map ϕ : (M, g) → (N, h) between two
Riemannian manifolds is defined by

e(ϕ) :=
1
2
〈g, ϕ∗h〉2 =

1
2

n∑

i=1

〈ϕ∗ei, ϕ∗ei〉h,

where 〈 , 〉2 is the inner product of two (0, 2) tensors on (M, g). 2e(ϕ) is
often denoted also by |dϕ|2. The energy of ϕ is

E(ϕ) =
∫

M

e(ϕ) dM.

If ϕ is a critical point of an energy functional E(ϕ), then ϕ is said to be a
harmonic map, and the cross-section

τ(ϕ) =
n∑

i=1

(∇eidϕ)ei

of the bundle ϕ−1(TN) is called its tension. It is also known that ϕ is a
harmonic map iff τ(ϕ) = 0.

Now (5) can be written in the form

n∑

i=1

HF (Ei, Ei) = 2

(
〈τ(ϕ), ϕ̃〉∗ +

n∑

i=1

〈ϕ∗Ei, ϕ∗Ei〉∗
)

.

If we suppose that ϕ(V n) ⊂ B(r), then F = 〈~ϕ, ~ϕ〉 < r2 is bounded, and
we can apply the theorem of Q. Chen and Y. L. Xin ([2], Theorem 2.2)
cited in Section 1 (with φ = F , Q = M). Thus, for sufficiently large k

n∑

i=1

HF (Ei, Ei)(xk) = 2〈τ(ϕ), ϕ̃〉∗(xk) + e(ϕ)(xk) < ε.

We know that in case of a harmonic ϕ τ(ϕ) vanishes ([10], p. 11). Thus
we obtain the following

Proposition. If V n is a complete Riemannian manifold, ϕ : V n →
En+m is harmonic, ϕ(V n) ⊂ B(r), and the Ricci curvature of V n satis-
fies (4), i.e.

Ric(X)(x) > c(1 + ρ2 log2(ρ + 2)) ∀x ∈ V n and X ∈ TxV n,
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then
inf
M

e(ϕ) = 0.

This also yields the following

Theorem. If V n is a complete Riemannian manifold, ϕ : V n →
En+m is harmonic, and the Ricci curvature satisfies (4), then infM e(ϕ) > 0
is necessary in order that ϕ(V n) 6⊂ B(r) for any r.

This means that under the above conditions ϕ(V n) spreads out to
infinity in En+m.
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