Derivations and co-radical extensions of rings

By TSIU-KWEN LEE (Taipei) and CHING-YUEH PAN (Taipei)

Abstract

A ring R is said to be co-radical over a subring A if for each $x \in R$ there exists a polynomial $g_{x}(t)$ (depending on x) having integral coefficients so that $x-x^{2} g_{x}(x) \in A$. Herstein proved that a ring which is co-radical over its center must be commutative. In this paper we give a generalization of Herstein's theorem for the prime case in terms of derivations with assumptions on one-sided ideals.

$\S 1$. Introduction and main results

Throughout this paper all rings are associative, not necessarily with unity. We denote by $\mathbb{Z}[t]$ the polynomial ring with indeterminate t over \mathbb{Z}, the ring of integers. A ring R is called co-radical over a subring A if for each $x \in R$ there exists a polynomial $g_{x}(t) \in \mathbb{Z}[t]$ (depending on x) so that $x-x^{2} g_{x}(x) \in A$. In [8] Herstein proved that a ring which is co-radical over its center must be commutative. In [4] CHACRON gave a generalization of Herstein's theorem for the semiprime case by the use of the cohypercenter $T(R)$ of a ring R. An element $a \in R$ belongs to $T(R)$ if for each $x \in R$ there exists a polynomial $g_{x}(t) \in \mathbb{Z}[t]$ (depending on x) so that $\left[a, x-x^{2} g_{x}(x)\right]=0$. Chacron proved that if R is a semiprime ring, then $T(R)$ coincides with the center of R. In terms of derivations he just proved that if d is an inner derivation of the semiprime ring R satisfying $d\left(x-x^{2} g_{x}(x)\right)=0$ for all $x \in R$, then $d=0$. For the general case of derivations, in a recent paper [3] BELL proved the theorem: Let R be a prime ring with char $R \neq 2$, and let d be a derivation of R such that $d^{3} \neq 0$. If there exists a fixed integer $n>1$ such that $d\left(x-x^{n}\right) \in \mathcal{Z}(R)$, the center of R, for all $x \in R$, then R is commutative. The goal of this paper is to extend these results by proving the following theorems.

Mathematics Subject Classification: 16W25, 16N60, 16R50, 16U80.
Key words and phrases: derivation, co-radical, GPI, prime ring, differential identity.

Theorem 1. Let R be a noncommutative prime ring and $a, b \in R$. Suppose that for each $x \in R$, there is a polynomial $g_{x}(t) \in \mathbb{Z}[t]$ (depending on x) so that $a\left(x-x^{2} g_{x}(x)\right) b=0$. Then either $a=0$ or $b=0$.

Theorem 2. Let R be a noncommutative prime ring, ρ a right ideal of R and $a, b \in R$. Suppose that for each $x \in \rho$, there is a polynomial $g_{x}(t) \in \mathbb{Z}[t]$ (depending on x) so that $a\left(x-x^{2} g_{x}(x)\right) b=0$. Then $a \rho b=0$ unless $\rho=e R$, where $e=e^{2} \in R$, such that $e R e$ is a field.

Theorem 3. Let R be a prime ring, ρ a nonzero right ideal of R and d a nonzero derivation of R. Suppose that for each $x \in \rho$, there is a polynomial $g_{x}(t) \in \mathbb{Z}[t]$ (depending on x) so that $d\left(x-x^{2} g_{x}(x)\right)=0$. Then R is commutative except when $\rho=e R$, where $e=e^{2} \in R$, such that $e R e$ is a field, and $d=\operatorname{ad}(b)$ and $b \rho=0$ for some $b \in Q$, the symmetric Martindale quotient ring of R.

As an immediate consequence of Theorem 3 we have the following
Theorem 4. Let R be a prime ring and let d be a nonzero derivation of R. Suppose that for each $x \in R$, there is a polynomial $g_{x}(t) \in \mathbb{Z}[t]$ (depending on x) so that $d\left(x-x^{2} g_{x}(x)\right)=0$. Then R is commutative.

Finally we will extend Theorem 4 to the central case. However, we cannot conclude the commutativity of the prime ring R. The following provides counterexamples.

Examples. Let $R=\mathrm{M}_{2}(C)$, the 2 by 2 matrix ring over a field C, $b \in[R, R] \backslash C$ and d the inner derivation of R defined by the element b. If C is algebraic over GF(2), the Galois field of two elements, then for each $x \in R$, there is a positive integer $q=q(x)>1$ (depending on x) so that $d\left(x-x^{q}\right) \in C$.

Proof. We denote by F the algebraic closure of C and let $S=$ $\mathrm{M}_{2}(F)$. Then $R \subseteq S$. Let $x, y \in[R, R]$. A direct computation proves that $x y+y x=(x+y)^{2}-x^{2}-y^{2} \in C$. Since char $R=2$, we have $[x, y] \in C$. That is, $[[R, R],[R, R]] \subseteq C$. In particular, $[b,[R, R]] \subseteq C$. Let $x \in R$. Then there exists an invertible matrix $u \in S$ such that $u x u^{-1}$ is an upper triangular matrix in S. Since F is algebraic over GF(2), there exists a positive integer $q=q(x)>1$ such that $u x u^{-1}-u x^{q} u^{-1}$ is a strictly upper triangular matrix in S. In particular, the trace of $x-x^{q} \in R$ is zero. Therefore, $x-x^{q} \in[R, R]$ and so $\left[b, x-x^{q}\right] \in[b,[R, R]] \subseteq C$, as desired. This proves our result.

In fact, the examples above are the only exceptional cases. Indeed, we will prove the following

Theorem 5. Let R be a prime ring with center $\mathcal{Z}(R)$ and d a nonzero derivation of R. Suppose that for each $x \in R$, there is a polynomial $g_{x}(t) \in \mathbb{Z}[t]$ (depending on x) so that $d\left(x-x^{2} g_{x}(x)\right) \in \mathcal{Z}(R)$. Then R is commutative except when $R C \cong \mathrm{M}_{2}(C)$ with C algebraic over $\mathrm{GF}(2)$, where C denotes the extended centroid of R.

\S 2. Proofs of theorems

From now on, R will denote a prime ring with extended centroid C and symmetric Martindale quotient ring Q. We denote by $\mathcal{Z}(R)$ the center of R and by $J(R)$ the Jacobson radical of R. For $p \in Q$ we denote by $\operatorname{ad}(p)$ the inner derivation of Q induced by the element p, that is, $\operatorname{ad}(p)(x)=$ $[p, x]=p x-x p$ for $x \in Q$. A derivation d of R is called X-inner if $d=\operatorname{ad}(p)$ for some $p \in Q$. Otherwise, d is called X-outer. It is well-known that each derivation of R can be uniquely extended to a derivation of Q. We first state a result due to Chacron [5].

Lemma 1. Let R be a prime ring and $a, b \in R$. Suppose that for each $x \in R$, there is a polynomial $g_{x}(t) \in \mathbb{Z}[t]$ (depending on x) so that $a\left(x-x^{2} g_{x}(x)\right) b=0$. If $a b=0$, then either $a=0$ or $b=0$.

Proof. See the proof of [5, Lemma 3].
Lemma 2. Let R be a noncommutative prime ring and $a \in R$. Suppose that for each $x \in R$, there is a polynomial $g_{x}(t) \in \mathbb{Z}[t]$ (depending on x) so that $a\left(x-x^{2} g_{x}(x)\right)=0$. Then $a=0$.

Proof. Suppose first that $J(R) \neq 0$. Then, by assumption, for each $x \in J(R)$ there is a polynomial $g_{x}(t) \in \mathbb{Z}[t]$ (depending on x) so that $a\left(x-x^{2} g_{x}(x)\right)=0$. Thus $a x\left(1-x g_{x}(x)\right)=0$. From the fact that $x g_{x}(x) \in$ $J(R)$ it follows that $a x=0$. That is, $a J(R)=0$ and so $a=0$ by the primeness of R.

Suppose next that $J(R)=0$. We first consider the case that R is a right primitive ring. By the density theorem, R acts densely on ${ }_{D} V$, where ${ }_{D} V$ is a left vector space over a division ring D. Suppose that there is a $v \in V$ such that $v a$ and v are D-independent. Then we can choose an $x \in R$ such that $v a x=v$ and $v x=0$. Then $v a x^{2}=0$ and so $0=v a\left(x-x^{2} g_{x}(x)\right)=v a x=v$, which is absurd. Therefore, for each $v \in V$ we see that $v a$ and v are D-dependent. Now, a standard argument
proves that a is central in R. We turn next to the general case. Let P be a right primitive ideal of R. Then R / P is a right primitive ring preserving our assumptions. Thus $\bar{a}=a+P$ is central in R / P and so $[a, R] \subseteq P$. Since $J(R)=0$, the intersection of all right primitive ideals of R is zero. Therefore we have $[a, R]=0$, implying that $a \in \mathcal{Z}(R)$. If $a \neq 0$, then for each $x \in R$, there is a polynomial $g_{x}(t) \in \mathbb{Z}[t]$ (depending on x) so that $x-x^{2} g_{x}(x)=0$. In view of Herstein's theorem [8], R is commutative, a contradiction. This proves the lemma.

Proof of Theorem 1. Clearly, we may assume that $a=b$. Denote by ρ the right ideal of R generated by a, that is, $\rho=a R+\mathbb{Z} a$. Set $\bar{\rho}=\rho / \rho \cap \ell_{R}(\rho)$, where $\ell_{R}(\rho)$ is the left annihilator of ρ in R. It is clear that $\bar{\rho}$ is still a prime ring. By assumption, for each $\bar{x} \in \bar{\rho}$, there is a polynomial $g_{\bar{x}}(t) \in \mathbb{Z}[t]$ (depending on \bar{x}) so that $\bar{a}\left(\bar{x}-\bar{x}^{2} g_{\bar{x}}(\bar{x})\right)=0$. In view of Lemma 2, either $\bar{a}=0$ or $[\bar{\rho}, \bar{\rho}]=0$. The first case gives $a^{2}=0$, implying that $a=0$ by Lemma 1 . The latter case implies that $[\rho, \rho] \rho=0$ and hence R is a prime GPI-ring. In view of Martindale's theorem [14], $R C$ is a strongly primitive ring, where C is the extended centroid of R. If $R C$ is a division ring, then there is nothing to prove. Suppose that $R C$ is not a division ring. Denote by H the socle of $R C$. Then H is a simple ring with minimal one-sided ideals and possesses nontrivial idempotents. Let e be an idempotent in H. Choose a nonzero ideal I of R so that $e I+I e+e I e \subseteq R$. For $x \in I$ we have $e x(1-e) \in R$. Since $e x(1-e)$ is an element of square zero, by assumption we have $a e x(1-e) a=0$. Thus $(1-e) a e=0$ follows. Analogously, $e a(1-e)=0$ and hence $[a, e]=0$. Denote by E the additive subgroup of H generated by all idempotents in H. In view of [9, Corollary p. 18], $[H, H] \subseteq E$. Thus $[a,[H, H]]=0$. By [9, Corollary p. 9], the subring generated by $[H, H]$ is equal to H and so $[a, H]=0$. Thus a is central in R. If $a \neq 0$, then for each $x \in R$, there is a polynomial $g_{x}(t) \in \mathbb{Z}[t]$ (depending on x) so that $x-x^{2} g_{x}(x)=0$. In view of Herstein's theorem [8], R is a commutative ring, a contradiction. This proves the theorem.

The following lemma is due to Babkov [1, Lemma 7].
Lemma 3. Let R be a noncommutative prime ring, ρ a nonzero right ideal of R and $a \in R$. Suppose that for each $x \in \rho$, there is a polynomial $g_{x}(t) \in \mathbb{Z}[t]$ (depending on x) so that $\left(x-x^{2} g_{x}(x)\right) a=0$. Then $a=0$
unless R is a primitive ring with nonzero socle and its associated division ring is a field.

For simplicity, we say that a ring R has the property (*) if it is a primitive ring with nonzero socle and its associated division ring is a field. We are now ready to give the proof of Theorem 2.

Proof of Theorem 2. Suppose that R does not satisfy the property $(*)$. By assumption we have that $a x b=0$ for each $x \in \rho$ with $x^{2}=0$.

We first consider the case that $a b=0$. Let $x \in \rho$. We claim that $a x b=0$. Suppose not. By assumption, there is a polynomial $h(x)=$ $x+r_{2} x^{2}+\cdots+r_{k} x^{k}$ with $k \geq 2$ and $r_{k} x^{k} \neq 0$, where each r_{i} is an integer, satisfying

$$
\begin{equation*}
a\left(x+r_{2} x^{2}+\cdots+r_{k} x^{k}\right) b=0 \tag{1}
\end{equation*}
$$

By (1), each element in $x b \operatorname{Ra}\left(1+r_{2} x+\cdots+r_{k} x^{k-1}\right)$ lies in ρ and has square zero. Thus we have $\operatorname{axb} R a\left(1+r_{2} x+\cdots+r_{k} x^{k-1}\right) b=0$, implying $a\left(1+r_{2} x+\cdots+r_{k} x^{k-1}\right) b=0$ as $a x b \neq 0$. Since $a b=0$, we have $a\left(r_{2}+r_{3} x+\cdots+r_{k} x^{k-2}\right) x b=0$. Repeating the same process we eventually conclude that $r_{k} a x b=0$ and so $a x b=0$ follows, a contradiction. Hence, $a \rho b=0$ follows, as desired.

We next consider the general case. Let $x \in \rho$; then $x a \in \rho$. By assumption, there is a polynomial $g_{x a}(t) \in \mathbb{Z}[t]$ so that $a\left(x a-x a x a g_{x a}(x a)\right) b=0$ and so $\left(a x-(a x)^{2} g_{x a}(a x)\right)(a b)=0$. Since R does not satisfy the property $(*)$, applying Lemma 3 to the right ideal $a \rho$ we conclude that $a b=0$. Therefore we have $a \rho b=0$ by the first case.

Finally, when $a \rho b \neq 0$ we must prove that $\rho=e R$, where $e=e^{2} \in R$ is such that $e R e$ is a field. Indeed, suppose that $a \rho b \neq 0$; then R has the property $(*)$. Denote by H the socle of R. If ρ is a minimal right ideal of R, then we are done. Thus we may assume that ρ is not minimal, nor is ρH. Since $a \rho b \neq 0$, we have $a \rho H b \neq 0$ and so there exists an idempotent $g \in \rho H$ such that $a g \neq 0$. Let $r \in R$; then $g r(1-g)$ is an element in ρ with square zero. By assumption, $\operatorname{agr}(1-g) b=0$. Then $\operatorname{agR}(1-g) b=0$ and so $b=g b \in \rho$. Let $\overline{\rho H}=\rho H / \rho H \cap \ell_{R}(\rho H)$. We claim that $\overline{\rho H}$ is a noncommutative prime ring. Since ρH is not a minimal right ideal of R, it contains an idempotent f of rank 2. Then it is clear that $f H f$ can be canonically embedded in $\overline{\rho H}$. However, $f H f$ is isomorphic to $\mathrm{M}_{2}(F)$, the

2 by 2 matrix ring over F, where F is the associated field of R. Thus $\overline{\rho H}$ is not commutative, as asserted.

Let $u, x \in \rho H$ and $z \in H$. Then there is a polynomial $g_{x}(t) \in \mathbb{Z}[t]$ (depending on x) so that $\overline{u a}\left(\bar{x}-\bar{x}^{2} g_{\bar{x}}(\bar{x})\right) \overline{b z}=0$ in $\overline{\rho H}$. In view of Theorem 1, either $\overline{u a}=0$ or $\overline{b z}=0$. That is, either $\rho H a \rho H=0$ or $b H \rho H=0$. So either $a \rho=0$ or $b=0$, a contradiction. This proves the theorem.

We turn next to the proof of Theorem 3. For our proof we need a special case of Kharchenko's theorem [11, Theorem 1]. For the convenience of reference, we give its statement here.

Lemma 4 (Kharchenko [11]). Let R be a prime ring and let d be an X-outer derivation of R. Suppose that $\sum_{i=1}^{m} a_{i} d(x) b_{i}+\sum_{j=1}^{n} c_{j} x d_{j}=0$ for all $x \in I$, a nonzero ideal of R, where $a_{i}, b_{i}, c_{j}, d_{j} \in Q$. Then $\sum_{i=1}^{m} a_{i} y b_{i}+$ $\sum_{j=1}^{n} c_{j} x d_{j}=0$ for all $x, y \in R$.

In Lemma 4 we only assume that the linear identity holds on a nonzero ideal I, not on the whole prime ring R. Indeed, we remark that, applying the same argument with some minor modifications, [11, Theorem 1] still remains true even if the linear differential identity considered holds only on a nonzero ideal (instead of holding on the whole prime ring).

Lemma 5. Let R be a prime ring with a nonzero derivation d and e a nontrivial idempotent of Q. Suppose that $d(e x(1-e))=0$ for all $x \in I$, a nonzero ideal of R. Then there exists $b \in Q$ such that $d=\operatorname{ad}(b)$ and $b e=0$.

Proof. By assumption, we have

$$
\begin{equation*}
d(e) x(1-e)+e d(x)(1-e)-e x d(e)=0 \tag{2}
\end{equation*}
$$

for all $x \in I$. Suppose on the contrary that d is X-outer. Applying Lemma 4 to (2) yields

$$
\begin{equation*}
d(e) x(1-e)+e y(1-e)-e x d(e)=0 \tag{3}
\end{equation*}
$$

for all $x, y \in R$. In particular, $e R(1-e)=0$ and so either $e=0$ or $e=1$, which is a contradiction since e is nontrivial. Thus d is X-inner. Write $d=\operatorname{ad}(p)$ for some $p \in Q$. Expanding $d(e x(1-e))=0$ yields $p e x(1-e)=e x(1-e) p$ for all $x \in I$ and hence for all $x \in R[7$, Theorem 2]. It follows from Martindale's lemma [14] that $p e=\beta e$ for some $\beta \in C$.

We set $b=p-\beta \in Q$. Then it is clear that $d=\operatorname{ad}(b)$ and $b e=0$. This proves the lemma.

Proof of Theorem 3. Let $A=\{x \in \rho \mid d(x)=0\}$.Then A is a subring of the ring ρ and ρ is co-radical over A. Set $\bar{\rho}=\rho / \rho \cap \ell_{R}(\rho)$ and let \bar{A} be the canonical image of A in $\bar{\rho}$. It is clear that $\bar{\rho}$ is also co-radical over \bar{A} and \bar{A} is a prime ring [5, Lemma 4]. In view of [1, Theorem 2], either $\bar{\rho}$ is commutative, or $\bar{A}_{\bar{A}}$ is a dense submodule of $\bar{\rho}_{\bar{A}}$.

Suppose that $\bar{\rho}$ is not commutative. Let $x \in \rho$. Then there exists a dense right ideal \bar{I} of \bar{A} such that $\bar{x} \bar{I} \subseteq \bar{A}$, where I denotes the preimage of \bar{I} in A. Let $a_{1} \in I$. There exists an element $a_{2} \in A$ such that $\left(x a_{1}-a_{2}\right) \rho=0$. In particular, $\left(x a_{1}-a_{2}\right) A=0$. Since $d(A)=0$, we conclude that $d(x) a_{1} A=0$. In particular, $\overline{\rho d(x)} \bar{I} \bar{A}=0$. Since $\bar{I} \bar{A}$ is still a dense right ideal of \bar{A}, we conclude that $\overline{\rho d(x)}=0$ in $\bar{\rho}$. That is, $\rho d(x) \rho=0$ for all $x \in \rho$ and, hence, $d(\rho) \rho=0$ follows. In view of Herstein's theorem [10], there exists $b \in Q$ such that $d=\operatorname{ad}(b)$ and $b \rho=0$. Now, by assumption, for each $x \in \rho$ there is a polynomial $g_{x}(t) \in \mathbb{Z}[t]$ (depending on x) so that $d\left(x-x^{2} g_{x}(x)\right)=0$. But $b \rho=0$, so we have $\left(x-x^{2} g_{x}(x)\right) b=0$. Choose a nonzero ideal J of R such that $b J \subseteq R$. Then $\left(x-x^{2} g_{x}(x)\right) b J=0$. In view of Theorem 2, either $\rho b J=0$ or $\rho=e R$, where $e=e^{2} \in R$, such that $e R e$ is a field. The latter case implies that $\bar{\rho}$ is a field, a contradiction. Thus $\rho b J=0$ follows and so $b=0$, a contradiction again.

Thus we may always assume that $\bar{\rho}$ is commutative, that is, $[\rho, \rho] \rho=0$. In view of [13, Proposition], $\rho C=g R C$ for some nonzero idempotent g in the socle of $R C$. Note that each element in $[\rho, \rho]$ has square zero. By assumption, we have $d([\rho, \rho])=0$. Since $g \in \rho C$, we can choose a nonzero ideal I of R such that $I g \subseteq R$ and $g I \subseteq \rho$. Then $g I^{2} g+g I^{2}(1-g) \subseteq \rho$ and so $g I^{2} g I^{2}(1-g)=\left[g I^{2} g, g I^{2}(1-g)\right] \subseteq[\rho, \rho]$. Thus $d\left(g I^{2} g I^{2}(1-g)\right)=0$ follows. Note that $I^{2} g I^{2}$ is a nonzero ideal of R. If $\rho C=R C$, then R is commutative, as desired. Suppose that $\rho C \neq R C$ and hence g is a nontrivial idempotent in $R C$. In view of Lemma 5, we see that $d=\operatorname{ad}(b)$ for some $b \in Q$ such that $b \rho=0$. By assumption, for $x \in \rho$ there is a polynomial $g_{x}(t) \in \mathbb{Z}[t]$ (depending on $\left.x\right)$ so that $0=\left[x-x^{2} g_{x}(x), b\right]=$
$\left(x-x^{2} g_{x}(x)\right) b$. But $\rho b \neq 0$, so, in view of Theorem $2, \rho=e R$, where $e=e^{2} \in R$, such that $e R e$ is a field, proving the theorem.

We turn finally to the proof of Theorem 5. Following the notation given in [2], we let $\operatorname{Alg}=\left\{t^{n}-t^{n+1} p(t) \mid n \geq 1, n \in \mathbb{Z}, p(t) \in \mathbb{Z}[t]\right\}$. A ring R is called a special algebraic extension of its subring A if for each $x \in R$ there is a polynomial $f_{x}(t) \in A l g$, depending on x, such that $f_{x}(x) \in A$. The following theorem we need is a special case of [2, Theorem 1].

Theorem 6. Let R be a noncommutative domain. Suppose that R is a special algebraic extension of its subring A. Then the complete rings of right quotients of R and A coincide.

We need one more lemma in the proof of Theorem 5. Since it is an easy observation, we only give its statement without proof.

Lemma 6. Let R be a domain of characteristic $0, d$ a derivation of R and $a \in R$. Suppose that there is a polynomial $f(t) \in \mathbb{Z}[t]$ with $\operatorname{deg}_{t} f(t)>1$ such that both $d(a) \in \mathcal{Z}(R)$ and $d(f(a)) \in \mathcal{Z}(R)$. Then either $d(a)=0$ or $a \in \mathcal{Z}(R)$.

Proof of Theorem 5. We first dispose of two cases.
Case 1. Suppose that R is a domain of characteristic zero. Let $a \in R$ be such that $d(a) \in \mathcal{Z}(R)$. By assumption, there is a polynomial $p(t) \in \mathbb{Z}[t]$, depending on a^{2}, such that $d\left(a^{2}-a^{4} p\left(a^{2}\right)\right) \in \mathcal{Z}(R)$. In view of Lemma 6 , either $d(a)=0$ or $a \in \mathcal{Z}(R)$. Thus we have proved the conclusion: for $a \in R$ if $d(a) \in \mathcal{Z}(R)$, then either $d(a)=0$ or $a \in \mathcal{Z}(R)$. Set $B=\{a \in R \mid d(a) \in \mathcal{Z}(R)\}$. Now, B is an additive group and since $d(\mathcal{Z}(R)) \subseteq \mathcal{Z}(R), B$ is the union of its two additive subgroups: $\mathcal{Z}(R)$ and $\{a \in R \mid d(a)=0\}$. Thus either $B=\mathcal{Z}(R)$ or $B=\{a \in R \mid d(a)=0\}$.

Suppose first that $B=\mathcal{Z}(R)$. Then, by assumption, for each $x \in$ R there is a polynomial $g_{x}(t) \in \mathbb{Z}[t]$ (depending on x) such that $d(x-$ $\left.x^{2} g_{x}(x)\right) \in \mathcal{Z}(R)$ and, hence, $x-x^{2} g_{x}(x) \in \mathcal{Z}(R)$. Applying Herstein's theorem [8] yields that R is commutative. Suppose next that $B=\{a \in$ $R \mid d(a)=0\}$. Then for each $x \in R$ there is a polynomial $g_{x}(t) \in \mathbb{Z}[t]$ (depending on x) such that $d\left(x-x^{2} g_{x}(x)\right)=0$. In view of Theorem $4, R$ is commutative. Case 1 is then proved.

Case 2. Suppose that R is a domain of characteristic $p>0$. Let $x \in R$. By assumption, there is a polynomial $g_{x}(t) \in \mathbb{Z}[t]$ (depending on x) such that $d\left(x-x^{2} g_{x}(x)\right) \in \mathcal{Z}(R)$ and so $d\left(\left(x-x^{2} g_{x}(x)\right)^{p}\right)=p(x-$ $\left.x^{2} g_{x}(x)\right)^{p-1} d\left(x-x^{2} g_{x}(x)\right)=0$. Thus $\left(x-x^{2} g_{x}(x)\right)^{p} \in \operatorname{ker}(d)$. That is, R is a special algebraic extension of its subring $\operatorname{ker}(d)$. If R is commutative, we are done in this case. Hence, we assume that R is not commutative. In view of Theorem $6, \operatorname{ker}(d)$ is a dense submodule of R as right $\operatorname{ker}(d)$ modules. Let $x \in R$. Choose a dense right ideal ρ of $\operatorname{ker}(d)$ such that $x \rho \subseteq \operatorname{ker}(d)$. Thus $0=d(x \rho)=d(x) \rho$ as $d(\rho)=0$. Since R is a domain, $d(x)=0$ follows. This proves $d=0$, a contradiction.

We turn to the general case. By Case 1 and Case 2, we may assume that R is not a domain. Since R is a prime ring, there is $0 \neq a \in R$ with $a^{2}=0$. Let $x \in R$; then $(a x a)^{2}=0$. Thus, by assumption, $d(a x a) \in \mathcal{Z}(R)$ and so

$$
\begin{equation*}
d(a) x a+a d(x) a+\operatorname{axd}(a) \in \mathcal{Z}(R) \tag{4}
\end{equation*}
$$

Suppose for the moment that d is X-outer. Applying Lemma 4 yields that $d(a) x a+a y a+\operatorname{axd}(a) \in \mathcal{Z}(R)$ for all $x, y \in R$. In particular, $a R a \subseteq \mathcal{Z}(R)$ and so $a=0$, a contradiction. Thus d must be X-inner. Write $d=\operatorname{ad}(b)$ for some $b \in Q$. We now reduce (4) to

$$
\begin{equation*}
b a x a-a x a b \in \mathcal{Z}(R) \tag{5}
\end{equation*}
$$

for all $x \in R$. Suppose for the moment that

$$
\begin{equation*}
b a x a=a x a b \tag{6}
\end{equation*}
$$

for all $x \in R$. In view of Martindale's lemma [14], there exists $\beta \in C$ such that $(b-\beta) a=0$. Since $d=\operatorname{ad}(b)=\operatorname{ad}(b-\beta)$, replacing b by $b-\beta$ we may assume that $b a=0$. For $x \in R$ there exists a polynomial $g_{a x}(t) \in \mathbb{Z}[t]$ such that

$$
\left[b, a x-(a x)^{2} g_{a x}(a x)\right] \in \mathcal{Z}(R)
$$

and so

$$
\begin{equation*}
\left(a x-(a x)^{2} g_{a x}(a x)\right) b=0 \tag{7}
\end{equation*}
$$

for all $x \in R$. Applying Lemma 3 to (7) yields that $R C$ is a strongly primitive ring. Suppose next that baxa - axab $\neq 0$ for some $x \in R$. Applying [6, Theorem 1] we have $\operatorname{dim}_{C} R C=4$. Thus $R C$ is also a strongly primitive ring.

In either case, $R C$ is a primitive ring with nonzero socle H and H possesses nontrivial idempotents as R is not a domain. For each idempotent $e \in H$ we choose a nonzero ideal I of R such that $e I(1-e)+(1-e) I e \subseteq R$. Thus, by assumption, $[b, e x(1-e)] \in \mathcal{Z}(R)$ and $[b,(1-e) x e] \in \mathcal{Z}(R)$ and so $[b,[e, x]] \in \mathcal{Z}(R)$ for all $x \in I$ and hence $[b,[e, x]] \in C$ for all $x \in H$ (see [7, Theorem 2]). Also, the additive subgroup of H generated by all idempotents in H contains $[H, H]$ and, moreover, $[[H, H], H]=[H, H]$ as H is a noncommutative simple ring. Therefore, we have $[b,[H, H]] \subseteq C$, implying that $[b,[Q, Q]] \subseteq C$ by $[7$, Theorem 2] again. It is clear that $[Q, Q]$ is a noncentral Lie ideal of the prime ring Q. Since $b \notin C$, applying [12, Lemma 8] we conclude that char $R=2$ and $\operatorname{dim}_{C} R C=4$. But $R C$ is not a domain, so $R C=Q \cong \mathrm{M}_{2}(C)$. We claim that C is algebraic over $\operatorname{GF}(2)$. Let $\beta \in C$. By assumption, there is a polynomial $g(t) \in$ $\mathbb{Z}[t]$ such that $\left[b, \beta e_{11}-\left(\beta e_{11}\right)^{2} g\left(\beta e_{11}\right)\right] \in C$, implying $[b, y] \in C$, where $y=\left(\beta-\beta^{2} g(\beta)\right) e_{11}$. If $y \notin[R C, R C]$, then $C y+[R C, R C]=R C$ and so $[b, R C] \subseteq C$, implying that $b \in C$, a contradiction. Thus $y \in[R C, R C]$ and so the trace of y is 0 . That is, $\beta-\beta^{2} g(\beta)=0$. Thus β is algebraic over GF(2), as desired. This proves the theorem.

Acknowledgement. The authors would like to express their sincere thanks to the referee for her/his valuable suggestions and for pointing out several misprints, which help to clarify the whole paper.

References

[1] O. K. Babkov, Algebraic extensions of rings and rings of quotients, Algebra i Logika 19 (1) (1980), 5-22.
[2] O. K. Babkov, On rings of quotients of special algebraic extensions of semiprime rings, Soviet Math. Dokl. 29 no. 2 (1984), 368-371.
[3] H. E. Bell, On the commutativity of prime rings with derivations, Quaest. Math. 22 (3) (1999), 329-335.
[4] M. Chacron, A commutativity theorem for rings, Proc. Amer. Math. Soc. 59 (1976), 211-216.
[5] M. Chacron, Co-radical extension of PI-rings, Pacific J. Math. 62 (1976), 61-64.
[6] C.-M. Chang and T.-K. Lee, Derivations and central linear generalized polynomials in prime rings, Southeast Asian Bull. Math. 21 (1997), 215-225.
[7] C.-L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103 (1988), 723-728.
[8] I. N. Herstein, The structure of a certain class of rings, Amer. J. Math. 75 (1953), 864-871.
[9] I. N. Herstein, Topics in Ring Theory, University of Chicago Press, Chicago, 1969.
[10] I. N. Herstein, A condition that a derivation be inner, Rend. Cir. Mat. Palermo Ser. II 37 (1988), 5-7.
[11] V. K. Kharchenko, Differential identities of prime rings, Algebra i Logika 17 (1978), 220-238; Engl. Transl., Algebra and Logic 17 (1978), 154-168.
[12] C. Lanski and S. Montgomery, Lie structure of prime rings of characteristic 2, Pacific J. Math. 42 (1972), 117-136.
[13] T.-K. Lee, Power reduction property for generalized identities of one-sided ideals, Algebra Colloq. 3 (1996), 19-24.
[14] W. S. Martindale, III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576-584.

```
TSIU-KWEN LEE
DEPARTMENT OF MATHEMATICS
NATIONAL TAIWAN UNIVERSITY
TAIPEI }10
TAIWAN
E-mail: tklee@math.ntu.edu.tw
CHING-YUEH PAN
DEPARTMENT OF MATHEMATICS
NATIONAL TAIWAN UNIVERSITY
TAIPEI }10
TAIWAN
E-mail: cypan@math.ntu.edu.tw
```

(Received December 27, 2000; revised September 7, 2001)

