Publ. Math. Debrecen 61 / 1-2 (2002), 75–85

Derivations and co-radical extensions of rings

By TSIU-KWEN LEE (Taipei) and CHING-YUEH PAN (Taipei)

Abstract. A ring R is said to be *co-radical* over a subring A if for each $x \in R$ there exists a polynomial $g_x(t)$ (depending on x) having integral coefficients so that $x - x^2 g_x(x) \in A$. Herstein proved that a ring which is co-radical over its center must be commutative. In this paper we give a generalization of Herstein's theorem for the prime case in terms of derivations with assumptions on one-sided ideals.

\S **1.** Introduction and main results

Throughout this paper all rings are associative, not necessarily with unity. We denote by $\mathbb{Z}[t]$ the polynomial ring with indeterminate t over \mathbb{Z} , the ring of integers. A ring R is called *co-radical* over a subring A if for each $x \in R$ there exists a polynomial $q_x(t) \in \mathbb{Z}[t]$ (depending on x) so that $x - x^2 g_x(x) \in A$. In [8] HERSTEIN proved that a ring which is co-radical over its center must be commutative. In [4] CHACRON gave a generalization of Herstein's theorem for the semiprime case by the use of the cohypercenter T(R) of a ring R. An element $a \in R$ belongs to T(R)if for each $x \in R$ there exists a polynomial $g_x(t) \in \mathbb{Z}[t]$ (depending on x) so that $[a, x - x^2 g_x(x)] = 0$. Chacron proved that if R is a semiprime ring, then T(R) coincides with the center of R. In terms of derivations he just proved that if d is an inner derivation of the semiprime ring Rsatisfying $d(x - x^2 g_x(x)) = 0$ for all $x \in R$, then d = 0. For the general case of derivations, in a recent paper [3] BELL proved the theorem: Let Rbe a prime ring with char $R \neq 2$, and let d be a derivation of R such that $d^3 \neq 0$. If there exists a fixed integer n > 1 such that $d(x - x^n) \in \mathcal{Z}(R)$, the center of R, for all $x \in R$, then R is commutative. The goal of this paper is to extend these results by proving the following theorems.

Mathematics Subject Classification: 16W25, 16N60, 16R50, 16U80.

Key words and phrases: derivation, co-radical, GPI, prime ring, differential identity.

Theorem 1. Let R be a noncommutative prime ring and $a, b \in R$. Suppose that for each $x \in R$, there is a polynomial $g_x(t) \in \mathbb{Z}[t]$ (depending on x) so that $a(x - x^2g_x(x))b = 0$. Then either a = 0 or b = 0.

Theorem 2. Let R be a noncommutative prime ring, ρ a right ideal of R and $a, b \in R$. Suppose that for each $x \in \rho$, there is a polynomial $g_x(t) \in \mathbb{Z}[t]$ (depending on x) so that $a(x - x^2g_x(x))b = 0$. Then $a\rho b = 0$ unless $\rho = eR$, where $e = e^2 \in R$, such that eRe is a field.

Theorem 3. Let R be a prime ring, ρ a nonzero right ideal of Rand d a nonzero derivation of R. Suppose that for each $x \in \rho$, there is a polynomial $g_x(t) \in \mathbb{Z}[t]$ (depending on x) so that $d(x - x^2g_x(x)) = 0$. Then R is commutative except when $\rho = eR$, where $e = e^2 \in R$, such that eRe is a field, and $d = \operatorname{ad}(b)$ and $b\rho = 0$ for some $b \in Q$, the symmetric Martindale quotient ring of R.

As an immediate consequence of Theorem 3 we have the following

Theorem 4. Let R be a prime ring and let d be a nonzero derivation of R. Suppose that for each $x \in R$, there is a polynomial $g_x(t) \in \mathbb{Z}[t]$ (depending on x) so that $d(x - x^2g_x(x)) = 0$. Then R is commutative.

Finally we will extend Theorem 4 to the central case. However, we cannot conclude the commutativity of the prime ring R. The following provides counterexamples.

Examples. Let $R = M_2(C)$, the 2 by 2 matrix ring over a field C, $b \in [R, R] \setminus C$ and d the inner derivation of R defined by the element b. If C is algebraic over GF(2), the Galois field of two elements, then for each $x \in R$, there is a positive integer q = q(x) > 1 (depending on x) so that $d(x - x^q) \in C$.

PROOF. We denote by F the algebraic closure of C and let $S = M_2(F)$. Then $R \subseteq S$. Let $x, y \in [R, R]$. A direct computation proves that $xy + yx = (x + y)^2 - x^2 - y^2 \in C$. Since char R = 2, we have $[x, y] \in C$. That is, $[[R, R], [R, R]] \subseteq C$. In particular, $[b, [R, R]] \subseteq C$. Let $x \in R$. Then there exists an invertible matrix $u \in S$ such that uxu^{-1} is an upper triangular matrix in S. Since F is algebraic over GF(2), there exists a positive integer q = q(x) > 1 such that $uxu^{-1} - ux^qu^{-1}$ is a strictly upper triangular matrix in S. In particular, the trace of $x - x^q \in R$ is zero. Therefore, $x - x^q \in [R, R]$ and so $[b, x - x^q] \in [b, [R, R]] \subseteq C$, as desired. This proves our result.

In fact, the examples above are the only exceptional cases. Indeed, we will prove the following **Theorem 5.** Let R be a prime ring with center $\mathcal{Z}(R)$ and d a nonzero derivation of R. Suppose that for each $x \in R$, there is a polynomial $g_x(t) \in \mathbb{Z}[t]$ (depending on x) so that $d(x - x^2g_x(x)) \in \mathcal{Z}(R)$. Then R is commutative except when $RC \cong M_2(C)$ with C algebraic over GF(2), where C denotes the extended centroid of R.

\S **2.** Proofs of theorems

From now on, R will denote a prime ring with extended centroid Cand symmetric Martindale quotient ring Q. We denote by $\mathcal{Z}(R)$ the center of R and by J(R) the Jacobson radical of R. For $p \in Q$ we denote by ad(p)the inner derivation of Q induced by the element p, that is, ad(p)(x) =[p, x] = px - xp for $x \in Q$. A derivation d of R is called X-inner if d = ad(p)for some $p \in Q$. Otherwise, d is called X-outer. It is well-known that each derivation of R can be uniquely extended to a derivation of Q. We first state a result due to CHACRON [5].

Lemma 1. Let R be a prime ring and $a, b \in R$. Suppose that for each $x \in R$, there is a polynomial $g_x(t) \in \mathbb{Z}[t]$ (depending on x) so that $a(x - x^2q_x(x))b = 0$. If ab = 0, then either a = 0 or b = 0.

PROOF. See the proof of [5, Lemma 3].

Lemma 2. Let R be a noncommutative prime ring and $a \in R$. Suppose that for each $x \in R$, there is a polynomial $g_x(t) \in \mathbb{Z}[t]$ (depending on x) so that $a(x - x^2g_x(x)) = 0$. Then a = 0.

PROOF. Suppose first that $J(R) \neq 0$. Then, by assumption, for each $x \in J(R)$ there is a polynomial $g_x(t) \in \mathbb{Z}[t]$ (depending on x) so that $a(x-x^2g_x(x)) = 0$. Thus $ax(1-xg_x(x)) = 0$. From the fact that $xg_x(x) \in J(R)$ it follows that ax = 0. That is, aJ(R) = 0 and so a = 0 by the primeness of R.

Suppose next that J(R) = 0. We first consider the case that R is a right primitive ring. By the density theorem, R acts densely on $_DV$, where $_DV$ is a left vector space over a division ring D. Suppose that there is a $v \in V$ such that va and v are D-independent. Then we can choose an $x \in R$ such that vax = v and vx = 0. Then $vax^2 = 0$ and so $0 = va(x - x^2g_x(x)) = vax = v$, which is absurd. Therefore, for each $v \in V$ we see that va and v are D-dependent. Now, a standard argument proves that a is central in R. We turn next to the general case. Let P be a right primitive ideal of R. Then R/P is a right primitive ring preserving our assumptions. Thus $\overline{a} = a + P$ is central in R/P and so $[a, R] \subseteq P$. Since J(R) = 0, the intersection of all right primitive ideals of R is zero. Therefore we have [a, R] = 0, implying that $a \in \mathcal{Z}(R)$. If $a \neq 0$, then for each $x \in R$, there is a polynomial $g_x(t) \in \mathbb{Z}[t]$ (depending on x) so that $x - x^2 g_x(x) = 0$. In view of HERSTEIN's theorem [8], R is commutative, a contradiction. This proves the lemma.

PROOF of Theorem 1. Clearly, we may assume that a = b. Denote by ρ the right ideal of R generated by a, that is, $\rho = aR + \mathbb{Z}a$. Set $\overline{\rho} = \rho/\rho \cap \ell_R(\rho)$, where $\ell_R(\rho)$ is the left annihilator of ρ in R. It is clear that $\overline{\rho}$ is still a prime ring. By assumption, for each $\overline{x} \in \overline{\rho}$, there is a polynomial $g_{\overline{x}}(t) \in \mathbb{Z}[t]$ (depending on \overline{x}) so that $\overline{a}(\overline{x} - \overline{x}^2 g_{\overline{x}}(\overline{x})) = 0$. In view of Lemma 2, either $\overline{a} = 0$ or $[\overline{\rho}, \overline{\rho}] = 0$. The first case gives $a^2 = 0$, implying that a = 0 by Lemma 1. The latter case implies that $[\rho, \rho]\rho = 0$ and hence R is a prime GPI-ring. In view of MARTINDALE's theorem [14], RC is a strongly primitive ring, where C is the extended centroid of R. If RC is a division ring, then there is nothing to prove. Suppose that RCis not a division ring. Denote by H the socle of RC. Then H is a simple ring with minimal one-sided ideals and possesses nontrivial idempotents. Let e be an idempotent in H. Choose a nonzero ideal I of R so that $eI + Ie + eIe \subseteq R$. For $x \in I$ we have $ex(1-e) \in R$. Since ex(1-e) is an element of square zero, by assumption we have aex(1-e)a = 0. Thus (1-e)ae = 0 follows. Analogously, ea(1-e) = 0 and hence [a, e] = 0. Denote by E the additive subgroup of H generated by all idempotents in H. In view of [9, Corollary p. 18], $[H, H] \subseteq E$. Thus [a, [H, H]] = 0. By [9, Corollary p. 9], the subring generated by [H, H] is equal to H and so [a, H] = 0. Thus a is central in R. If $a \neq 0$, then for each $x \in R$, there is a polynomial $g_x(t) \in \mathbb{Z}[t]$ (depending on x) so that $x - x^2 g_x(x) = 0$. In view of HERSTEIN's theorem [8], R is a commutative ring, a contradiction. This proves the theorem.

The following lemma is due to BABKOV [1, Lemma 7].

Lemma 3. Let R be a noncommutative prime ring, ρ a nonzero right ideal of R and $a \in R$. Suppose that for each $x \in \rho$, there is a polynomial $g_x(t) \in \mathbb{Z}[t]$ (depending on x) so that $(x - x^2g_x(x))a = 0$. Then a = 0

unless R is a primitive ring with nonzero socle and its associated division ring is a field.

For simplicity, we say that a ring R has the property (*) if it is a primitive ring with nonzero socle and its associated division ring is a field. We are now ready to give the proof of Theorem 2.

PROOF of Theorem 2. Suppose that R does not satisfy the property (*). By assumption we have that axb = 0 for each $x \in \rho$ with $x^2 = 0$.

We first consider the case that ab = 0. Let $x \in \rho$. We claim that axb = 0. Suppose not. By assumption, there is a polynomial $h(x) = x + r_2 x^2 + \cdots + r_k x^k$ with $k \ge 2$ and $r_k x^k \ne 0$, where each r_i is an integer, satisfying

(1)
$$a(x + r_2 x^2 + \dots + r_k x^k)b = 0.$$

By (1), each element in $xbRa(1 + r_2x + \cdots + r_kx^{k-1})$ lies in ρ and has square zero. Thus we have $axbRa(1 + r_2x + \cdots + r_kx^{k-1})b = 0$, implying $a(1 + r_2x + \cdots + r_kx^{k-1})b = 0$ as $axb \neq 0$. Since ab = 0, we have $a(r_2 + r_3x + \cdots + r_kx^{k-2})xb = 0$. Repeating the same process we eventually conclude that $r_kaxb = 0$ and so axb = 0 follows, a contradiction. Hence, $a\rho b = 0$ follows, as desired.

We next consider the general case. Let $x \in \rho$; then $xa \in \rho$. By assumption, there is a polynomial $g_{xa}(t) \in \mathbb{Z}[t]$ so that $a(xa - xaxag_{xa}(xa))b = 0$ and so $(ax - (ax)^2g_{xa}(ax))(ab) = 0$. Since *R* does not satisfy the property (*), applying Lemma 3 to the right ideal $a\rho$ we conclude that ab = 0. Therefore we have $a\rho b = 0$ by the first case.

Finally, when $a\rho b \neq 0$ we must prove that $\rho = eR$, where $e = e^2 \in R$ is such that eRe is a field. Indeed, suppose that $a\rho b \neq 0$; then R has the property (*). Denote by H the socle of R. If ρ is a minimal right ideal of R, then we are done. Thus we may assume that ρ is not minimal, nor is ρH . Since $a\rho b \neq 0$, we have $a\rho Hb \neq 0$ and so there exists an idempotent $g \in \rho H$ such that $ag \neq 0$. Let $r \in R$; then gr(1-g) is an element in ρ with square zero. By assumption, agr(1-g)b = 0. Then agR(1-g)b = 0and so $b = gb \in \rho$. Let $\overline{\rho H} = \rho H/\rho H \cap \ell_R(\rho H)$. We claim that $\overline{\rho H}$ is a noncommutative prime ring. Since ρH is not a minimal right ideal of R, it contains an idempotent f of rank 2. Then it is clear that fHf can be canonically embedded in $\overline{\rho H}$. However, fHf is isomorphic to $M_2(F)$, the 2 by 2 matrix ring over F, where F is the associated field of R. Thus ρH is not commutative, as asserted.

Let $u, x \in \rho H$ and $z \in H$. Then there is a polynomial $g_x(t) \in \mathbb{Z}[t]$ (depending on x) so that $\overline{ua}(\overline{x} - \overline{x}^2 g_{\overline{x}}(\overline{x}))\overline{bz} = 0$ in $\overline{\rho H}$. In view of Theorem 1, either $\overline{ua} = 0$ or $\overline{bz} = 0$. That is, either $\rho Ha\rho H = 0$ or $bH\rho H = 0$. So either $a\rho = 0$ or b = 0, a contradiction. This proves the theorem.

We turn next to the proof of Theorem 3. For our proof we need a special case of KHARCHENKO's theorem [11, Theorem 1]. For the convenience of reference, we give its statement here.

Lemma 4 (KHARCHENKO [11]). Let R be a prime ring and let d be an X-outer derivation of R. Suppose that $\sum_{i=1}^{m} a_i d(x) b_i + \sum_{j=1}^{n} c_j x d_j = 0$ for all $x \in I$, a nonzero ideal of R, where $a_i, b_i, c_j, d_j \in Q$. Then $\sum_{i=1}^{m} a_i y b_i + \sum_{j=1}^{n} c_j x d_j = 0$ for all $x, y \in R$.

In Lemma 4 we only assume that the linear identity holds on a nonzero ideal I, not on the whole prime ring R. Indeed, we remark that, applying the same argument with some minor modifications, [11, Theorem 1] still remains true even if the linear differential identity considered holds only on a nonzero ideal (instead of holding on the whole prime ring).

Lemma 5. Let R be a prime ring with a nonzero derivation d and e a nontrivial idempotent of Q. Suppose that d(ex(1-e)) = 0 for all $x \in I$, a nonzero ideal of R. Then there exists $b \in Q$ such that d = ad(b) and be = 0.

PROOF. By assumption, we have

(2)
$$d(e)x(1-e) + ed(x)(1-e) - exd(e) = 0$$

for all $x \in I$. Suppose on the contrary that d is X-outer. Applying Lemma 4 to (2) yields

(3)
$$d(e)x(1-e) + ey(1-e) - exd(e) = 0$$

for all $x, y \in R$. In particular, eR(1-e) = 0 and so either e = 0 or e = 1, which is a contradiction since e is nontrivial. Thus d is X-inner. Write d = ad(p) for some $p \in Q$. Expanding d(ex(1-e)) = 0 yields pex(1-e) = ex(1-e)p for all $x \in I$ and hence for all $x \in R$ [7, Theorem 2]. It follows from MARTINDALE's lemma [14] that $pe = \beta e$ for some $\beta \in C$. We set $b = p - \beta \in Q$. Then it is clear that d = ad(b) and be = 0. This proves the lemma.

PROOF of Theorem 3. Let $A = \{x \in \rho \mid d(x) = 0\}$. Then A is a subring of the ring ρ and ρ is co-radical over A. Set $\overline{\rho} = \rho/\rho \cap \ell_R(\rho)$ and let \overline{A} be the canonical image of A in $\overline{\rho}$. It is clear that $\overline{\rho}$ is also co-radical over \overline{A} and \overline{A} is a prime ring [5, Lemma 4]. In view of [1, Theorem 2], either $\overline{\rho}$ is commutative, or $\overline{A}_{\overline{A}}$ is a dense submodule of $\overline{\rho}_{\overline{A}}$.

Suppose that $\overline{\rho}$ is not commutative. Let $x \in \rho$. Then there exists a dense right ideal \overline{I} of \overline{A} such that $\overline{xI} \subseteq \overline{A}$, where I denotes the preimage of \overline{I} in A. Let $a_1 \in I$. There exists an element $a_2 \in A$ such that $(xa_1 - a_2)\rho = 0$. In particular, $(xa_1 - a_2)A = 0$. Since d(A) = 0, we conclude that $d(x)a_1A = 0$. In particular, $\overline{\rho d(x)} \overline{I} \overline{A} = 0$. Since $\overline{I} \overline{A}$ is still a dense right ideal of \overline{A} , we conclude that $\overline{\rho d(x)} = 0$ in $\overline{\rho}$. That is, $\rho d(x)\rho = 0$ for all $x \in \rho$ and, hence, $d(\rho)\rho = 0$ follows. In view of Herstein's theorem [10], there exists $b \in Q$ such that $d = \operatorname{ad}(b)$ and $b\rho = 0$. Now, by assumption, for each $x \in \rho$ there is a polynomial $g_x(t) \in \mathbb{Z}[t]$ (depending on x) so that $d(x - x^2g_x(x)) = 0$. But $b\rho = 0$, so we have $(x - x^2g_x(x))b = 0$. Choose a nonzero ideal J of R such that $bJ \subseteq R$. Then $(x - x^2g_x(x))bJ = 0$. In view of Theorem 2, either $\rho bJ = 0$ or $\rho = eR$, where $e = e^2 \in R$, such that eRe is a field. The latter case implies that $\overline{\rho}$ is a field, a contradiction. Thus $\rho bJ = 0$ follows and so b = 0, a contradiction again.

Thus we may always assume that $\overline{\rho}$ is commutative, that is, $[\rho, \rho]\rho = 0$. In view of [13, Proposition], $\rho C = gRC$ for some nonzero idempotent gin the socle of RC. Note that each element in $[\rho, \rho]$ has square zero. By assumption, we have $d([\rho, \rho]) = 0$. Since $g \in \rho C$, we can choose a nonzero ideal I of R such that $Ig \subseteq R$ and $gI \subseteq \rho$. Then $gI^2g + gI^2(1-g) \subseteq \rho$ and so $gI^2gI^2(1-g) = [gI^2g, gI^2(1-g)] \subseteq [\rho, \rho]$. Thus $d(gI^2gI^2(1-g)) = 0$ follows. Note that I^2gI^2 is a nonzero ideal of R. If $\rho C = RC$, then Ris commutative, as desired. Suppose that $\rho C \neq RC$ and hence g is a nontrivial idempotent in RC. In view of Lemma 5, we see that d = ad(b)for some $b \in Q$ such that $b\rho = 0$. By assumption, for $x \in \rho$ there is a polynomial $g_x(t) \in \mathbb{Z}[t]$ (depending on x) so that $0 = [x - x^2g_x(x), b] =$ $(x - x^2 g_x(x))b$. But $\rho b \neq 0$, so, in view of Theorem 2, $\rho = eR$, where $e = e^2 \in R$, such that eRe is a field, proving the theorem.

We turn finally to the proof of Theorem 5. Following the notation given in [2], we let $Alg = \{t^n - t^{n+1}p(t) \mid n \ge 1, n \in \mathbb{Z}, p(t) \in \mathbb{Z}[t]\}$. A ring R is called a *special algebraic extension* of its subring A if for each $x \in R$ there is a polynomial $f_x(t) \in Alg$, depending on x, such that $f_x(x) \in A$. The following theorem we need is a special case of [2, Theorem 1].

Theorem 6. Let R be a noncommutative domain. Suppose that R is a special algebraic extension of its subring A. Then the complete rings of right quotients of R and A coincide.

We need one more lemma in the proof of Theorem 5. Since it is an easy observation, we only give its statement without proof.

Lemma 6. Let R be a domain of characteristic 0, d a derivation of R and $a \in R$. Suppose that there is a polynomial $f(t) \in \mathbb{Z}[t]$ with $\deg_t f(t) > 1$ such that both $d(a) \in \mathcal{Z}(R)$ and $d(f(a)) \in \mathcal{Z}(R)$. Then either d(a) = 0 or $a \in \mathcal{Z}(R)$.

PROOF of Theorem 5. We first dispose of two cases.

Case 1. Suppose that R is a domain of characteristic zero. Let $a \in R$ be such that $d(a) \in \mathcal{Z}(R)$. By assumption, there is a polynomial $p(t) \in \mathbb{Z}[t]$, depending on a^2 , such that $d(a^2 - a^4p(a^2)) \in \mathcal{Z}(R)$. In view of Lemma 6, either d(a) = 0 or $a \in \mathcal{Z}(R)$. Thus we have proved the conclusion: for $a \in R$ if $d(a) \in \mathcal{Z}(R)$, then either d(a) = 0 or $a \in \mathcal{Z}(R)$. Set $B = \{a \in R \mid d(a) \in \mathcal{Z}(R)\}$. Now, B is an additive group and since $d(\mathcal{Z}(R)) \subseteq \mathcal{Z}(R), B$ is the union of its two additive subgroups: $\mathcal{Z}(R)$ and $\{a \in R \mid d(a) = 0\}$. Thus either $B = \mathcal{Z}(R)$ or $B = \{a \in R \mid d(a) = 0\}$.

Suppose first that $B = \mathcal{Z}(R)$. Then, by assumption, for each $x \in R$ there is a polynomial $g_x(t) \in \mathbb{Z}[t]$ (depending on x) such that $d(x - x^2g_x(x)) \in \mathcal{Z}(R)$ and, hence, $x - x^2g_x(x) \in \mathcal{Z}(R)$. Applying Herstein's theorem [8] yields that R is commutative. Suppose next that $B = \{a \in R \mid d(a) = 0\}$. Then for each $x \in R$ there is a polynomial $g_x(t) \in \mathbb{Z}[t]$ (depending on x) such that $d(x - x^2g_x(x)) = 0$. In view of Theorem 4, R is commutative. Case 1 is then proved.

Case 2. Suppose that R is a domain of characteristic p > 0. Let $x \in R$. By assumption, there is a polynomial $g_x(t) \in \mathbb{Z}[t]$ (depending on x) such that $d(x - x^2g_x(x)) \in \mathcal{Z}(R)$ and so $d((x - x^2g_x(x))^p) = p(x - x^2g_x(x))^{p-1}d(x - x^2g_x(x)) = 0$. Thus $(x - x^2g_x(x))^p \in \ker(d)$. That is, R is a special algebraic extension of its subring $\ker(d)$. If R is commutative, we are done in this case. Hence, we assume that R is not commutative. In view of Theorem 6, $\ker(d)$ is a dense submodule of R as right $\ker(d)$ -modules. Let $x \in R$. Choose a dense right ideal ρ of $\ker(d)$ such that $x\rho \subseteq \ker(d)$. Thus $0 = d(x\rho) = d(x)\rho$ as $d(\rho) = 0$. Since R is a domain, d(x) = 0 follows. This proves d = 0, a contradiction.

We turn to the general case. By Case 1 and Case 2, we may assume that R is not a domain. Since R is a prime ring, there is $0 \neq a \in R$ with $a^2 = 0$. Let $x \in R$; then $(axa)^2 = 0$. Thus, by assumption, $d(axa) \in \mathcal{Z}(R)$ and so

(4)
$$d(a)xa + ad(x)a + axd(a) \in \mathcal{Z}(R).$$

Suppose for the moment that d is X-outer. Applying Lemma 4 yields that $d(a)xa + aya + axd(a) \in \mathcal{Z}(R)$ for all $x, y \in R$. In particular, $aRa \subseteq \mathcal{Z}(R)$ and so a = 0, a contradiction. Thus d must be X-inner. Write d = ad(b) for some $b \in Q$. We now reduce (4) to

$$baxa - axab \in \mathcal{Z}(R)$$

for all $x \in R$. Suppose for the moment that

$$baxa = axab$$

for all $x \in R$. In view of MARTINDALE's lemma [14], there exists $\beta \in C$ such that $(b-\beta)a = 0$. Since $d = \operatorname{ad}(b) = \operatorname{ad}(b-\beta)$, replacing b by $b-\beta$ we may assume that ba = 0. For $x \in R$ there exists a polynomial $g_{ax}(t) \in \mathbb{Z}[t]$ such that

$$\left[b, ax - (ax)^2 g_{ax}(ax)\right] \in \mathcal{Z}(R)$$

and so

(7)
$$(ax - (ax)^2 g_{ax}(ax))b = 0$$

for all $x \in R$. Applying Lemma 3 to (7) yields that RC is a strongly primitive ring. Suppose next that $baxa - axab \neq 0$ for some $x \in R$. Applying [6, Theorem 1] we have $\dim_C RC = 4$. Thus RC is also a strongly primitive ring.

In either case, RC is a primitive ring with nonzero socle H and H possesses nontrivial idempotents as R is not a domain. For each idempotent $e \in H$ we choose a nonzero ideal I of R such that $eI(1-e) + (1-e)Ie \subseteq R$. Thus, by assumption, $[b, ex(1-e)] \in \mathcal{Z}(R)$ and $[b, (1-e)xe] \in \mathcal{Z}(R)$ and so $[b, [e, x]] \in \mathcal{Z}(R)$ for all $x \in I$ and hence $[b, [e, x]] \in C$ for all $x \in H$ (see [7, Theorem 2]). Also, the additive subgroup of H generated by all idempotents in H contains [H, H] and, moreover, [[H, H], H] = [H, H] as H is a noncommutative simple ring. Therefore, we have $[b, [H, H]] \subseteq C$, implying that $[b, [Q, Q]] \subset C$ by [7, Theorem 2] again. It is clear that [Q, Q] is a noncentral Lie ideal of the prime ring Q. Since $b \notin C$, applying [12, Lemma 8] we conclude that char R = 2 and dim_C RC = 4. But RCis not a domain, so $RC = Q \cong M_2(C)$. We claim that C is algebraic over GF(2). Let $\beta \in C$. By assumption, there is a polynomial $g(t) \in$ $\mathbb{Z}[t]$ such that $[b, \beta e_{11} - (\beta e_{11})^2 g(\beta e_{11})] \in C$, implying $[b, y] \in C$, where $y = (\beta - \beta^2 g(\beta))e_{11}$. If $y \notin [RC, RC]$, then Cy + [RC, RC] = RC and so $[b, RC] \subseteq C$, implying that $b \in C$, a contradiction. Thus $y \in [RC, RC]$ and so the trace of y is 0. That is, $\beta - \beta^2 q(\beta) = 0$. Thus β is algebraic over GF(2), as desired. This proves the theorem.

Acknowledgement. The authors would like to express their sincere thanks to the referee for her/his valuable suggestions and for pointing out several misprints, which help to clarify the whole paper.

References

- O. K. BABKOV, Algebraic extensions of rings and rings of quotients, Algebra i Logika 19 (1) (1980), 5–22.
- [2] O. K. BABKOV, On rings of quotients of special algebraic extensions of semiprime rings, *Soviet Math. Dokl.* 29 no. 2 (1984), 368–371.
- [3] H. E. BELL, On the commutativity of prime rings with derivations, Quaest. Math. 22 (3) (1999), 329–335.
- [4] M. CHACRON, A commutativity theorem for rings, Proc. Amer. Math. Soc. 59 (1976), 211–216.
- [5] M. CHACRON, Co-radical extension of PI-rings, Pacific J. Math. 62 (1976), 61–64.

- [6] C.-M. CHANG and T.-K. LEE, Derivations and central linear generalized polynomials in prime rings, Southeast Asian Bull. Math. 21 (1997), 215–225.
- [7] C.-L. CHUANG, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103 (1988), 723–728.
- [8] I. N. HERSTEIN, The structure of a certain class of rings, Amer. J. Math. 75 (1953), 864–871.
- [9] I. N. HERSTEIN, Topics in Ring Theory, University of Chicago Press, Chicago, 1969.
- [10] I. N. HERSTEIN, A condition that a derivation be inner, Rend. Cir. Mat. Palermo Ser. II 37 (1988), 5–7.
- [11] V. K. KHARCHENKO, Differential identities of prime rings, Algebra i Logika 17 (1978), 220–238; Engl. Transl., Algebra and Logic 17 (1978), 154–168.
- [12] C. LANSKI and S. MONTGOMERY, Lie structure of prime rings of characteristic 2, Pacific J. Math. 42 (1972), 117–136.
- [13] T.-K. LEE, Power reduction property for generalized identities of one-sided ideals, Algebra Collog. 3 (1996), 19–24.
- [14] W. S. MARTINDALE, III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576–584.

TSIU-KWEN LEE DEPARTMENT OF MATHEMATICS NATIONAL TAIWAN UNIVERSITY TAIPEI 106 TAIWAN

E-mail: tklee@math.ntu.edu.tw

CHING-YUEH PAN DEPARTMENT OF MATHEMATICS NATIONAL TAIWAN UNIVERSITY TAIPEI 106 TAIWAN

E-mail: cypan@math.ntu.edu.tw

(Received December 27, 2000; revised September 7, 2001)