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Weakly-Berwald spaces

By S. BÁCSÓ (Debrecen) and R. YOSHIKAWA (Gamou-gun Shiga)

Abstract. We have two notions of Landsberg spaces and Douglas spaces as gen-
eralizations of Berwald spaces. Z. Shen introduced the notion of weakly affine spray
([12]), and in accordance this the first author gave the definition of a weakly-Berwald
space ([4]) as another generalization of Berwald spaces. In this paper we will study the
weakly-Berwald spaces.

In Sections 1 and 2, we shall summarize the properties of Landsberg spaces, Dou-
glas spaces, projectively flat Finsler spaces and two-dimensional Finsler spaces respec-
tively. In Section 3 we shall define weakly-Berwald spaces and investigate the three gen-
eralizations of Berwald spaces. Our main result is Corollary of Theorem 4. In Section 4,
we shall show some examples of weakly-Berwald spaces. Especially, it is remarkable
that the condition (4.6) for Randers spaces to be weakly-Berwald spaces is very simple.

1. Landsberg spaces, Douglas spaces
and projectively flat Finsler spaces

Let Mn be an n-dimensional differential manifold and let Fn=(Mn, L)
be an n-dimensional Finsler space where L is a fundamental function. Let
gij = ∂̇i∂̇jL

2/2 be the fundamental tensor, where the symbol ∂̇i means
∂/∂yi and we define Gi as

Gi = {yr(∂r∂̇iL
2)− ∂iL

2}/4,

and Gi = gijGj where the symbol ∂i means ∂/∂xi and (gij) is the inverse
matrix of (gij). The coefficients (Gj

i
k, Gi

j) of the Berwald connection BΓ
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are defined as Gi
j = ∂̇jG

i and Gj
i
k = ∂̇kGi

j . The h- and v-covariant
derivations with respect to BΓ are denoted by ( ; ) and ( ‖ ) respectively.

The Ricci formulas which show the commutative law of covariant dif-
ferentiation are written as follows:

(1.1)





Xi
;j;k −Xi

;k;j = XmHm
i
jk −Xi

‖mRj
m

k,

Xi
;j‖k −Xi

‖k;j = XmGm
i
jk,

Xi
‖j‖k −Xi

‖k‖j = 0.

The (h)v-torsion Rj
h

k and the h- and hv-curvature tensors Hi
h

jk are given
by

(1.2)





Rj
h

k = A(jk){∂kGh
k −Gj

h
rG

r
k},

Hi
h

jk = Rj
h

k‖i,

Gi
h

jk = ∂̇iGj
h

k,

where A(jk) means the interchange of the indices j, k and subtraction. We
introduce two tensors Hij = Hi

r
jr and Gij = Gi

r
jr, which are called the

h- and hv-Ricci tensor respectively.
The C-tensor Cijk is defined by Cijk = (∂̇kgij)/2. The symbol ( | )

means the h-covariant derivation with respect to the Cartan connection.
If a Finsler space satisfies the equations Cijk|0 = Cijk|sys = 0, we call it
Landsberg space. Using the second formula in (1.1), we get the equation
2Cijk|0 = −yrGi

r
jk. Therefore, Landsberg spaces are also characterized

by the equations yrGi
r
jk = 0.

Let us define a Douglas space. A Finsler space is said to be of Douglas
type or a Douglas space, if Dij = Giyi−Gjyi are homogeneous polynomials
in (yi) of degree three. The Douglas tensor is defined as follows ([5]):

(1.3) Di
h

jk = Gi
h

jk − [Gij‖kyh + {Gijδ
h

k + (i, j, k)}]/(n + 1)

where (i, j, k) indicate the terms obtained from the preceding term by
cyclic permutation of the indices i, j, k.

The first author and M. Matsumoto proved ([3]):
A Finsler space is a Douglas space if and only if the Douglas tensor

vanishes identically.
We now define a projectively flat Finsler space.
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We consider two Finsler spaces Fn = (Mn, L) and F̄n = (Mn, L̄)
on a common underlying manifold Mn. If any geodesic on Fn is also a
geodesic on F̄n, the change L → L̄ of the metric is said to be projective.
It is well-known ([5]) that L → L̄ is a projective change if and only if there
exists a (1)p-homogeneous Finsler scalar field P (x, y) on Mn satisfying

Ḡi(x, y) = Gi(x, y) + P (x, y)yi.

The scalar field P is called the projective factor.
If there exists a projective change of a Finsler space Fn = (Mn, L)

to F̄n = (Mn, L̄) such that the Finsler space F̄n is a locally Minkowski
space, Fn is called projectively flat.

The Weyl tensor is given by

Wh
ij = Ri

h
j + A(ij){yhHij + δh

iHj}/(n + 1)

where Hi = (nH0i +Hi0)/(n−1). It is well-known that the Douglas tensor
and the Weyl tensor are projectively invariant. In a Minkowski space, the
Douglas tensor and the Weyl tensor vanish identically.

2. Two-dimensional Finsler spaces

Let F 2 = (M2, L) be a two-dimensional Finsler space with the funda-
mental function L. Let (li, mi) be a Berwald frame of the space F 2 which
satisfies the following equations:

lrlr = 1, mrmr = ε,

where ε = ±1. There exists a scalar I which satisfies the equation LCijk =
Imimjmk. We call the scalar I a main scalar of the space.

For a scalar field S we adopt the notions

S;1 = S;il
i, S;2 = εS;im

i

S.1 = LS‖ili, S.2 = εLS‖imi.

It is noted that S.i vanishes for a (0)p-homogeneous scalar S.
The h-curvature tensor Ri

h
jk of CΓ is written ([5]) as follows:

(2.1) Ri
h

jk = R(limh − lhmi)(ljmk − lkmj),
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where the scalar R is called the h-scalar curvature. The (v)h-torsion tensor
Ri

h
j(= R0

h
jk) of CΓ coincides with that of BΓ, so that by (2.1) we get ([5])

(2.2) Rj
h

k = LRmh(ljmk − lkmj).

We have ([3])

(2.3) LGi
r
jk = (−2I;1l

r + I2m
r)mimjmk,

where I2 = I;2 + I;1.2. By (2.3) we obtain

(2.4) LGij = εI2mimj .

Applying the v-derivative ‖k with respect to the Berwald connection BΓ
to both sides of (2.4), we get

L2Gij‖k = ε(2εII2 + I2.2)mimjmk−(2.5)

− εI2(limjmk + miljmk + mimj lk).

Substituting (2.3), (2.4) and (2.5) in (1.3), we get ([3], [5])

(2.6) 3LDi
h

jk = −[6I;1 + (2II2 + εI2.2)]lhmimjmk.

Next we consider the curvature tensor Hi
h

jk. Since Hi
h

jk = Rj
h

k‖i, using
(2.2) we get ([5])

Hi
h
jk = {R(limh −mil

h) + R.2mim
h}(ljmk − lkmj).

Thus we get
Hij = εR(lilj + εmimj) + εR.2milj .

Since Hi = 2H0i + Hi0, we get

Hi = εL(3Rli + R.2mi).

In virtue of the equation mentioned above, we get

Hi;j = εL(3R;1lilj + 3R;2limj

+ R.2;1milj + R.2;2mimj − εR.2I;1mimj).

Since Kij = Hi;j −Hj;i, we get

(2.7) Kij = εL(3R;2 −R.2;1)(limj −milj).
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Applying the h-derivation |r with respect to the Cartan connection CΓ to
the equation LCijk = Imimjmk, we get

(2.8) LCijk|r = (I;1lr + I;2mr)mimjmk.

Transvecting yr to (2.8), we get

(2.9) Cijk|0 = I;1mimjmk.

3. The relation between Berwald spaces and their three
generalizations, and weakly-Berwald spaces with some conditions

A Berwald space is a space which satisfies the condition Gi
h

jk = 0,
that is to say, whose coefficients Gi

h
j of the Berwald connection are func-

tions of the position (xi) alone. Therefore the equations yrGi
r
jk = 0 hold.

2Gi = Gr
i
sy

rys are homogeneous polynomials in (yi) of degree three.
Then we can consider the notions of Landsberg spaces and Douglas spaces
as two generalizations of Berwald spaces.

The notion of weakly-Berwald spaces is the third generalization of
Berwald spaces.

Definition. If a Finsler space satisfies the condition Gij = 0, we call
it a weakly-Berwald space.

In this section, we shall investigate the relation between Berwald
spaces and their three generalizations, and weakly-Berwald spaces with
some conditions.

By equation (2.8), it follows that any two-dimensional Finsler space
F 2 is a Berwald space, if and only if the equations I;1 = I;2 = 0 hold. In
virtue of equations (2.9), (2.6) and (2.4), it follows that two-dimensional
Landsberg spaces, two-dimensional Douglas spaces and weakly-Berwald
spaces are characterized by

I;1 = 0, 6I;,1 + 2II2 + εI2.2 = 0 and I2 = 0

respectively.

(1) Weakly–Berwald and Douglas spaces. In [7], M. Fukui and T. Ya-
mada proved that

Berwald spaces are characterized by Gij = 0 in Finsler spaces with
vanishing Douglas tensors.

In other words, we can say that
A Finsler space Fn (n ≥ 2) is a weakly-Berwald and Douglas space,

if and only if the space is a Berwald space.
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(2) Weakly-Berwald and Landsberg spaces. Suppose that a Finsler
space is a weakly-Berwald and Landsberg space.

If the dimension of the space is two, then from (3.1) we get

(3.2) I2 = 0 and I;1 = 0.

Substituting the second equation in (3.2) into the first one, we get I;2 = 0.
It follows that the space F 2 is a Berwald space. Conversely, suppose that a
two-dimensional Finsler space F 2 is a Berwald space. From I;1 = I;2 = 0,
we get I2 = 0. Therefore we obtain

Theorem 1. A two-dimensional Finsler space F 2 is a weakly-Berwald

space and a Landsberg space, if and only if the space is a Berwald space.

For a Finsler space Fn (n ≥ 3), from the conditions Gij = 0 and
yrGi

r
jk = 0, we could not get the equation Gi

r
jk = 0. Namely, a Finsler

space Fn which is a weakly-Berwald and Landsberg space may not be a
Berwald space.

(3) Douglas and Landsberg spaces. Berwald proved ([5]) that
[B1] A two-dimensional Finsler space F 2 is a Douglas and Landsberg

space, if and only if the space is a Berwald space.
The first author and M. Matsumoto proved ([1], [2])
If a Finsler space Fn (n ≥ 2) is a Landsberg and Douglas space, then

it is a Berwald space. Conversely a Berwald space is a Landsberg and
Douglas space.

(4) Weakly-Berwald and projectively flat spaces. We consider a Finsler
space which is a weakly-Berwald and projectively flat space. Berwald
proved ([6]) that

[B2] An n-dimensional Finsler space Fn is projectively flat, if and
only if

n ≥ 3 : Di
h

jk = 0 and Wh
jk = 0,

n = 2 : Di
h

jk = 0 and Kjk = 0,

where Kij = Hi;j −Hj;i.
If a Finsler space Fn (n ≥ 3) is weakly-Berwald and projectively flat,

we get
Gij = 0, Di

h
jk = 0 and Wh

jk = 0.
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From Szabó’s theorem ([13]):
A Finsler space is of scalar curvature if and only if the Weyl torsion

tensor Wh
ij vanishes identically.

From this and the result of the case (1), it follows that if a Finsler
space Fn (n ≥ 3) is weakly-Berwald and projectively flat, then the space
is a Berwald space of scalar curvature. Therefore, from S. Numata’s
theorem ([8]):

If a Finsler space Fn (n ≥ 3) is a Berwald space and of scalar cur-
vature K, then it is a Riemannian space or a locally Minkowski space,
according as K 6= 0 or K = 0, we get the following

Theorem 2. A weakly-Berwald and projectively flat Finsler space

Fn (n ≥ 3) is a Riemannian space of non-zero constant curvature or a

Minkowski space.

If the dimension of the weakly-Berwald and projectively flat Finsler
space is two, from Berwald’s Theorem [B2] mentioned above and the for-
mula (2.3), we get Di

h
jk = 0 and 3R;2 − R.2;1 = 0. In the case (3), from

Berwald’s Theorem [B1] it follows that the space is a Berwald space and
the equation 3R;2 −R.2;1 = 0 holds. From the Ricci formula, we get

(3.3) S;1;2 − S;2;1 = −RSθ,

where Sθ = ∂S/∂θ and θ is the angle of Landsberg which satisfies the
partial differential equation Lθ|i = mi where the symbol ( | ) stands for
the v-covariant derivation with respect to the Cartan connection.

Putting S = I in (3.3), we get

I;1;2 − I;2;1 = −RIθ.

Since the space is a Berwald space, we have I;1 = I;2 = 0 and get

RIθ = 0.

From this equation we get R = 0 or Iθ = 0. If R = 0, it follows that the
space is a Minkowski space. If Iθ = 0, we get I.2 = Iθ = 0. The main
scalar of the space is constant. Therefore, we get
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Theorem 3. A weakly-Berwald and projectively flat Finsler space F 2

is a Minkowski space or a space whose main scalar is constant and the

scalar curvature R satisfies the equation

3R;2 −R.2;1 = 0.

(5) Weakly-Berwald spaces of scalar curvature. We consider a space
which is weakly-Berwald and of scalar curvature.

We know that the equation

(3.4) (Hkj −Hjk)‖l = Glj;k −Glk;j.

generally holds ([14]).
A Finsler space Fn (n ≥ 3) is of scalar curvature K ([5]) if and only

if there exists a scalar field K satisfying

Ri0k = L2Khik.

Differentiating the above equation by yi, we get

Rj
h

k = Kjh
h

k −Khhh
j ,

where

Kj = L(LK‖j/3 + Klj).

Contracting h and k, we get

Rj
s
s = (n− 1)L(LK‖j/3 + Klj)− L(LK‖j/3 + Klj) + LKlj .

From the definition of Hij and (1.2), we get

Hij = (2n− 4)LliK‖j/3 + (n− 1)LljK‖i
+ (n− 1)Klilj + (n− 2)L2K‖j‖i/3 + (n− 1)Khij .

Therefore we get

(3.5) Hij −Hji = (n + 1)L(ljK‖i − liK‖j)/3.

Now, supposing that a space is of constant curvature, by equation
(3.5) we get Hki−Hik = 0 and from (3.4) the equations Glj;k −Glk;j = 0,
that is to say, the tensor Glj;k is completely symmetric in i, j, k.
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Conversely, suppose that the tensor Glj;k is completely symmetric in
the indices i, j, k. Then from (3.4) we get

(3.6) (Hkj −Hjk)‖l = 0.

From the equations (3.5) and (3.6) we get

(3.7) gklK‖j − LK‖k‖llj = gjlK‖k − LK‖j‖llk.

Transvecting the equation (3.7) by yj , we obtain

(3.8) −LK‖k‖l = lK‖k + K‖llk

using K‖jyj = 0. Substituting the equation (3.8) in the equation (3.7), we
get

(3.9) gklK‖j + llljK‖k + lj lkK‖l = gjlK‖k + lj lkK‖l + lllkK‖j .

Transvecting the equation (3.9) by gkl, we get

nK‖j = δk
jK‖k + K‖j .

Therefore we get
(n− 2)K‖j = 0.

It follows that if the dimension n is more than two, then equation K‖j = 0
holds, that is to say, the scalar curvature is a function of the position (xi)
alone. Furthermore, we know (Proposition 26.1 in [9]) that if a Finsler
space Fn (n ≥ 3) is of scalar curvature which is a function of the position
alone, then the space is of constant curvature.

Thus we get

Theorem 4. A Finsler space Fn (n ≥ 3) of scalar curvature is of

constant curvature if and only if the tensor Gij;k is completely symmetric

in the indices i, j, k.

In particular, in a weakly-Berwald space of scalar curvature the equa-
tion Glj = 0 holds. Therefore we get

Corollary. A weakly-Berwald space Fn (n ≥ 3) of scalar curvature

is of constant curvature.
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4. Examples of the weakly-Berwald spaces

Suppose that a Finsler space (M,L) is a space with (α, β)-metric. In
this section, the symbol (/) stands for h-covariant derivation with respect
to the Riemannian connection in the space (M,α) and γj

i
k stand for the

Christoffel symbols in the space (M, α). From [1] it is known that the Gi

of the space is given by





2Gi = γ0
i
0 + 2Bi

Bi = (E/α)yi + (αLβ/Lα)si
0−

− (αLαα/Lα)C∗{(yi/α)− (α/β)bi},
(4.1)

where




E = (βLβ/L)C∗

C∗ = {αβ(r00Lα − 2αs0Lβ)}/{2(β2Lα + αγ2Lαα)}
γ2 = b2α2 − β2

rij = (bi/j + bj/i)/2, sij = (bi/j − bj/i)/2, si = srib
r.

(4.2)

First we suppose that L = α + β, then we get

Lα = 1, Lα,α = 0 and Lβ = 1.

Substituting the above formula in (4.2), we get

C∗ = α(r00 − 2αs0)/2β and E = α(r00 − 2αs0)/2(α + β).

Substituting the above equation in (4.1), we get

Bi = {(r00 − 2αs0)/2(α + β)}yi + 2αsi
0

and

2Gi = γ0
i
0 + {(r00 − 2αs0)/(α + β)}yi + 2αsi

0B
i.(4.3)

Differentiating the equation (4.3) by yi, we get

2Gi
j = 2γ0

i
0 + ∂j{(r00 − 2αs0)/(α + β)}yi(4.4)

+ {(r00 − 2αs0)/2(α + β)}δi
j + (2yj/α)si

0 + 2αi
j .



Weakly-Berwald spaces 229

Contracting i and j in (4.4), we obtain

(4.5) 2Gr
r = γ0

r
r + (n + 1){(r00 − 2αs0)/(α + β)}

using S00 = 0 and sija
ij = 0.

From (4.5) it follows that the necessary and sufficient condition for
the space (M,L) to be a weakly-Berwald space is that the term (r00 −
2αs0)/(α + β) is a homogeneous polynomial in yi of degree one. Putting
A = (r00 − 2αs0)/(α + β), we get

α(A + 2s0) + (βA− r00) = 0.

Since A + 2s0 and βA− r00 are homogeneous polynomials in yi of degree
one and of degree two respectively, and α is irrational in yi, we get

A + 2s0 = βA− r00 = 0.

By the equations mentioned above, we get

(4.6) r00 + 2βs0 = 0,

that is to say,

(bi/j + bj/i) + bi(br/j − bj/r)br + bj(br/i − bi/r)br = 0.

Therefore we get

Theorem 5. The necessary and sufficient condition for a Randers

space (M, α+β) to be a weakly-Berwald space is that the vector bi satisfies

the equation (4.6).

Secondly, we suppose that L = α2/β, then we get

Lα = 2α/β, Lα,α = 2/β and Lβ = −α2/β2.

Substituting the above formulas in (4.2), we get

C∗ = (βr00 − α2s0)/2αb2 and E = −(βr00 − α2s0)/2αb2.
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Therefore we obtain

Bi = −{(βr00 − α2s0)/α2b2}yi − (α2/2β)si
0

+ {(βr00 − α2s0)/αb2}bi

and

2Gi = γ0
i
0 − {2(βr00 − α2s0)/α2b2}yi − (α2/β)si

0(4.7)

+ {(βr00 − α2s0)/αb2}bi.

Differentiating the equation (4.7) by yi, we get

2Gi
j = 2γ0

i
j − ∂j{2(βr00 − α2s0)/α2b2}yi(4.8)

− {2(βr00 − α2s0)/α2b2}δi
j−

− {(2yjβ − α2bj)/β2}si
0 + (α2/β)si

j+

+ {(bjr00 + 2βr0j + 2yjs0 + α2sj)/βb2}bi.

Contracting i and j in (4.8), we get

2Gr
r = 2γ0

r
r − 2(n + 1)(βr00 − α2b2)− 2{ns0 − r0sb

s}/b2,

using S00 = 0, srb
r and sija

ij = 0.
Since the term ns0 − r0sb

s is a homogeneous polynomial in (yi) of
degree one, it follows that the necessary and sufficient condition for a
Kropina space (M,α2/β) to be a weakly-Berwald space is that the term
βr00/α2 is a homogeneous polynomial in (yi) of degree one, that is to say,

(4.9)
(birj0 + bjri0 + βrij)α6 − (bir00 + 2βri0)aj0α

4

−(bjr00 + 2βrj0)ai0α
4 − βr00aj0α

4 + 2βα2r00ai0aj0 = 0.

Thus we get

Theorem 6. The necessary and sufficient condition for a Kropina

space (M, α2/β) to be a weakly-Berwald space is that the vector bi and

the tensor aij satisfy the equation (4.9).
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INSTITUTE OF MATHEMATICS AND INFORMATICS
UNIVERSITY OF DEBRECEN
H–4010 DEBRECEN, P.O. BOX 12
HUNGARY

E-mail: bacsos@math.klte.hu

R. YOSHIKAWA
HINO HIGH SCHOOL
150 KOUZUKEDA HINO–CHO
GAMOU–GUN SHIGA, 529–1642
JAPAN

E-mail: ryozo@mx.biwa.ne.jp

(Received February 5, 2002; revised March 21, 2002)


