Publ. Math. Debrecen
61 /1-2 (2002), 219-231

Weakly-Berwald spaces

By S. BACSO (Debrecen) and R. YOSHIKAWA (Gamou-gun Shiga)

Abstract. We have two notions of Landsberg spaces and Douglas spaces as gen-
eralizations of Berwald spaces. Z. SHEN introduced the notion of weakly affine spray
([12]), and in accordance this the first author gave the definition of a weakly-Berwald
space ([4]) as another generalization of Berwald spaces. In this paper we will study the
weakly-Berwald spaces.

In Sections 1 and 2, we shall summarize the properties of Landsberg spaces, Dou-
glas spaces, projectively flat Finsler spaces and two-dimensional Finsler spaces respec-
tively. In Section 3 we shall define weakly-Berwald spaces and investigate the three gen-
eralizations of Berwald spaces. Our main result is Corollary of Theorem 4. In Section 4,
we shall show some examples of weakly-Berwald spaces. Especially, it is remarkable
that the condition (4.6) for Randers spaces to be weakly-Berwald spaces is very simple.

1. Landsberg spaces, Douglas spaces
and projectively flat Finsler spaces

Let M™ be an n-dimensional differential manifold and let F"=(M", L)
be an n-dimensional Finsler space where L is a fundamental function. Let

9ij = @(%LQ /2 be the fundamental tensor, where the symbol d; means
0/0y" and we define G; as

Gi = {y"(8,0,L%) — 8;L*} /4,

and G* = g¥G; where the symbol 9; means 9/dx" and (g*/) is the inverse
matrix of (g;;). The coefficients (G, G*;) of the Berwald connection BT

Mathematics Subject Classification: 53B40.
Key words and phrases: Finsler spaces, Douglas spaces, projectively flat spaces, weakly-
Berwald spaces, Randers spaces, Kropina spaces.

This work was supported by the grant number OTKA-32058.



220 S. Bécsé and R. Yoshikawa

are defined as Gij = @Gi and Gjik = 5kGij. The h- and wv-covariant
derivations with respect to BI" are denoted by (; ) and (|| ) respectively.

The Ricci formulas which show the commutative law of covariant dif-
ferentiation are written as follows:

X‘i';k - X;ik;j - XmHmijk - Xj

] [lm

ijk'7
(1.1) X;ij||k — Xﬁk;j = Xmeijky
X — Xy = 0-

The (h)v-torsion th  and the h- and hv-curvature tensors H;" jk are given
by

thk: = A(jk){ékth — GthGrk},
(1.2) Hi" 1. = Ri" i,
G = 0,Gi",

where A(;r) means the interchange of the indices j, k and subtraction. We
introduce two tensors H;; = H;";, and G;; = G;" -, which are called the
h- and hv-Ricci tensor respectively.

The C-tensor Cyjp, is defined by Cyjr = (drgi;)/2. The symbol ()
means the h-covariant derivation with respect to the Cartan connection.
If a Finsler space satisfies the equations Cjjrj0 = Cijrsy® = 0, we call it
Landsberg space. Using the second formula in (1.1), we get the equation
2C;ijkj0 = —yrGi"jk. Therefore, Landsberg spaces are also characterized
by the equations y,G;" jr = 0.

Let us define a Douglas space. A Finsler space is said to be of Douglas
type or a Douglas space, if D¥ = Gy’ —GJy* are homogeneous polynomials
in (y*) of degree three. The Douglas tensor is defined as follows ([5]):

(1.3) Dihjk = Gihjk — [Gij”kyh + {Gijéhk: + (i,j, k)}]/(n + 1)

where (7, j,k) indicate the terms obtained from the preceding term by
cyclic permutation of the indices i, j, k.

The first author and M. MATSUMOTO proved ([3]):

A Finsler space is a Douglas space if and only if the Douglas tensor
vanishes identically.

We now define a projectively flat Finsler space.
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We consider two Finsler spaces F* = (M",L) and F* = (M", L)
on a common underlying manifold M™. If any geodesic on F™ is also a
geodesic on F", the change L — L of the metric is said to be projective.
It is well-known ([5]) that L — L is a projective change if and only if there
exists a (1)p-homogeneous Finsler scalar field P(z,y) on M™ satisfying

Gi(xvy) - Gi(xmy) + P({L‘, y)yi'

The scalar field P is called the projective factor.

If there exists a projective change of a Finsler space F" = (M™, L)
to F™ = (M™, L) such that the Finsler space F" is a locally Minkowski
space, F'™ is called projectively flat.

The Weyl tensor is given by

Wi = R"; + Aujy{y"Hij + 6" H;}/(n+1)

where H; = (nHo;+ H;0)/(n—1). It is well-known that the Douglas tensor
and the Weyl tensor are projectively invariant. In a Minkowski space, the
Douglas tensor and the Weyl tensor vanish identically.

2. Two-dimensional Finsler spaces

Let F2 = (M?, L) be a two-dimensional Finsler space with the funda-
mental function L. Let (I, m*) be a Berwald frame of the space F'? which
satisfies the following equations:

", =1, m'm, = ¢,

where € = £1. There exists a scalar I which satisfies the equation LCjj;, =
Im;m;my,. We call the scalar I a main scalar of the space.
For a scalar field S we adopt the notions

S;l = S;ili, S;Q = ES;imi
5.1 = LS”ili, 5_2 = aLS”imi.

It is noted that S ; vanishes for a (0)p-homogeneous scalar S.
The h-curvature tensor R;";; of CT is written ([5]) as follows:

(21) Rih]’k = R(llmh — lhmi)(ljmk — lkmj),
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where the scalar R is called the h-scalar curvature. The (v)h-torsion tensor
R;";(= Ro" ;1) of CT coincides with that of BT, so that by (2.1) we get ([5])

(2.2) R, = LRm"(I;my, — lym;).
We have ([3])
(23) LGiTjk = (—2[;1” + IQmT)mimjmk,

where Iy = I, + I,1.2. By (2.3) we obtain
(24) LG” = €Igmimj.

Applying the v-derivative ||k with respect to the Berwald connection BT
to both sides of (2.4), we get

(2.5) L2Gink = 8(25[[2 + Ig.g)mimjmk—

— Efg(limjmk + m,;ljmk + mzmjlk)
Substituting (2.3), (2.4) and (2.5) in (1.3), we get ([3], [5])
(26) 3LDihjk = —[6[;1 + (2[[2 + 5[2.2)]lhmimjmk.

Next we consider the curvature tensor H;" jk- Since H;" ik = th k|ji> using
(2.2) we get ([5])

Hi?k = {R(limh —m;l") + R,gmimh}(ljmk — lgm;).

Thus we get
Hij = eR(lilj + emym;) + e R am;l;.

Since H; = 2Hy; + H;o, we get
In virtue of the equation mentioned above, we get

HZ,] = EL(?)R’llll] + 3R,21’Lm]

+ R,g;lmilj + R.Q;Qmimj — 5R,2L1mimj).
Since Kij = H,';j — Hj;’iy we get

(27) Kij == 8L(3R;2 — R,g;l)(limj — mzl])
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Applying the h-derivation |r with respect to the Cartan connection CT to
the equation LCjj i, = Im;mjmy, we get

(2.8) LCZ»jk‘r = ([;1ZT + I;QmT)mimjmk.
Transvecting y” to (2.8), we get

(2.9) Cijk\[) = I;lmimjmk.

3. The relation between Berwald spaces and their three
generalizations, and weakly-Berwald spaces with some conditions

A Berwald space is a space which satisfies the condition Gihjk =0,
that is to say, whose coefficients G;" ;j of the Berwald connection are func-
tions of the position (z*) alone. Therefore the equations ¥, G;" j& = 0 hold.
2G" = G,'sy"y* are homogeneous polynomials in (y') of degree three.
Then we can consider the notions of Landsberg spaces and Douglas spaces
as two generalizations of Berwald spaces.

The notion of weakly-Berwald spaces is the third generalization of
Berwald spaces.

Definition. If a Finsler space satisfies the condition G;; = 0, we call
it a weakly-Berwald space.

In this section, we shall investigate the relation between Berwald
spaces and their three generalizations, and weakly-Berwald spaces with
some conditions.

By equation (2.8), it follows that any two-dimensional Finsler space
F? is a Berwald space, if and only if the equations I.; = I., = 0 hold. In
virtue of equations (2.9), (2.6) and (2.4), it follows that two-dimensional
Landsberg spaces, two-dimensional Douglas spaces and weakly-Berwald
spaces are characterized by

I;l =0, 6[;’1 4+ 215 +elbo,=0 and I, =0

respectively.

(1) Weakly—Berwald and Douglas spaces. In [7], M. Fukur and T. YA-
MADA proved that

Berwald spaces are characterized by G;; = 0 in Finsler spaces with
vanishing Douglas tensors.

In other words, we can say that

A Finsler space F™ (n > 2) is a weakly-Berwald and Douglas space,
if and only if the space is a Berwald space.
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(2) Weakly-Berwald and Landsberg spaces. Suppose that a Finsler
space is a weakly-Berwald and Landsberg space.
If the dimension of the space is two, then from (3.1) we get

(3.2) In=0 and I;=0.

Substituting the second equation in (3.2) into the first one, we get I.o = 0.
It follows that the space F'? is a Berwald space. Conversely, suppose that a
two-dimensional Finsler space F? is a Berwald space. From [.; = I.5 = 0,
we get Io = 0. Therefore we obtain

Theorem 1. A two-dimensional Finsler space F? is a weakly-Berwald
space and a Landsberg space, if and only if the space is a Berwald space.

For a Finsler space F™ (n > 3), from the conditions G;; = 0 and
yrG;" i1 = 0, we could not get the equation G;";; = 0. Namely, a Finsler
space F'™ which is a weakly-Berwald and Landsberg space may not be a
Berwald space.

(3) Douglas and Landsberg spaces. Berwald proved ([5]) that

[B1] A two-dimensional Finsler space F? is a Douglas and Landsberg
space, if and only if the space is a Berwald space.

The first author and M. MATSUMOTO proved ([1], [2])

If a Finsler space F™ (n > 2) is a Landsberg and Douglas space, then
it is a Berwald space. Conversely a Berwald space is a Landsberg and
Douglas space.

(4) Weakly-Berwald and projectively flat spaces. We consider a Finsler
space which is a weakly-Berwald and projectively flat space. Berwald
proved ([6]) that

[B2] An n-dimensional Finsler space F™ is projectively flat, if and
only if

n>3: Dihjkzo and WhijO,
n=2: D" =0 and K =0,

where Kij = Hi;j — Hj;i-
If a Finsler space F" (n > 3) is weakly-Berwald and projectively flat,
we get

Gi]‘ = 0, Dihjk =0 and Whjk =0.
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From SzABO’s theorem ([13]):

A Finsler space is of scalar curvature if and only if the Weyl torsion
tensor Whij vanishes identically.

From this and the result of the case (1), it follows that if a Finsler
space F" (n > 3) is weakly-Berwald and projectively flat, then the space
is a Berwald space of scalar curvature. Therefore, from S. NUMATA’s
theorem ([8]):

If a Finsler space F™ (n > 3) is a Berwald space and of scalar cur-
vature K, then it is a Riemannian space or a locally Minkowski space,
according as K # 0 or K =0, we get the following

Theorem 2. A weakly-Berwald and projectively flat Finsler space
F™ (n > 3) is a Riemannian space of non-zero constant curvature or a
Minkowski space.

If the dimension of the weakly-Berwald and projectively flat Finsler
space is two, from Berwald’s Theorem [B2] mentioned above and the for-
mula (2.3), we get Dihjk =0 and 3R,2 — R21 = 0. In the case (3), from
Berwald’s Theorem [B1] it follows that the space is a Berwald space and
the equation 3R, — R 2.1 = 0 holds. From the Ricci formula, we get

(33) 5;1;2 — 5;2;1 = —RS@,

where Sy = 95/00 and 0 is the angle of Landsberg which satisfies the

partial differential equation L6|; = m; where the symbol (|) stands for

the v-covariant derivation with respect to the Cartan connection.
Putting S = I in (3.3), we get

I;l;2 - I;2;l — *RIQ
Since the space is a Berwald space, we have I,y = I, = 0 and get
RIy=0.

From this equation we get R = 0 or Iy = 0. If R = 0, it follows that the
space is a Minkowski space. If Iy = 0, we get I5 = Iy = 0. The main
scalar of the space is constant. Therefore, we get
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Theorem 3. A weakly-Berwald and projectively flat Finsler space F*?
is a Minkowski space or a space whose main scalar is constant and the
scalar curvature R satisfies the equation

3R;2 — R‘Q;l = 0.

(5) Weakly-Berwald spaces of scalar curvature. We consider a space
which is weakly-Berwald and of scalar curvature.
We know that the equation

(3.4) (Hij — Hjk) i = Gijr — Gy,

generally holds ([14]).
A Finsler space F™ (n > 3) is of scalar curvature K ([5]) if and only
if there exists a scalar field K satisfying

Riox = L*Khyg.
Differentiating the above equation by y*, we get
R, = K ", — Kb,

where

Kj = L(LK);/3 + Kl;).
Contracting h and k, we get
R;*s = (n—1)L(LK);/3+ Kl;) — L(LK;/3 + Kl;) + LKl;.

From the definition of H;; and (1.2), we get

Hij = (2n —4)LI;K);/3 + (n — 1) LI; K;

+ (n— 1)Kl + (n — 2) LK ;:/3 + (n — 1) K hy;.

Therefore we get
(3.5) Hij — Hj; = (n+ 1) L(;K); — LK) ;) /3.

Now, supposing that a space is of constant curvature, by equation
(3.5) we get Hy; — H;;, = 0 and from (3.4) the equations Gy, — G, =0,
that is to say, the tensor G, is completely symmetric in 7, j, k.
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Conversely, suppose that the tensor Gy;.;, is completely symmetric in
the indices 4, j, k. Then from (3.4) we get

(3.6) (Hy; — ij)lll =0.
From the equations (3.5) and (3.6) we get
(3.7) gu K5 — LEjkply = 950Kk = LK il
Transvecting the equation (3.7) by y’, we obtain
(3.8) _LKHkHl = lKHk + K”llk
using K5’ = 0. Substituting the equation (3.8) in the equation (3.7), we
get
(3.9) g K| + Ul Kye + Gl Ky = g K+ Lle K + Ll K

Transvecting the equation (3.9) by g*, we get
k
nk; = 0% Ky + Kj;-

Therefore we get
(n — 2)KHj = 0.

It follows that if the dimension n is more than two, then equation K ; =0
holds, that is to say, the scalar curvature is a function of the position (z*)
alone. Furthermore, we know (Proposition 26.1 in [9]) that if a Finsler
space F™ (n > 3) is of scalar curvature which is a function of the position
alone, then the space is of constant curvature.

Thus we get

Theorem 4. A Finsler space F™ (n > 3) of scalar curvature is of
constant curvature if and only if the tensor Gj, is completely symmetric
in the indices i, j, k.

In particular, in a weakly-Berwald space of scalar curvature the equa-
tion Gj; = 0 holds. Therefore we get

Corollary. A weakly-Berwald space F" (n > 3) of scalar curvature
is of constant curvature.
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4. Examples of the weakly-Berwald spaces

Suppose that a Finsler space (M, L) is a space with (o, §)-metric. In
this section, the symbol (,) stands for h-covariant derivation with respect
to the Riemannian connection in the space (M, «) and v;*; stand for the
Christoffel symbols in the space (M, «). From [1] it is known that the G*
of the space is given by

(4.1) B’ = (E/a)y' + (aLg/La)s'0o—
- (O‘Laa/La)C*{(yi/a) - (a/ﬂ)bi},
where
E = (BLa/L)C"
C* = {af(rooLa — 2a50Lp)}/{2(6*La + @7’ Laa)}
,YQ — b2 2 ﬂ2
rij = (bigj +057i) /2, sij = (bigj —bj/i) /2, si = spib".

(4.2)

First we suppose that L = a + (3, then we get
Lyo=1 Lya=0 and Lg=1.
Substituting the above formula in (4.2), we get
C* = a(roo — 2as0)/26 and E = a(roo — 2asg)/2(a + ().

Substituting the above equation in (4.1), we get

B' = {(roo — 2as0)/2(c + 8)}y' + 2as’
and

(4.3) 2G" = vo'o + {(roo — 2as0)/(a + B)}y' + 25’0 B".

Differentiating the equation (4.3) by v, we get

(4.4) 2Gij = 2’)/0io + aj{(Too — 20[80)/(0[ + B)}yl
+{(ro0 — 200)/2(ar + B)}8"; + (29;/a)s’o + 20



Weakly-Berwald spaces 229

Contracting 7 and j in (4.4), we obtain

(4.5) 2G" =" + (n + 1){(roo — 2as0)/(a + 5)}

using Spg = 0 and sija"j =0.

From (4.5) it follows that the necessary and sufficient condition for
the space (M, L) to be a weakly-Berwald space is that the term (rop —
2a50) /(o + f3) is a homogeneous polynomial in y° of degree one. Putting
A = (roo — 2asg) /(o + ), we get

Oé(A + 280) + (ﬁA - 1"00) =0.

Since A + 25 and BA — 799 are homogeneous polynomials in y* of degree
one and of degree two respectively, and « is irrational in 3¢, we get

A+2s9g=[FA—r90=0.
By the equations mentioned above, we get
(4.6) roo + 28s0 = 0,
that is to say,
(biyj +b57i) +bi(brsj —bj/)b" + bj(by i — b )b" = 0.

Therefore we get

Theorem 5. The necessary and sufficient condition for a Randers
space (M, a+3) to be a weakly-Berwald space is that the vector b; satisfies
the equation (4.6).

Secondly, we suppose that L = o2/, then we get
Lo =2a/B, Lao=2/3 and Lg=—a*/3.
Substituting the above formulas in (4.2), we get

C* = (Broo — a®sg)/2ab* and E = —(Brop — a?sg)/2ab>.
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Therefore we obtain

B! = —{(,67‘0() - 01250)/042b2}yi - (042/2,8)55
+ {(Broo — a280)/ab2}bi

(4.7) 2G" = 0’0 — {2(Broo — a”s0)/a’b*}y' — (a®/B)si,
+ {(Broo — a*sq) /ab®}b'.

Differentiating the equation (4.7) by v, we get

(4.8) 2G; = 270" — 9;{2(Broo — a*s0)/a?b*}y’
—{2(Broo — a2so)/oz2()2}5ij—
—{(2y; 8 — ®b;)/B*}s'0 + (o /B)s"j+
+ {(bjroo + 28ro; + 2yjs0 + a’s;) /GO .

Contracting 7 and j in (4.8), we get
2G", = 2v", — 2(n + 1)(Broo — a?b?) — 2{nsg — rosb°} /b,

using Spg = 0, s,-b" and sijaij = 0.

Since the term nsg — rosb® is a homogeneous polynomial in (y*) of
degree one, it follows that the necessary and sufficient condition for a
Kropina space (M, a?/3) to be a weakly-Berwald space is that the term
Broo/a? is a homogeneous polynomial in () of degree one, that is to say,

(49) (birjo + bjrio + Brij)a’ — (bireo + 2Bri0)ajoa’
—(bjroo + 257"1‘0)&@'0044 - 57"00&]'0044 + 23(127"00%‘0%‘0 =0.

Thus we get

Theorem 6. The necessary and sufficient condition for a Kropina
space (M, a?/3) to be a weakly-Berwald space is that the vector b; and
the tensor a;; satisfy the equation (4.9).
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