On the Terai-Jeśmanowicz conjecture

ZHENFU CAO and XIAOLEI DONG (Shanghai)

Abstract

Let $a, b, c \in \mathbb{N}$ be fixed satisfying $a^{2}+b^{2}=c^{r}$ with $\operatorname{gcd}(a, b)=1$ and r odd ≥ 3. In this paper, we prove that (A) if $b \equiv 3(\bmod 4), 2 \| a$ and $b \geq 25.1 a$, then the Diophantine equation (1) $a^{x}+b^{y}=c^{z}$ has only the positive integer solution $(x, y, z)=(2,2, r) ;(\mathrm{B})$ if $a=\left|V_{r}\right|, b=\left|U_{r}\right|, c=m^{2}+1$, where the integers U_{r}, V_{r} satisfy $(m+\sqrt{-1})^{r}=V_{r}+U_{r} \sqrt{-1}$, and $b \equiv 3(\bmod 4), 2 \| a$ and b is a prime, then equation (1) has only the positive integer solution $(x, y, z)=(2,2, r)$.

§1. Introduction

Let \mathbb{Z} and \mathbb{N} be the sets of integers and positive integers respectively. In [16], [17], N. Terai conjectured that if $a, b, c, p, q, r \in \mathbb{N}$ are fixed, and $a^{p}+b^{q}=c^{r}$, where $p, q, r \geq 2$, and $\operatorname{gcd}(a, b)=1$, then the Diophantine equation

$$
\begin{equation*}
a^{x}+b^{y}=c^{z}, \quad x, y, z \in \mathbb{N} \tag{1}
\end{equation*}
$$

has only the solution $(x, y, z)=(p, q, r)$. In [2], we point out that the condition $\max (a, b, c)>7$ should be added to the hypotheses of the conjecture. In fact, we see that the equation $\left(2^{n}-1\right)^{x}+2^{y}=\left(2^{n}+1\right)^{z}$ has two solutions $(x, y, z)=(1,1,1)$ and $(2, n+2,2)$ for any $1<n \in \mathbb{N}$. So, we suggest that the conjecture should be modified as follows.

Mathematics Subject Classification: 11D61.
Key words and phrases: exponential diophantine equation.
This project was supported by China Postdoctoral Science Foundation and the National Natural Science Foundation of China.

Conjecture. If $a, b, c, p, q, r \in \mathbb{N}$ with $a^{p}+b^{q}=c^{r}, a, b, c, p, q, r \geq 2$ and $\operatorname{gcd}(a, b)=1$, then Diophantine equation (1) has only the solution $(x, y, z)=(p, q, r)$ with $x, y, z>1$.

For $p=q=r=2$ the above statement was conjectured previously by JeŚmanowicz [6]. We shall use the term Terai-Jeśmanowicz conjecture for the above conjecture. Some recent results on the Terai-Jeśmanowicz conjecture are as follows:
(A) Terai [16], Le [8] and the authors [2], [5] considered the case $p=q=2, r=3$, and for

$$
\begin{equation*}
a=m^{3}-3 m, \quad b=3 m^{2}-1, \quad c=m^{2}+1 \tag{2}
\end{equation*}
$$

where $2 \mid m \in \mathbb{N}$, they proved that
(A1) if b is an odd prime, and there is a prime l such that $m^{2}-3 \equiv 0$ $(\bmod l)$ and $e \equiv 0(\bmod 3)$, where e is the order of $2 \operatorname{modulo} l$, then the Terai-Jeśmanowicz conjecture holds (see [16]).
(A2) if b is an odd prime and $4 \nmid m$, then the Terai-Jeśmanowicz conjecture holds (see [8]).
(A3) if b is an odd prime, then the Terai-Jeśmanowicz conjecture holds (see [5]). And if c is a prime, then the Terai-Jeśmanowicz conjecture also holds (see [2], [5]).
(B) Terai [17] and the authors [2], [5] also considered the case $p=$ $q=2, r=5$, and for

$$
\begin{equation*}
a=m\left|m^{4}-10 m^{2}+5\right|, \quad b=5 m^{4}-10 m^{2}+1, \quad c=m^{2}+1 \tag{3}
\end{equation*}
$$

where $2 \mid m \in \mathbb{N}$, they proved that
(B1) if b is an odd prime and there is an odd prime l such that $a b \equiv 0$ $(\bmod l)$ and $e \equiv 0(\bmod 5)$, where e is the order of c modulo l, then the Terai-Jeśmanowicz conjecture holds (see [17]).
(B2) if b is an odd prime, then the Terai-Jeśmanowicz conjecture holds (see [5]). And if c is a prime, then the Terai-Jeśmanowicz conjecture holds (see [2], [5]).
(C) One of the authors [2] also proved that if $p=q=2,2 \nmid r$, $c \equiv 5(\bmod 8), b \equiv 3(\bmod 4)$ and c is a prime power, then the TeraiJeśmanowicz conjecture holds. In a recent paper of LE [9], we see that Le only got a special case of the result of [2].

Recently, Terai [18] also considered the case $p=q=2,2 \nmid r \geq 3$, he proved that if $b \equiv 3(\bmod 8), 2 \| a,\left(\frac{a}{l}\right)=-1$ and $b \geq 30 a$, where $l>1$ is a divisor of b and $\left(\frac{*}{*}\right)$ denotes the Jacobi symbol, then the TeraiJeśmanowicz conjecture holds.

In this paper, we prove the following further results.
Theorem 1. Let $p=q=2$ and r odd ≥ 3. Suppose that $b \equiv 3$ $(\bmod 4), 2 \| a$ and $b \geq 25.1 a$, then the Terai-Jeśmanowicz conjecture holds.

This is an improvement of Theorem 1 of Terai [18].
From Lemma 1 of [16], we know that $a=n\left(3 m^{2}-n^{2}\right), b=m \times$ $\left(m^{2}-3 n^{2}\right), c=m^{2}+n^{2}$ are all primitive solutions of $a^{2}+b^{2}=c^{3}$, where $m, n \in \mathbb{N}$ with $\operatorname{gcd}(m, n)=1$.

Corollary to Theorem 1. Suppose that $a=n\left(3 m^{2}-n^{2}\right), b=m \times$ $\left(m^{2}-3 n^{2}\right), c=m^{2}+n^{2}$, where $m, n \in \mathbb{N}$ with $\operatorname{gcd}(m, n)=1$. If $m \equiv 3$ $(\bmod 4), 2 \| n$ and $m>71.68 n$, then equation (1) has only the solution $(x, y, z)=(2,2,3)$.

Theorem 2. Let $m, r \in \mathbb{N}$ with $2 \nmid r, r>1$, define the integers U_{r}, V_{r} by $(m+\sqrt{-1})^{r}=V_{r}+U_{r} \sqrt{-1}$. If $a=\left|V_{r}\right|, b=\left|U_{r}\right|, c=m^{2}+1$ and if $m \equiv 2(\bmod 4), b \equiv 3(\bmod 4)$ and b is a prime, then equation (1) has only the solution $(x, y, z)=(2,2, r)$.

In Theorem 2, taking $r=3$, we obtain the result of Le [8]. If $r=7$, then we have from Theorem 2 that

Corollary to Theorem 2. Let

$$
\begin{gathered}
a=m\left|m^{6}-21 m^{4}+35 m^{2}-7\right| \\
b=7 m^{6}-35 m^{4}+21 m^{2}-1, \quad c=m^{2}+1,
\end{gathered}
$$

where $2<m \in \mathbb{N}$. If $m \equiv 2(\bmod 4)$ and b is a prime, then equation (1) has only the solution $(x, y, z)=(2,2,7)$.

In addition, we have also the following two results.
Theorem 3. If $m \in \mathbb{N}$ with $m>1$, then the Diophantine equation

$$
\begin{equation*}
A^{2 m}+B^{2}=C^{4}, \quad A, B, C \in \mathbb{Z}, \operatorname{gcd}(A, B)=1,2 \mid A \tag{4}
\end{equation*}
$$

has no solution with $A B \neq 0$.

Theorem 4. If $m \in \mathbb{N}$ with $m>3$, then the Diophantine equation

$$
\begin{equation*}
A^{2 m}+B^{4}=C^{2}, \quad A, B, C \in \mathbb{Z}, \operatorname{gcd}(A, B)=1,2 \mid B \tag{5}
\end{equation*}
$$

has no solution with $A B \neq 0$.
Clearly, Theorems 3 and 4 can be applied to Terai-Jesmanowicz conjecture.

§2. Proof of Theorem 1 and its corollary

We will use the following lemmas to prove Theorem 1 and its corollary.
Lemma 1. Let $a, b, c, p, q, r \in \mathbb{N}$ satisfy the hypotheses of the TeraiJeśmanowicz conjecture. If $p=q=2,2 \nmid r, c \equiv 5(\bmod 8)$ and $b \equiv 3$ $(\bmod 4)$, then $2|x, 2| y$ in equation (1).

Proof. See [2].
Lemma 2. Let $a, b, c \in \mathbb{N}$ be fixed satisfying $a^{2}+b^{2}=c^{r}$ with $\operatorname{gcd}(a, b)=1$ and r odd ≥ 3. Suppose that $b \equiv 3(\bmod 4), 2 \| a$. If equation (1) has solutions (x, y, z), then $x=2,2 \mid y, 2 \nmid z$.

Proof. Lemma 2 uses Theorem 3 and 4, whose proofs will be given in the last Section.

From $b \equiv 3(\bmod 4), 2 \| a, a^{2}+b^{2}=c^{r}$ and r odd, we see that $c \equiv$ $5(\bmod 8)$. So, if equation (1) has solutions (x, y, z) then we get from Lemma 1 that $2|x, 2| y$.

Case (i): z is odd. Then, by arguing mod 8 , we have from (1) that $a^{x}+1 \equiv 5(\bmod 8)$, and so $x=2$ since $2 \| a$.

Case (ii): z is even. We can assume that $x=2 X, y=2 Y, z=2 Z$, where $X, Y, Z \in \mathbb{N}$. Then from (1), we have

$$
a^{X}=2 u v, b^{Y}=u^{2}-v^{2}, c^{Z}=u^{2}+v^{2},
$$

where $u, v \in \mathbb{N}$ with $\operatorname{gcd}(u, v)=1,2 \nmid u+v$.
Since $2 \| a$, we have $X>1$. If $X>2$, then $u v \equiv 0(\bmod 4)$ and so $c^{Z} \equiv$ $1(\bmod 8)$, we get $2 \mid Z$. Then equation (1) leads to $a^{2 X}+\left(b^{Y}\right)^{2}=\left(c^{Z / 2}\right)^{4}$, which is impossible by Theorem 3. Hence $X=2$, and by Theorem 4, we get $Y \leq 3$.

If $Y=1$, then from (1), we have $a^{4}+b^{2}=c^{2 Z}$. So, we get

$$
a^{2}\left(a^{2}-1\right)=\left(a^{4}+b^{2}\right)-\left(a^{2}+b^{2}\right)=c^{2 Z}-c^{r}=c^{r}\left(c^{2 Z-r}-1\right)
$$

Hence, we see that $c^{r} \mid a^{2}-1$ since $\operatorname{gcd}(a, c)=1$. And so

$$
c^{r} \leq a^{2}-1<a^{2}+b^{2}=c^{r}
$$

a contradiction.
If $Y=2$, then (1) gives $a^{4}+b^{4}=c^{2 Z}$, which is impossible (see [14], p. 37).

If $Y=3$, then (1) gives $a^{4}+b^{6}=c^{2 Z}$. So, we get

$$
\begin{equation*}
b^{2}\left(2 a^{2}+b^{2}-b^{4}\right)=\left(a^{2}+b^{2}\right)^{2}-\left(a^{4}+b^{6}\right)=c^{2 r}-c^{2 Z} \tag{6}
\end{equation*}
$$

Clearly, $r \neq Z$. Hence, if $r>Z$ then we see from (6) that $b^{2} \mid c^{2 r-2 Z}-1$. So, (6) gives

$$
2 a^{2}+b^{2}-b^{4}=c^{2 Z} \cdot \frac{c^{2 r-2 Z}-1}{b^{2}} \geq c^{2 Z}=a^{4}+b^{6}
$$

which is impossible. If $r<Z$, then (6) gives

$$
b^{4}-2 a^{2}-b^{2}=c^{2 r} \cdot \frac{c^{2 Z-2 r}-1}{b^{2}} \geq c^{2 r}>a^{4}+b^{4}
$$

which is also impossible. The proof is complete.
Lemma 3. Let $a, b, c, p, q, r \in \mathbb{N}$ satisfy the hypotheses of the TeraiJeśmanowicz conjecture, $b>a>1, c \geq 3$ and $q \geq p$. Let n be a given positive integer with $p \leq n \leq 1722$. If $b \geq \mu a^{p / q}$ and the equation

$$
a^{n}+b^{y}=c^{z}, \quad y, z \in \mathbb{N}
$$

has solutions y, z with $(y, n) \neq(q, p)$, then $y<n+q-p$, where

$$
\begin{gathered}
\mu=\left\{\exp \left(\frac{\delta}{\frac{n}{\log c}+M}\right)-1\right\}^{-1 / q} \\
M=1060.29+105.53\left(\frac{1}{\log b}+\frac{1}{\log c}\right)+765.39(\log b \log c)^{-1 / 2} \\
+\frac{\log 81+12.26}{\log b \log c}+\frac{\log (\log b \log c)}{\log b \log c}
\end{gathered}
$$

and $\delta=1$ or 2 according as $r y-q z$ is odd or even.

Proof. Using a corollary to a theorem of Laurent-Mignotte-Nesterenko [12], the lemma follows from the proof of main theorem of Terai [18].

A Lucas pair (resp. a Lehmer pair) is a pair (α, β) of algebraic integers such that $\alpha+\beta$ and $\alpha \beta$ (resp. $(\alpha+\beta)^{2}$ and $\alpha \beta$) are non-zero coprime rational integers and α / β is not a root of unity. For a given Lucas pair (α, β), one defines the corresponding sequence of Lucas numbers by

$$
u_{n}=u_{n}(\alpha, \beta)=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} \quad(n=0,1,2, \ldots) .
$$

For a given Lehmer pair (α, β), one defines the corresponding sequence of Lehmer numbers by

$$
\widetilde{u}_{n}=\widetilde{u}_{n}(\alpha, \beta)=\left\{\begin{array}{cl}
\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} & \text { if } n \text { is odd } \\
\frac{\alpha^{n}-\beta^{n}}{\alpha^{2}-\beta^{2}} & \text { if } n \text { is even. }
\end{array}\right.
$$

It is clear that every Lucas pair (α, β) is also a Lehmer pair, and

$$
u_{n}= \begin{cases}\widetilde{u}_{n} & \text { if } n \text { is odd } \\ (\alpha+\beta) \widetilde{u}_{n} & \text { if } n \text { is even }\end{cases}
$$

Let (α, β) be a Lucas (resp. Lehmer) pair. The prime number p is a primitive divisor of the Lucas (resp. Lehmer) number $u_{n}(\alpha, \beta)$ (resp. $\widetilde{u}_{n}(\alpha, \beta)$) if p divides u_{n} but does not divide $(\alpha-\beta)^{2} u_{1} \cdots u_{n-1}$ (resp. if p divides \widetilde{u}_{n} but does not divide $\left.\left(\alpha^{2}-\beta^{2}\right)^{2} \widetilde{u}_{1} \cdots \widetilde{u}_{n-1}\right)$. Recently, Y. Bilu, G. Hanrot and P. Voutier [1] proved the following

Lemma 4. For any integer $n>30$, every n-th term of any Lucas or Lehmer sequence has a primitive divisor.

In [1], for any positive integer $n \leq 30$, all Lucas sequences and all Lehmer sequences whose n-th term has no primitive divisor are explicitely determined. See Tables 1-4 of [1].

Lemma 5. If $2 \nmid r$ and $r>1$, then all solutions (X, Y, Z) of the equation

$$
X^{2}+Y^{2}=Z^{r}, \quad X, Y, Z \in \mathbb{Z}, \operatorname{gcd}(X, Y)=1
$$

are given by

$$
X+Y \sqrt{-1}=\lambda_{1}\left(X_{1}+\lambda_{2} Y_{1} \sqrt{-1}\right)^{r}, \quad Z=X_{1}^{2}+Y_{1}^{2}
$$

where $\lambda_{1}, \lambda_{2} \in\{-1,1\} X_{1}, Y_{1} \in \mathbb{N}$ and $\operatorname{gcd}\left(X_{1}, Y_{1}\right)=1$.
Lemma 5 follows directly from a theorem in book of Mordell [13] pp. 122-123.

Proof of Theorem 1. From the theorem of [2], we see that if c is a prime power, then our theorem holds. Hence, we may suppose that $c \geq 85$. It follows from Lemma 2 that $x=2,2 \mid y$ and $2 \nmid z$. In Lemma 3, let $p=q=2, n=2$ and $\delta=2$. Then by Lemma 3, if equation (1) has solutions with $(y, n) \neq(2,2)$, then $y<n+q-p=2$ under the condition

$$
\begin{equation*}
b \geq\left\{\exp \left(\frac{2}{\frac{n}{\log c}+M}\right)-1\right\}^{-1 / 2} a . \tag{7}
\end{equation*}
$$

Now, we prove that

$$
\begin{equation*}
b \geq 251 \tag{8}
\end{equation*}
$$

Using Lemma 5 , from $a^{2}+b^{2}=c^{r}, \operatorname{gcd}(a, b)=1,2 \mid a$ and r odd ≥ 3, we get

$$
\begin{equation*}
b+a \sqrt{-1}=\lambda_{1}\left(u+\lambda_{2} v \sqrt{-1}\right)^{r}, \quad c=u^{2}+v^{2}, \tag{9}
\end{equation*}
$$

where $\lambda_{1}, \lambda_{2} \in\{-1,1\}, u, v \in \mathbb{N}$ with $\operatorname{gcd}(u, v)=1$ and $2 \nmid u+v$. Let $\alpha=u+v \sqrt{-1}, \beta=u-v \sqrt{-1}$. Then (9) gives

$$
\begin{equation*}
a=\left|\frac{\alpha^{r}-\beta^{r}}{\alpha-\beta}\right| v \tag{10}
\end{equation*}
$$

Since $2 \nmid \frac{\alpha^{r}-\beta^{r}}{\alpha-\beta}$ and $2 \| a$, (10) implies that $2 \| v$. By Lemma 4 and Tables 1 and 3 of [1], we see that $\frac{\alpha^{r}-\beta^{r}}{\alpha-\beta}$ has a primitive divisor. Also, if $3 \nmid v$ and $3 \left\lvert\, \frac{\alpha^{r}-\beta^{r}}{\alpha-\beta}\right.$, then from $b^{2}+a^{2}=c^{r}$ we see that $c=u^{2}+v^{2} \equiv 1(\bmod 3)$ and so $3 \mid u$. On the other hand, from $3 \left\lvert\, \frac{\alpha^{r}-\beta^{r}}{\alpha-\beta}\right.$ we know that $3 \nmid u$, a contradiction. If $3 \mid v$, then $a \geq 18, b>251$, i.e. (8) holds. If $3 \nmid \frac{\alpha^{r}-\beta^{r}}{\alpha-\beta}$, then from (10), we get $a \geq 10$ and so $b \geq 251$, i.e. (8) also holds.

From $b \geq 251$ and $c \geq 85$, we have $\frac{n}{\log c}<0.2251 n$ and

$$
\begin{aligned}
M= & 1060.29+105.53\left(\frac{1}{\log b}+\frac{1}{\log c}\right)+765.39(\log b \log c)^{-1 / 2} \\
& +\frac{\log 81+12.26}{\log b \log c}+\frac{\log (\log b \log c)}{\log b \log c}<1258.434 .
\end{aligned}
$$

Therefore, we get that

$$
\begin{aligned}
\left\{\exp \left(\frac{2}{\frac{n}{\log c}+M}\right)-1\right\}^{-1 / 2} & <\left\{\exp \left(\frac{2}{0.2251 \cdot 2+1258.434}\right)-1\right\}^{-1 / 2} \\
& <25.1
\end{aligned}
$$

From this, we have $b \geq 25.1 a>\left\{\exp \left(\frac{2}{\frac{n}{\log c}+M}\right)-1\right\}^{-1 / 2} a$, i.e. (7) holds. Hence, $y<2$, but which is impossible since $2 \mid y$.

Thus, $y=2$, and from $c^{z}=a^{x}+b^{y}=a^{2}+b^{2}=c^{r}$, we get $z=r$.
This proves Theorem 1.
Proof of Corollary to Theorem 1. Clearly, $a^{2}+b^{2}=c^{3}$ and $b \equiv 3$ $(\bmod 4), 2 \| a$. Notice that $m>71.68 n$. We get

$$
23.88\left(3+\frac{8}{\left(\frac{m}{n}\right)^{2}-3}\right)<71.68<\frac{m}{n} .
$$

It implies that $m\left(m^{2}-3 n^{2}\right)>23.88 n\left(3 m^{2}-n^{2}\right)$, that is $b>23.88 a$. Since $n \geq 2, m>71.68 n>143$, i.e. $m \geq 145$. We get

$$
a=n^{3}\left(3\left(\frac{m}{n}\right)^{2}-1\right)>8\left(3 \cdot 71.68^{2}-1\right)=123304.53 \cdots,
$$

i.e. $a \geq 123306$. Hence,

$$
\begin{gather*}
b>23.88 \cdot 123306>2944547 \text { (i.e. } b \geq 2944549 \text {), } \\
c \geq 145^{2}+2^{2}=21029 . \tag{11}
\end{gather*}
$$

By the proof of Theorem 1, it suffices to prove

$$
\begin{equation*}
\left\{\exp \left(\frac{2}{\frac{n}{\log c}+M}\right)-1\right\}^{-1 / 2}<23.88 \tag{12}
\end{equation*}
$$

From (11), we have $\frac{n}{\log c}<0.1004656 n$ and

$$
\begin{aligned}
M= & 1060.29+105.53\left(\frac{1}{\log b}+\frac{1}{\log c}\right)+765.39(\log b \log c)^{-1 / 2} \\
& +\frac{\log 81+12.26}{\log b \log c}+\frac{\log (\log b \log c)}{\log b \log c}<1141.003342
\end{aligned}
$$

From this, we easily get that (12) holds.
The corollary is proved.
Remark 1. Using Terai's method (see [18]), we can prove that if $a=$ $2\left(3 m^{2}-4\right), b=m\left(m^{2}-12\right), c=m^{2}+4$, where $m \in \mathbb{N}$ with $m \equiv 3(\bmod 4)$ and $m>3$, then equation (1) has only the solution $(x, y, z)=(2,2,3)$.

\S 3. Proof of Theorem 2

We need Lemma 2, Lemma 5 and the following result.
Let u_{n} be Lucas sequence, i.e. $u_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}$, where α, β are two roots of the equation

$$
x^{2}-P x+Q=0, \quad P, Q \in \mathbb{Z}, P>0, \operatorname{gcd}(P, Q)=1
$$

It is well known fact that
Lemma 6. If m, n are $o d d$, then $\operatorname{gcd}\left(u_{m}, u_{n}\right)=u_{\operatorname{gcd}(m, n)}$.
Proof. For example, see D. H. Lehmer [10].
Proof of Theorem 2. It is clear that $2 \| a$ when $m \equiv 2(\bmod 4)$. Then from Lemma 2, we get $x=2, y=2 y_{1}$ and $2 \nmid z$, where $y_{1} \in \mathbb{N}$. If $y_{1}=1$, then we have from (1) that $z=r$, that is, Theorem 2 holds. Otherwise, we assume that $y_{1}>1$.

By Lemma 5, we have from (1) that

$$
\begin{equation*}
a+b^{y_{1}} \sqrt{-1}=\lambda_{1}\left(X+\lambda_{2} Y \sqrt{-1}\right)^{z}, c=X^{2}+Y^{2} \tag{13}
\end{equation*}
$$

where $\lambda_{1}, \lambda_{2} \in\{-1,1\}, X, Y \in \mathbb{N}$ and $\operatorname{gcd}(X, Y)=1$. It follows from (13) that

$$
\begin{equation*}
\lambda_{1} \lambda_{2} b^{y_{1}}=Y\left(\binom{z}{1} X^{z-1}-\binom{z}{3} X^{z-3} Y^{2}+\cdots+(-1)^{\frac{z-1}{2}}\binom{z}{z} Y^{z-1}\right) . \tag{14}
\end{equation*}
$$

Clearly, (14) gives that $Y=b^{l}, 0 \leq l \leq y_{1}$. If $l>0$, then $m^{2}+1=c=$ $X^{2}+Y^{2} \geq b^{2}+1$ and so

$$
\begin{equation*}
m \geq b \tag{15}
\end{equation*}
$$

On the other hand, let

$$
A=\binom{r}{1} m^{r-3}-\binom{r}{3} m^{r-5}+\cdots+(-1)^{\frac{r-3}{2}}\binom{r}{r-2} .
$$

Then $b=\left|U_{r}\right|=\left|m^{2} A+(-1)^{\frac{r-1}{2}}\right|$. Therefore, by b is a prime, we see that $A \neq 0$. It implies that

$$
b=\left|U_{r}\right|=\left|m^{2} A+(-1)^{\frac{r-1}{2}}\right| \geq m^{2}|A|-1 \geq m^{2}-1>m,
$$

which contradicts (15). Therefore $l=0$, that is, $Y=1$. From $c=m^{2}+1=$ $X^{2}+1$, we get that $X=m$. Now, we get from (14) that

$$
\begin{equation*}
\lambda_{1} \lambda_{2} b^{y_{1}}=\frac{\alpha^{z}-\beta^{z}}{\alpha-\beta}=U_{z} \tag{16}
\end{equation*}
$$

where $\alpha=m+\sqrt{-1}, \beta=m-\sqrt{-1}$ are two roots of the equation $x^{2}-$ $2 m x+\left(m^{2}+1\right)=0$. By Lemma 6, we get that $\operatorname{gcd}\left(b, U_{z}\right)=\operatorname{gcd}\left(U_{r}, U_{z}\right)=$ $U_{\operatorname{gcd}(r, z)}$. Since $b=\left|U_{r}\right|$ is a prime, $U_{r} \mid U_{z}$, we get $r \mid z$. Let $z=r z_{1}$, $z_{1} \in \mathbb{N}$. We have

$$
V_{r z_{1}}+U_{r z_{1}} \sqrt{-1}=(m+\sqrt{-1})^{r z_{1}}=\left(V_{r}+U_{r} \sqrt{-1}\right)^{z_{1}} .
$$

It follows from (16) that

$$
\begin{align*}
b^{y_{1}-1} & =\left|\frac{U_{r z_{1}}}{U_{r}}\right| \\
7) & =\left|\binom{z_{1}}{1} V_{r}^{z_{1}-1}-\binom{z_{1}}{3} V_{r}^{z_{1}-3} U_{r}^{2}+\cdots+(-1)^{\frac{z_{1}-1}{2}}\binom{z_{1}}{z_{1}} U_{r}^{z_{1}-1}\right| . \tag{17}
\end{align*}
$$

Clearly, $b \mid z_{1}$. Let $b^{l_{j}} \|\binom{ z_{1}}{2 j+1} V_{r}^{z_{1}-(2 j+1)} U_{r}^{2 j}, 0 \leq j \leq \frac{z_{1}-1}{2}$ and let $b^{t_{j}} \| 2 j+1$. Then we have $2 j-t_{j}>0$ for $j>0$. So from

$$
\binom{z_{1}}{2 j+1} V_{r}^{z_{1}-(2 j+1)} U_{r}^{2 j}=\frac{z_{1}}{2 j+1}\binom{z_{1}-1}{2 j} V_{r}^{z_{1}-(2 j+1)} b^{2 j}
$$

we see that $l_{0}<l_{0}+2 j-t_{j} \leq l_{j}$ for $j>0$. Hence, we get from (17) that $b^{y_{1}-1} \mid z_{1}$, and so $z_{1} \geq b^{y_{1}-1}$. It follows from (1) that

$$
a^{2}+b^{2 y_{1}}=c^{r z_{1}}=\left(a^{2}+b^{2}\right)^{z_{1}} \geq\left(a^{2}+b^{2}\right)^{b^{y_{1}-1}}>a^{2}+b^{2 y_{1}},
$$

a contradiction.
This proves Theorem 2.
Remark 2. In the proof of Theorem 2, not using Lemma 2, we can also get $x=2, y=2 y_{1}$ and $2 \nmid z$. In fact, using some results on the equations $x^{2}-y^{n}=1, x^{2}-2 y^{n}=-1$ and $x^{2 n}-2 y^{2}=-1$ (see Chao Ko [7], Ljunggren [11], Störmer [15] and Zhenfu Cao [3]), we can get an elementary proof of it.

§4. Proof of Theorems 3 and 4

Proof of Theorems 3 and 4 need two important results on the Diophantine equations

$$
\begin{equation*}
x^{p}+2 y^{p}+z^{p}=0, \quad x, y, z \in \mathbb{Z}, x y z \neq 0, p \in \mathbb{P} \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
x^{n}+y^{n}=z^{2}, \quad x, y, z \in \mathbb{Z}, x y z \neq 0, n \in \mathbb{N} . \tag{19}
\end{equation*}
$$

Lemma 7. Equation (18) has no solution with $x \neq z$.
Lemma 8. If $n \geq 4$, then equation (19) has no solution.
For the proofs of Lemmas 7 and 8, see Darmon and Merel [4]. Now, using Lemma 7 , we can obtain the proof of Theorem 3.

Proof of Theorem 3. Suppose that equation (4) has a solution with $A B \neq 0$. From Ribenboim [14], p. 38, we can assume that $2 \nmid m$. Therefore, we get from (4) that

$$
\begin{equation*}
|A|^{m}=2 u v, \quad C^{2}=u^{2}+v^{2} \tag{20}
\end{equation*}
$$

where $u, v \in \mathbb{N}$ with $\operatorname{gcd}(u, v)=1,2 \nmid u+v$. Without loss of generality, we may assume that $2 \mid u, 2 \nmid v$. Then from the second equality of (20), we get

$$
\begin{equation*}
u=2 u_{1} v_{1}, \quad v=u_{1}^{2}-v_{1}^{2} \tag{21}
\end{equation*}
$$

where $u_{1}, v_{1} \in \mathbb{N}$ with $\operatorname{gcd}\left(u_{1}, v_{1}\right)=1,2 \nmid u_{1}+v_{1}$. From the first equality of (20), we have

$$
\begin{equation*}
u=2^{m-1} A_{1}^{m}, \quad v=A_{2}^{m},|A|=2 A_{1} A_{2}, \tag{22}
\end{equation*}
$$

where $A_{1}, A_{2} \in \mathbb{N}$ with $\operatorname{gcd}\left(A_{1}, A_{2}\right)=1$. Hence, we get from (21) and (22) that

$$
\begin{equation*}
u_{1} v_{1}=2^{m-2} A_{1}^{m}, \quad u_{1}^{2}-v_{1}^{2}=A_{2}^{m} . \tag{23}
\end{equation*}
$$

Clearly, the second equality of (23) implies

$$
u_{1}+v_{1}=A_{3}^{m}, \quad u_{1}-v_{1}=A_{4}^{m}, \quad A_{2}=A_{3} A_{4},
$$

and so

$$
\begin{equation*}
2 u_{1}=A_{3}^{m}+A_{4}^{m}, \quad 2 v_{1}=A_{3}^{m}-A_{4}^{m}, \tag{24}
\end{equation*}
$$

where $A_{3}, A_{4} \in \mathbb{N}$ with $\operatorname{gcd}\left(A_{3}, A_{4}\right)=1$. From the first equality of (23), we see that $u_{1}=A_{5}^{m}$ or $v_{1}=A_{5}^{m}$. By Lemma 7, we know that (24) gives $A_{3}=A_{4}$ and so $v_{1}=0$, which is impossible since $v_{1} \in \mathbb{N}$. The theorem is proved.

Using similar method and Lemma 8, we easily prove that Theorem 4 holds.

Acknowledgements. The authors would like to thank the referee for his valuable suggestions.

References

[1] Y. Bilu, G. Hanrot and P. Voutier (with an appendix by M. Mignotte), Existence of primitive divisors of Lucas and Lehmer numbers, J. reine angew. Math. (to appear).
[2] Zhenfu Cao, A note on the Diophantine equation $a^{x}+b^{y}=c^{z}$, Acta Arith. 91 no. 1 (1999), 85-93.
[3] Zhenfu Cao, On the Diophantine equation $x^{2 n}-\mathcal{D} y^{2}=1$, Proc. Amer. Math. Soc. 98 (1986), 11-16.
[4] H. Darmon and L. Merel, Winding quotients and some Variants of Fermat's Last Theorem, J. reine angew. Math. 490 (1997), 81-100.
[5] Xiaolei Dong and Zhenfu Cao, The Terai-Jeśmanowicz conjecture on the equation $a^{x}+b^{y}=c^{z}$, Chinese Ann. Math. Ser. A 21 no. 6 (2000), 709-714.
[6] L. JeŚmanowicz, Some remarks on Pythagorean numbers, Wiakom. Mat. ser. 2, $1(2)(1956), 196-202$.
[7] C. Ko, On the Diophantine equation $x^{2}=y^{n}+1, x y \neq 0$, Sci. Sinica 14 (1965), 457-460.
[8] M. Le, A note on the Diophantine equation $\left(m^{3}-3 m\right)^{x}+\left(3 m^{2}-1\right)^{y}=\left(m^{2}+1\right)^{z}$, Proc. Japan Acad. Ser. A Math. Sci. 73 no. 7 (1997), 148-149.
[9] M. Le, On Terai's conjecture concerning Pythagorean numbers, Bull. Austral. Math. Soc. 61 (2000), 329-334.
[10] D. H. Lehmer, An extended theory of Lucas' functions, Ann. Math. 31 (1931), 419-438.
[11] W. Ljunggren, Zur Theorie der Gleichung $x^{2}+1=D y^{4}$, Avh. Norske Vid. Akad. Oslo 5 (1942), 1-27.
[12] M. Mignotte, A corollary to a theorem of Laurent-Mignotte-Nesterenko, Acta Arith. 86 (1998), 101-111.
[13] L. J. Mordell, Diophantine equations, Academic Press, 1969.
[14] P. Ribenboim, 13 Lectures on Fermat's Last Theorem, Springer, 1979.
[15] C. StÖrmer, L'équation $m \arctan \frac{1}{x}+n \arctan \frac{1}{y}=k \frac{\pi}{4}$, Bull. Soc. Math. France 27 (1899), 160-170.
[16] N. Terai, The Diophantine equation $a^{x}+b^{y}=c^{z}$, Proc. Japan Acad. Ser. A Math. Sci. 70 (1994), 22-26.
[17] N. Terai, The Diophantine equation $a^{x}+b^{y}=c^{z}$ II., Proc. Japan Acad. Ser. A Math. Sci. 71 (1995), 109-110.
[18] N. Terai, Applications of a lower bound for linear forms in two logarithms to exponential Diophantine equations, Acta Arith. 90 no. 1 (1999), 17-35.

```
ZHENFU CAO
DEPARTMENT OF COMPUTER SCIENCE
SHANGHAI JIAO TONG UNIVERSITY
SHANGHAI 200030
P.R. CHINA
E-mail: zfcao@cs.sjtu.edu.cn
XIAOLEI DONG
DEPARTMENT OF COMPUTER SCIENCE
SHANGHAI JIAO TONG UNIVERSITY
SHANGHAI 200030
P.R. CHINA
E-mail: xldong@mail.sjtu.edu.cn
```

(Received November 30, 2000; revised May 2, 2002)

