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On powers of relational structures

By MIROSLAV NOVOTNÝ (Brno) and JOSEF ŠLAPAL (Brno)

Abstract. We introduce a new operation of power of n-ary relational structures,
which is carried by the corresponding set of homomorphisms. The introduced power

combines two known powers of relational structures and all the three powers are dis-
cussed. In particular, a product of n-ary relational structures is found with respect to
which the new power fulfills the first exponential law.

1. Introduction

It is well known that the category of n-ary relational structures with

relational homomorphisms as morphisms does not have function spaces,

i.e., well-behaved powers carried by the corresponding sets of homomor-

phisms. Therefore, the direct operations of product and power of n-ary

relational structures do not fulfill the first exponential law. In the present

paper, we introduce new operations of product and power of n-ary rela-

tional structures which satisfy the first exponential law. These new oper-

ations are obtained by modifying the direct product and the direct power

in such a way that the carriers are preserved. More precisely, the power

introduced is defined as the intersection of the direct power and another

power of relational structures known from the literature. So, some proper-

ties of the new power follow from the properties of the two known powers,

and vice versa.
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Note that, because of applications, the validity of the first exponential
law, with respect to a given product, is the most important criterion for
well-defined powers of mathematical structures. But we also discuss the
second and third exponential laws for the introduced power. A number of
examples illustrate the results.

2. Operations on relational structures

We denote by AB the set of all mappings of a set B into a set A.
It is obvious that (AB)C ≈ AB×C (where ≈ denotes the set equivalence)
because there is a bijection ϕ : (AB)C → AB×C , called canonical , and
given by ϕ(h)(b, c) = h(c)(b) whenever h ∈ (AB)C , b ∈ B and c ∈ C.

Throughout the paper, n denotes a positive integer. By a mono-
n-ary relational structure we understand a pair A = (A, r) where A is
a set, the so-called carrier of A, and r is an n-ary relation on A, i.e.,
r ⊆ An. Because only mono-n-ary relational structures will be discussed,
the adjective “mono-” will be omitted. We shall write rA instead of r to
express the n-ary relational structure to which r belongs. In [Lo], the term
n-dimensional structures is used for n-ary relational structures.

Let A = (A, rA), A′ = (A, rA′) be n-ary relational structures (with
the same carrier). Then we set

A ∪A′ = (A, rA ∪ rA′),

A ∩A′ = (A, rA ∩ rA′),

A ⊆ A′ if and only if rA ⊆ rA′ .

Given a set A, we denote by eA the n-ary relation {(a, a, . . . , a);
a ∈ A} on A and set EA = (A, eA). A relational structure A is called
reflexive if EA ⊆ A holds.

For an arbitrary relational structure A with the carrier A, the reflexive
hull of A is the n-ary relational structure A defined by

A = A ∪EA.

Let A = (A, rA), B = (B, rB) be n-ary relational structures. In accor-
dance with [No], the direct sum of A and B, defined whenever A∩B= ∅,
is the relational structure A+B given by

A+B = (A ∪B, rA ∪ rB),
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and the direct product of A and B is the relational structure A×B given
by

A×B = (A×B, rA×B)

where rA×B = {(a1, b1), . . . , (an, bn)); (a1, . . . , an)∈ rA, (b1, . . . , bn)∈ rB}.

Remark 1. a) In the category of n-ary relational structures with ho-
momorphisms as morphisms, the direct sum and product are categorical
sum and product, respectively (but not vice versa). The direct product
has been introduced also in [Lo]. On the other hand, the cardinal sum
from [Lo] coincides with the categorical sum and so is more general than
the direct sum.

b) In the case of ordered sets, the direct sum and direct product
coincide with the well-known cardinal sum and cardinal product in the
sense of Birkhoff [Bi1].

The next operation A ◦ B is called the combined product of A =
(A, rA) and B = (B, rB) and is defined by combining some of the above
operations:

A ◦B = (A×B) ∪ (A×B).

So, we have
A ◦B = (A×B, rA◦B)

where rA◦B = rA×B ∪ rEA×B ∪ rA×EB
, i.e., for any (a1, b1), . . . , (an, bn) ∈

A × B the condition ((a1, b1), . . . , (an, bn)) ∈ rA◦B is satisfied if and only
if one of the following three cases occurs:

(i) (a1, . . . , an) ∈ rA and (b1, . . . , bn) ∈ rB,

(ii) a1 = · · · = an and (b1, . . . , bn) ∈ rB,

(iii) (a1, . . . , an) ∈ rA and b1 = · · · = bn.

Remark 2. Clearly, A ◦ B is reflexive whenever A or B is reflexive.
Further, sinceA◦B = (A×B)∪(EA×B)∪(A×EB), we haveA◦B = A×B

whenever A and B are reflexive.

A mapping h : B → A is said to be a homomorphism of B = (B, rB)
into A = (A, rA) if (b1, . . . , bn) ∈ rB implies (h(b1), . . . , h(bn)) ∈ rA. We
denote by Hom(B,A) the system of all homomorphisms of B into A. If h is
a bijective homomorphism of B into A such that, whenever b1, . . . , bn ∈ B,
(h(b1), . . . , h(bn)) ∈ rA implies (b1, . . . , bn) ∈ rB, then h is said to be an
isomorphism of B onto A. If there exists an isomorphism of B onto A,
we say that B and A are isomorphic, in symbols B ∼= A.
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Remark 3. a) The homomorphism of relational structures introduced

in [Lo] is more special than that defined above.

b) It is obvious that for n-ary relational structures the distributive

laws A×(B+C) ∼= (A×B)+(A×C) and A◦(B+C) ∼= (A◦B)+(A◦C)

are valid.

In what follows, we present mono-algebras (i.e., universal algebras

with just one operation), called briefly algebras, as particular cases of

relational structures. Indeed, if (A, o) is an algebra with an n-ary operation

o, then r = {(x1, . . . , xn, o(x1, . . . , xn)); (x1, . . . , xn) ∈ An} is an (n+ 1)-

ary relation on A. We get an (n+ 1)-ary relational structure A = (A, rA)

where rA = r. Clearly, it is possible to reconstruct the operation o from

A = (A, rA). Thus, we can treat algebras as relational structures (see

also [Lo]).

Example 1. If (A, o) is an idempotent groupoid, i.e., a groupoid with

o(x, x) = x for any x ∈ A, then (x, x, x) ∈ rA for any x ∈ A, so that the

relational structure A = (A, rA) is reflexive. Thus, if A, B are ternary

relational structures corresponding to idempotent groupoids, then A◦B =

A×B by Remark 2.

Example 2. Let (A, o) be the unary algebra with A = {1, 2}, o(2) =

o(1) = 1. The corresponding binary relation rA is defined by rA =

{(1, 1), (2, 1)}. Thus, A = (A, rA) is given and we can construct the rela-

tional structure A ◦A. This is the set A×A = {(1, 1), (1, 2), (2, 1), (2, 2)}

provided with a binary relation rA◦A.

We describe the relation rA◦A. First, it contains the pairs ((a1, b1),

(a2, b2)) where (a1, a2) ∈ rA, (b1, b2) ∈ rA, i.e., the pairs ((1, 1), (1, 1)),

((1, 2), (1, 1)), ((2, 1), (1, 1)), ((2, 2), (1, 1)). Second, it contains the pairs

((a1, b1), (a2, b2)) where a1 = a2 ∈ A, (b1, b2) ∈ rA, hence ((1, 1), (1, 1)),

((1, 2), (1, 1)), ((2, 1), (2, 1)), ((2, 2), (2, 1)). The last pairs in rA◦A are of

the form ((a1, b1), (a2, b2)) where b1 = b2 ∈ A, (a1, a2) ∈ rA. These are

the pairs ((1, 1), (1, 1)), ((1, 2), (1, 2)), ((2, 1), (1, 1)), ((2, 2), (1, 2)). Thus,

rA◦A = {((1, 1), (1, 1)), ((1, 2), (1, 1)), ((2, 1, )(1, 1)), ((2, 2), (1, 1)), ((2, 1),

(2, 1)), ((2, 2), (2, 1)), ((1, 2), (1, 2)), ((2, 2), (1, 2))}.

It is easy to see that A ◦A is not an algebra. For the reader’s conve-

nience, we present the graphs of A and of A ◦A.
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Let A = (A, rA) and B = (B, rB) be n-ary relational structures.

According to [No], we define the direct power A∧B of n-ary relational

structures A and B by

A∧B = (Hom(B,A), rA∧B)

where rA∧B = {(h1, . . . , hn) ∈ (Hom(B,A))n; (h1(b), . . . , hn(b)) ∈ rA
whenever b ∈ B}.

Next, we define the structural power A∼B of A and B by

A∼B = (Hom(B,A), rA∼B)

where rA∼B = {(h1, . . . , hn) ∈ (Hom(B,A))n; (h1(b1), . . . , hn(bn)) ∈ rA
whenever (b1, . . . , bn) ∈ rB}.

Remark 4. a) The direct power has been studied, for instance, in [No],

[Sl1], [Sl3], and [Sl4]. For ordered sets the direct power coincides with the

well-known Birkhoff’s cardinal power [Bi2]. One can easily show that,

given ordered sets A, B and C, the following three laws hold for the direct

power:

the second exponential law (A×B)∧C ∼= (A∧C)× (B∧C),

the third exponential law A∧(B+C) ∼= (A∧B)× (A∧C),

and the first exponential law (A∧B)∧C ∼= A∧(B×C).

The validity of the three laws follows from the fact that the category of

ordered sets with homomorphisms as morphisms is cartesian closed and

its function spaces are just the direct powers.
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b) The structural power is also known from the literature. Namely, in

the cartesian closed category of all reflexive n-ary relational structures with

homomorphisms as morphisms, the function spaces are just the structural

powers – see [Sl2]. It follows that, given reflexive n-ary relational struc-

tures A, B and C, all the three exponential laws hold for the structural

power, i.e.,

(A×B)∼C ∼= (A∼C)× (B∼C),

A∼(B+C) ∼= (A∼B)× (A∼C),

(A∼B)∼C ∼= A∼(B×C).

We show in Lemmas 1 and 2 that the first two of these laws are valid for

arbitrary n-ary relational structures, not only for the reflexive ones, and

that the last law is valid even in the case when A is not reflexive.

c) In the definition of the structural power, when replacing Hom(A,B)

with BA, we obtain the power studied in [Lo]. It is shown in [Lo] that also

this power fulfills all the three exponential laws.

Let A, B be n-ary relational structures. The combined power AB of

A and B is also defined by combining some of the above operations:

AB = (A∧B) ∩ (A∼B).

Thus, we have

AB = (Hom(B,A), rAB)

where rAB = {(h1, . . . , hn) ∈ (Hom(B,A))n; (h1(b1), . . . , hn(bn)) ∈ rA
whenever (b1, . . . , bn) ∈ r

B
}.

Remark 5. Let A,B be n-ary relational structures. If B is reflexive,

then clearly A∼B ⊆ A∧B, and thus AB = A∼B. Let us recall ([No])

that A is said to be diagonal if any n × n-matrix M = (aij) over A

has the property (a11, a22, . . . , ann) ∈ rA whenever all rows and columns

of M belong to rA. If A is diagonal, then A∧B ⊆ A∼B by [Sl2], and

thus AB = A∧B. Consequently, if A is diagonal and B is reflexive, then

A∧B = A∼B = AB.
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In some of the following examples, we will present – among others –

homomorphisms of algebras where these algebras will be treated as rela-

tional structures. Let (A, o) and (A′, o′) be algebras where o and o′ are

n-ary operations. Let A = (A, rA) and A′ = (A′, rA′) be the correspond-

ing (n + 1)-ary relational structures and let h be a mapping of the set A

into A′.

If h is a homomorphism of the algebra (A, o) into (A′, o′) and if

(x1, . . . , xn, xn+1)∈ rA, then xn+1 = o(x1, . . . , xn) and h(xn+1)=o′(h(x1),

. . . , h(xn)) which means (h(x1), . . . , h(xn), h(xn+1)) ∈ rA′ . Thus, h is a

homomorphism of (A, rA) into (A′, rA′).

Conversely, if h is a homomorphism of (A, rA) into (A′, rA′) and

(x1, . . . , xn) ∈ An is arbitrary, then (x1, . . . , xn, o(x1, . . . , xn)) ∈ rA which

implies (h(x1), . . . , h(xn), h(o(x1, . . . , xn))) ∈ rA′ ; this means h(o(x1, . . . ,

xn)) = o′(h(x1), . . . , h(xn)) by the definition of rA′ . Hence h is a homo-

morphism of the algebra (A, o) into (A′, o′).

It follows that in the following examples we may replace homomor-

phisms of relational structures by homomorphisms of algebras. This sim-

plifies the situation because we are able to find easily the homomorphisms

of these algebras – see [Ny1], [Ny2].

Example 3. Let A = (A, rA) be the relational system from Example 2.

We construct AA = (Hom(A,A), rAA).

There are only two possibilities for h ∈ Hom(A,A): either h(2) = 2 or

h(2) = 1. The construction of homomorphisms of unary algebras provides

h(1) = 1 in either case. It follows that Hom(A,A) = {α, β} where α(1) =

α(2) = 1, β(1) = 1, β(2) = 2.

Since (β(2), β(2)) = (2, 2) /∈ rA, we obtain (β, β) /∈ rAA . Sim-

ilarly, (α(2), β(2)) = (1, 2) /∈ rA entails (α, β) /∈ rAA . Furthermore,

(β(x), α(y)) = (β(x), 1) ∈ rA for any x ∈ A, y ∈ A which implies

(β, α) ∈ rAA . Finally, (α(x), α(y)) = (1, 1) ∈ rA for any x ∈ A, y ∈ A

and, therefore, (α, α) ∈ rAA .

We have proved that rAA = {(α, α), (β, α)}. Hence AA ∼= A.
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Example 4. Let (A, o) be the unary algebra from Example 2 and let

(A′, o′) be the unary algebra with A′ = {a, b, c, d, e} and the operation o′

given by the following table.

x a b c d e

o′(x) b c d a a

Then there are only two homomorphisms of the algebra A′ into A :

α(x) = 1 for any x ∈ A′ and β(x) = 1 for x ∈ {a, b, c, d}, β(e) = 2

(see [Ny1], [Ny2]). Let A = (A, rA) and A′ = (A′, rA′) be the cor-

responding binary relational structures. We have rA = {(1, 1), (2, 1)},

rA′ = {(a, b), (b, c), (c, d), (d, a), (e, a)}. The binary relation rAA′ is de-

fined on the set Hom(A′,A) = {α, β}.

Clearly (α(x), α(y)) = (1, 1) ∈ rA for any x ∈ A′, y ∈ A′. It follows

that (α, α) ∈ r
AA′ . Furthermore, (α(e), β(e)) = (1, 2) /∈ rA which implies

(α, β) /∈ rAA′ . Similarly, (β(e), β(e)) = (2, 2) /∈ rA and, thus, (β, β) /∈

rAA′ . Finally, (β(x), α(y)) = (1, 1) ∈ rA for x 6= e and y ∈ A′ and

(β(x), α(y)) = (2, 1) ∈ rA for x = e and y ∈ A′. It follows that (β, α) ∈

rAA′ . Hence r
AA′ = {(α, α), (β, α)}. It means that the relational structure

AA
′

is an algebra isomorphic to A.

Comparing Examples 3 and 4 we see that AB ∼= AC need not imply

B ∼= C.

Example 5. Let (A, o) be the unary algebra with A = {1, 2}, o(1) = 2,

o(2) = 1 and let (A′, o′) be the same as in Example 4. Then there exist

precisely two homomorphisms α and β of the algebra (A′, o′) into (A, o),

which are defined as follows:

x a b c d e

α(x) 1 2 1 2 2
β(x) 2 1 2 1 1

Again, let A = (A, rA) and A′ = (A′, rA′) be the corresponding

binary relational structures. Clearly, rA = {(1, 2), (2, 1)}.

Since (a, b) ∈ rA′ , (α(a), β(b)) = (1, 1) /∈ rA, (β(a), α(b)) = (2, 2) /∈

rA, we obtain (α, β) /∈ r
AA′ , (β, α) /∈ r

AA′ . Moreover, (α(a), α(a)) =
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(1, 1) /∈ rA, (β(a), β(a)) = (2, 2) /∈ rA; it follows that (α, α) /∈ r
AA′ ,

(β, β) /∈ r
AA′ . Consequently, r

AA′ = ∅.

Example 6. Let G = {0, 1} and let + denote the mod 2 addition on G.

The groupoid (G,+) defines the ternary relational structure G = (G, rG)

where rG = {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}. It is easy to see that

(G,+) has only two endomorphisms α, β where β = idG and α(x) = 0 for

any x ∈ G.

By definition, rGG is a ternary relation on the set {α, β}. Since (α(x),

α(y), α(z)) = (0, 0, 0) for any (x, y, z) ∈ G3, we obtain (α, α, α) ∈ rGG .

Clearly, (1, 0, 1) ∈ rG and (α(1), α(0), β(1)) = (0, 0, 1) /∈ rG, (α(1),

β(0), β(1)) = (0, 0, 1) /∈ rG and, therefore, (α, α, β) /∈ rGG , (α, β, β) /∈

rGG . Similarly, (1, 1, 0) ∈ rG and (α(1), β(1), α(0)) = (0, 1, 0) /∈ rG which

implies (α, β, α) /∈ rGG .

Furthermore, (β(1), α(1), α(1)) = (1, 0, 0) /∈ rG and, hence,

(β, α, α) /∈ rGG . Clearly, (0, 1, 1)∈ rG and (β(0), α(1), β(1))= (0, 0, 1) /∈ rG,

(β(0), β(1), α(1)) = (0, 1, 0) /∈ rG and, thus, (β, α, β) /∈ rGG , (β, β, α) /∈

rGG . Finally, (β(1), β(1), β(1)) = (1, 1, 1) /∈ rG which implies (β, β, β) /∈

rGG .

Thus, rGG = {(α, α, α)}. This relation can be regarded as a partial

binary operation + on {α, β} such that α + α = α while α + β, β + α,

β + β are not defined.

Example 7. Let A denote the set of nonnegative integers and let A =

(A, rA) be the ternary relational structure with rB = {(x, y, z) ∈ A3;

x < y < z}.

If h is an endomorphism of the relational structure A = (A, rA), then

for any x ∈ A, y ∈ A with x < y we obtain (x, y, y + 1) ∈ rA which

implies (h(x), h(y), h(y + 1)) ∈ rA and, therefore, h(x) < h(y). Thus,

any endomorphism of the relational structure A is an increasing function.

Conversely, any increasing selfmap of (A,<) is an endomorphism of A.

Let h1, h2 and h3 be endomorphisms of the relational structure A.

Then (h1, h2, h3) ∈ rAA implies (h1(x), h2(x), h3(x)) ∈ rA, i.e., h1(x) <

h2(x) < h3(x) for any x ∈ A. If the last condition is satisfied and

(x, y, z) ∈ rA, then x < y < z. It follows that h1(x) < h2(x) < h2(y) be-

cause h2 is increasing. Furthermore, h1(x) < h2(y) < h3(y) and h3(y) <
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h3(z) as h3 is increasing. Thus, h1(x) < h2(y) < h3(z) and, therefore,

(h1(x), h2(y), h3(z)) ∈ rA, i.e., (h1, h2, h3) ∈ rAA .

Hence, (h1, h2, h3) ∈ rAA if and only if h1(x) < h2(x) < h3(x) holds

for any x ∈ A. In other words, we have AA = A∼A. But this equality

follows also from Remark 5 because rA is clearly diagonal.

Example 8. Let A, A′ be sets and let A, A′ be the ternary relational

structures given by A = EA, A′ = EA′ . Let h ∈ AA′ . Then (x′, y′, z′) ∈

eA′ implies x′ = y′ = z′ and, therefore, h(x′) = h(y′) = h(z′) which means

(h(x′), h(y′), h(z′)) ∈ eA. Thus Hom(A′,A) = AA′ .

Suppose (h1, h2, h3) ∈ r
AA′ . Then (h1(x

′), h2(x
′), h3(x

′)) ∈ eA for

any x′ ∈ A′ which means h1(x
′) = h2(x

′) = h3(x
′) for any x′ ∈ A′,

i.e., h1 = h2 = h3. Thus AA
′

⊆ EAA′ . Conversely, let (h1, h2, h3) ∈

eAA′ . Then h1 = h2 = h3 and consequently (h1(x
′), h2(x

′), h3(x
′)) ∈ eA

whenever x′ ∈ A′. Furthermore, we have (h1(x
′

1), h2(x
′

2), h3(x
′

3)) ∈ eA

for any (x′1, x
′

2, x
′

3) ∈ eA′ because the last condition means x′1 = x′2 = x′3
and, therefore, h1(x

′

1) = h2(x
′

2) = h3(x
′

3). Thus, EAA′ ⊆ AA
′

and hence

AA
′

= EAA′ . (Note that EA, EA′ are both reflexive and diagonal, so we

have AA
′

= A∧A′ = A∼A′.)

3. Exponential laws

Lemma 1. Let A = (A, rA), B = (B, rB), C = (C, rC) be n-ary

relational structures such that B ∩C = ∅. Then the third exponential law

holds for both the direct power and the structural power:

(1) A∧(B+C) ∼= (A∧B)× (A∧C),

and

(2) A∼(B+C) ∼= (A∼B)× (A∼C).

Proof. As (1) is proved in [Sl1], Theorem 8, we only prove (2).

By definition, A∼(B + C) = (Hom(B + C,A), rA∼(B+C)). Thus, if h ∈

Hom(B + C,A), then h is a mapping of the set B ∪ C into A. Put

h1 = hdB, h2 = hdC, ϕ(h) = (h1, h2). It is easy to see that h1 is a
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homomorphism of B into A and h2 is a homomorphism of C into A. It

follows that ϕ(h) ∈ Hom(B,A)× Hom(C,A). Clearly, ϕ is a bijection of

the set Hom(B+C,A) onto Hom(B,A)×Hom(C,A).

Suppose that h1, . . . hn are in Hom(B + C,A). Then (h1, . . . , hn) ∈

rA∼(B+C) if and only if (h1(x1), . . . , hn(xn)) ∈ rA for any (x1, . . . , xn) ∈

rB ∪ rC. This is equivalent to the simultaneous validity of the conditions

(h1
1(b1), . . . , h

1
n(bn))∈ rA for any (b1, . . . , bn)∈rB and (h2

1(c1), . . . , h
2
n(cn))∈

rA for any (c1, . . . , cn) ∈ rC. These conditions hold if and only if the

conditions (h1
1, . . . , h

1
n) ∈ rA∼B, (h

2
1, . . . , h

2
n) ∈ rA∼C are satisfied. Hence

(ϕ(h1), . . . , ϕ(hn)) = ((h1
1, h

2
1), . . . , (h

1
n, h

2
n)) ∈ r(A∼B)×(A∼C). Thus, ϕ

is an isomorphism of the relational structure A∼(B + C) = (Hom(B +

C,A), rA∼(B+C)) onto the relational structure (Hom(B,A)×Hom(C,A),

r(A∼B)×(A∼C)) = (A∼B)× (A∼C). This gives the condition (2). ¤

We get the third exponential law also for the combined power:

Theorem 1. Let A = (A, rA), B = (B, rB), C = (C, rC) be n-ary

relational structures such that B ∩ C = ∅. Then

AB+C ∼= AB ×AC.

Proof. The statement follows from Lemma 1 because AB+C =

A∧(B+C) ∩A∼(B+C) ∼= (A∧B×A∧C) ∩ (A∼B×A∼C) = (A∧B ∩

A∼B)× (A∧C ∩A∼C) = AB ×AC. ¤

Lemma 2. Let A, B, C be n-ary relational structures. Then the

second exponential law holds for both the direct power and the structural

power:

(1) (A×B)∧C ∼= (A∧C)× (B∧C),

and

(2) (A×B)∼C ∼= (A∼C)× (B∼C).

Proof. As (1) is proved in [Sl1], Theorem 7, we only prove (2). Let

A, B and C be the underlying sets of A, B and C, respectively, and put

s = rA×B, t = rA∼C, u = rB∼C, v = r(A×B)∼C, and w = r(A∼C)×(B∼C).

For an arbitrary h ∈ Hom(C,A×B) set ϕ(h) = (prA h, prB h). It is easy
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to see that ϕ is a bijection of the set Hom(C,A×B) onto Hom(C,A)×

Hom(C,B).

Let h1, . . . hn ∈ Hom(C,A × B). Clearly, the following conditions

satisfy (a) ⇐⇒ (b) ⇐⇒ (c) ⇐⇒ (d) ⇐⇒ (e) ⇐⇒ (f).

(a) (h1, . . . , hn) ∈ v.

(b) (h1(c1), . . . , hn(cn)) ∈ s whenever (c1, . . . , cn) ∈ rC.

(c) (prA h1(c1), . . . , prA hn(cn)) ∈ rA and

(prB h1(c1), . . . , prB hn(cn)) ∈ rB whenever (c1, . . . , cn) ∈ rC.

(d) (prHom(C,A) ϕ(h1)(c1), . . . , prHom(C,A) ϕ(hn(cn)) ∈ rA whenever

(c1, . . . , cn)∈ rC and (prHom(C,B) ϕ(h1(c1), . . . , prHom(C,B) ϕ(hn(cn))∈

rB whenever (c1, . . . , cn) ∈ rC.

(e) (prHom(C,A) ϕ(h1), . . . , prHom(C,A) ϕ(hn)) ∈ t and

(prHom(C,B) ϕ(h1), . . . , prHom(C,B)ϕ(hn)) ∈ u.

(f) (ϕ(h1), . . . , ϕ(hn)) ∈ w.

Hence (a) is equivalent to (f) which means that ϕ is an isomorphism

of (A×B)∼C onto (A∼C)× (B∼C). This gives the condition (2). ¤

We get the second exponential law also for the combined power:

Theorem 2. Let A, B, C be n-ary relational structures. Then

(A×B)C ∼= AC ×BC.

Proof. The statement follows from Lemma 2 because (A ×B)C =

(A×B)∧C ∩ (A×B)∼C ∼= (A∧C×B∧C) ∩ (A∼C×B∼C) = (A∧C ∩

A∼C)× (B∧C ∩B∼C) = AC ×BC. ¤

The first exponential law for the direct power

(A∧B)∧C ∼= A∧(B×C)

need not be satisfied and the same is true for both the structural power
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and the combined power – see the following example:

Example 9. Let A = (A, rA) and B = (B, rB) be the binary relational

structures with A = {a, b}, rA = {(a, b)}, B = {c}, rB = {(c, c)}. One

can easily see that Hom(B,A) = ∅, hence Hom(A,A∧B) = ∅. On the

other hand, we clearly have Hom(B × A,A) = {prA}. Consequently,

(A∧B)∧A is not isomorphic to A∧(B×A), (A∼B)∼A is not isomorphic

to A∼(B×A), and (AB)A is not isomorphic to AB×A.

We shall show that the first exponential law is valid for AB when

replacing × with ◦, i.e., that there holds

(AB)C ∼= AB◦C.

Lemma 3. Let A = (A, rA), B = (B, rB), C = (C, rC) be n-ary

relational structures. Then the canonical bijection ϕ : (AB)
C
→ AB×C

restricted to Hom(C,AB) is a bijection of Hom(C,AB) onto Hom(B◦C,

A).

Proof. Let h ∈ (AB)C . It is easy to see that the following conditions

satisfy (a) ⇐⇒ (b) ⇐⇒ (c) ⇐⇒ (d) ⇐⇒ (e) ⇐⇒ (f).

(a) h ∈ Hom(C,AB).

(b) h(c) ∈ Hom(B,A) for any c ∈ C;

(h(c1), . . . , h(cn)) ∈ rAB for any (c1, . . . , cn) ∈ rC.

(c) (h(c1)(b1), . . . , h(cn)(bn)) ∈ rA whenever (c1, . . . , cn) ∈ r
C
and

(b1, . . . , bn) ∈ rB or (c1, . . . , cn) ∈ rC and (b1, . . . , bn) ∈ r
B
.

(d) (ϕ(h)(b1, c1), . . . , ϕ(h)(bn, cn)) ∈ rA whenever (c1, . . . , cn) ∈ r
C
and

(b1, . . . , bn) ∈ rB (b1, . . . , bn) ∈ rB or (c1, . . . , cn) ∈ rC and

(b1, . . . , bn)∈ rB.

(e) (ϕ(h)(b1, c1), . . . , ϕ(h)(bn, cn)) ∈ rA for any

((b1, c1), . . . , (bn, cn)) ∈ rB◦C.

(f) ϕ(h) ∈ Hom(B ◦C,A).

Hence (a) is equivalent to (f). This proves the statement. ¤
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We get the following form of the first exponential law for the combined

power:

Theorem 3. Let A = (A, rA), B = (B, rB), C = (C, rC) be n-ary

relational structures. Then (AB)C ∼= AB◦C.

Proof. Denote by ϕ the canonical bijection (AB)
C
→ AB×C re-

stricted to Hom(C,AB) and let h1, . . . , hn ∈ (AB)C . From the definitions

of the relations rAB , rB◦C and from Lemma 3 it follows that the following

conditions satisfy (a) ⇐⇒ (b) ⇐⇒ (c) ⇐⇒ (d) ⇐⇒ (e) ⇐⇒ (f).

(a) h1, . . . , hn ∈ Hom(C,AB);

(h1, . . . , hn) ∈ r(AB)C .

(b) h1, . . . , hn ∈ Hom(C,AB);

(h1(c1), . . . , hn(cn)) ∈ rAB for any (c1, . . . , cn) ∈ r
C
.

(c) h1, . . . , hn ∈ Hom(C,AB);

(h1(c1)(b1), . . . , hn(cn)(bn)) ∈ rA for any (b1, . . . , bn) ∈ r
B
and any

(c1, . . . , cn) ∈ r
C
.

(d) ϕ(h1), . . . , ϕ(hn) ∈ Hom(B ◦C,A);

(ϕ(h1)(b1, c1), . . . , ϕ(hn)(bn, cn)) ∈ rA for any (b1, . . . , bn) ∈ r
B
and

any (c1, . . . , cn) ∈ r
C
.

(e) ϕ(h1), . . . , ϕ(hn) ∈ Hom(B ◦C,A);

(ϕ(h1)(b1, c1), . . . , ϕ(hn)(bn, cn)) ∈ rA for any ((b1, c1), . . . , (bn, cn)) ∈

r
B◦C

.

(f) ϕ(h1), . . . , ϕ(hn) are in Hom(B ◦C,A);

(ϕ(h1), . . . , ϕ(hn)) ∈ rAB◦C .

Hence (a) is equivalent to (f) which means that ϕ is an isomorphism of

(AB)C onto AB◦C. The statement is proved. ¤

Corollary 1. Let A, B and C be n-ary relational structures. If B

and C are reflexive, then (A∼B)∼C ∼= A∼(B×C).

Proof. Clearly, if B, C are reflexive, B ×C is reflexive too. Thus,

by Remark 5, we have (A∼B)∼C = (AB)C and A∼(B × C) = AB×C.

Since B×C = B ◦C, the assertion follows from Theorem 3. ¤
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Corollary 2. Let A, B and C be n-ary relational structures. If A is

diagonal and B and C are reflexive, then (A∧B)∧C ∼= A∧(B×C).

Proof. Clearly, if A is diagonal, A∧B is diagonal too. Thus, by

Remark 5, we have (A∧B)∧C = (AB)C and A∧(B×C) = AB×C. Since

B×C = B ◦C, the assertion follows from Theorem 3. ¤

Remark 6. The statement of Corollary 2 is well known – it is proved,

e.g., in [No].

Example 10. Let A be the relational structure from Example 2. We

constructAA◦A = (Hom(A◦A,A), rAA◦A). The relational structureA◦A

has been constructed in Example 2.

Suppose h ∈ Hom(A◦A,A). For any (x, y) ∈ A×A, (x, y) 6= (2, 2), we

have ((2, 2), (x, y)) ∈ rA◦A which implies (h(2, 2), h(x, y)) ∈ rA, i.e., either

(h(2, 2), h(x, y)) = (1, 1) or (h(2, 2), h(x, y)) = (2, 1). Thus, h(x, y) = 1

and either h(2, 2) = 1 or h(2, 2) = 2. Hence Hom(A ◦A,A) has only two

elements α, β where α(x, y) = 1 for any

(x, y) ∈ A × A and β(2, 2) = 2, β(x, y) = 1 for any (x, y) ∈ A × A,

(x, y) 6= (2, 2).

Since (β(2, 2), β(2, 2)) = (2, 2) /∈ rA, we have (β, β) /∈ rAA◦A . Simi-

larly, (α(2, 2), β(2, 2)) = (1, 2) /∈ rA implies (α, β) /∈ rAA◦A . Furthermore,

(β(x, y), α(u, v)) = (β(x, y), 1) ∈ rA holds for any (x, y) ∈ A× A, (u, v) ∈

A×A which entails (β, α) ∈ rAA◦A . Finally, (α(x, y), α(u, v)) = (1, 1) ∈ rA

for any x, y, u, v ∈ A and, therefore, (α, α) ∈ rAA◦A .

Hence, rAA◦A = {(α, α), (β, α)}. It follows that AA◦A is isomorphic

to A.

In Example 3, we have proved that AA ∼= A. It follows that (AA)A ∼=

AA ∼= A. Since AA◦A ∼= A as we have seen now, we obtain (AA)A ∼=

AA◦A which illustrates Theorem 3.
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356 M. Novotný and J. Šlapal : On powers of relational structures

[Lo] L. Lovász, Operations with structures, Acta Math. Acad. Sci. Hungaricae 18
(1967), 321–328.

[No] V. Novák, On a power of relational structures, Czech. Math. J. 35 (1985), 167–172.
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