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Covering axioms, directed GF-spaces
and quasi-uniformities

By M. A. SÁNCHEZ-GRANERO (Almeŕıa)

Abstract. Characterizations of covering properties (paracompactness, compact-
ness, metacompactness, etc.) in terms of directed fractal structures are given. These
characterizations suggest the systematic study of those quasi-uniform spaces (X,U) in
which various kinds of open covers have a refinement of the form {U−1(x) : x ∈ X}.
These properties are also studied for quasi-pseudometric spaces.

1. Introduction

The concept of a directed fractal structure was introduced in [3],
though a similar idea was used in [8]. In fact, the concept of a uniform di-
rected fractal structure is introduced in the latter paper. Directed fractal
structures are related to transitive bases of quasi-uniformity, and uniform
type properties for directed fractal structures correspond to Lebesgue type
properties for quasi-uniformities.

In Section 3, we characterize regular (normal, paracompact, strongly
paracompact, metacompact, compact) spaces by means of the existence of
a directed fractal structure with some additional properties.

In Section 4, we use the relation between directed fractal structures
and transitive bases of a quasi-uniformity to give a characterization of
normal (paracompact, metacompact, compact) spaces in terms of Lebesgue
type properties of some special quasi-uniformities. Moreover, we study
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some properties of Lebesgue type quasi-uniformities and relationships a-
mong these properties.

In Section 5 we prove that in the setting of quasi-pseudometric spaces
many of these Lebesgue type properties are equivalent.

We recall some definitions and introduce notation that will be useful
in this paper.

Let Γ be a covering. Recall that St(x, Γ) =
⋃{A ∈ Γ : x ∈ A}.

We also define UΓ = {(x, y) ∈ X × X : y ∈ X \ ⋃{A ∈ Γ : x /∈ A}}.
A quasi-uniformity U on a set X is a filter U of binary relations (called
entourages) on X such that (a) each element of U contains the diagonal
∆X of X ×X and (b) for any U ∈ U there is V ∈ U satisfying V ◦ V ⊆ U .
A subfamily B of a quasi-uniformity U is a base for U if each member of U
contains a member of B. A base B of a quasi-uniformity is called transitive
if B ◦B = B for all B ∈ B. The theory of quasi-uniform spaces is covered
in [4].

If U is a quasi-uniformity on X, then so is U−1 = {U−1 : U ∈ U},
where U−1 = {(y, x) : (x, y) ∈ U}. U∗ denotes the coarsest uniformity
that contains U . A base for U∗ is given by the entourages U∗ = U ∩ U−1.
The topology τ(U) induced by the quasi-uniformity U is that in which the
sets U(x) = {y ∈ X : (x, y) ∈ U}, where U ∈ U , form a neighborhood base
for each x ∈ X. There is also the topology τ(U−1) induced by the inverse
quasi-uniformity.

Let Γ be a covering of X. Γ is said to be locally finite if for all
x ∈ X there exists a neighborhood of x which meets only a finite number
of elements of Γ. Γ is said to be a tiling, if all elements of Γ are regularly
closed and they have disjoint interiors (see [1]). We say that Γ is quasi-
disjoint if A◦ ∩B = ∅ or A∩B◦ = ∅ holds for all A 6= B ∈ Γ. Note that if
Γ is a tiling, then it is quasi-disjoint.

2. Directed GF-spaces

We recall from [3] the concept of a directed fractal structure.

Definition 2.1. Let Γ1 and Γ2 be coverings of a set X. We write
Γ1 ≺≺ Γ2 if Γ1 is a refinement of Γ2 (that is, Γ1 ≺ Γ2) and for each B ∈ Γ2

it holds that B =
⋃{A ∈ Γ1 : A ⊆ B}.
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A base of a directed fractal structure over a set X is a family of
coverings Γ = {Γi : i ∈ I} such that for each i, j ∈ I there exists k ∈ I

such that Γk ≺≺ Γi and Γk ≺≺ Γj .
A base of a directed fractal structure over a set X is said to be a

directed fractal structure if given a covering ∆ with Γ ≺≺ ∆ for some
Γ ∈ Γ it holds that ∆ ∈ Γ.

If Γ is a base of a directed fractal structure over a set X then it is
clear that the family of coverings {Γ : there exists Γ′ ∈ Γ with Γ′ ≺≺ Γ} is
a directed fractal structure.

If Γ is a directed fractal structure over X, we will say that (X,Γ) is
a directed GF-space. If there is no confusion about Γ, we will say that X

is a directed GF-space. Whenever the index set I is N, the set of natural
numbers with its usual order, we drop the word “directed” in this definition
(this notion was introduced in [2]).

It was shown in [3] that directed fractal structures are related to
transitive quasi-uniformities. We summarize this relationship below.

1. We define UΓ as the quasi-uniformity with a base B = {UΓ : Γ ∈ Γ}.
Then it is easy to check that B is a transitive base of quasi-uniformity
and hence UΓ is a transitive quasi-uniformity. UΓ is called the (tran-
sitive) quasi-uniformity induced by the directed fractal structure Γ.

We will use the notations U−1
Γ instead of (UΓ)−1 and U∗

Γ instead
of (UΓ)∗ in order to avoid using unneeded parentheses (the terms
(U−1)Γ and (U∗)Γ have no special meaning here).

2. If B is a transitive base for a quasi-uniformity U , then we define ΓU as
the directed fractal structure for which {ΓV : V ∈ B} is a base, where
ΓV = {V −1(x) : x ∈ X} for each V ∈ B. ΓU is called the directed
fractal structure induced by the transitive quasi-uniformity U .

We note that ΓU depends only on the quasi-uniformity U and not
on the transitive base B.

In [3] it is also proved that V = UΓV , whenever V is a transitive
quasi-uniformity and Γ ⊆ ΓUΓ

whenever Γ is a directed fractal structure.
The topology induced by a directed fractal structure Γ on a set X is

defined as the topology induced by the quasi-uniformity UΓ.
Let (X, T ) be a topological space. We say that Γ is compatible with

T if the topology induced by Γ (T (UΓ)) is equal to T .
If Γ is a directed fractal structure over X, and {St(x, Γ) : Γ ∈ Γ}

is a neighborhood base of x for all x ∈ X, we will call (X,Γ) a starbase
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directed GF-space and Γ a starbase directed fractal structure. (A starbase
base of a directed fractal structure is similarly defined.)

If Γ is a finite (resp. locally finite, quasi-disjoint, tiling) covering when-
ever Γ ∈ Γ, and Γ is a base of a directed fractal structure over X, we will
say that Γ is finite (resp. locally finite, quasi-disjoint, tiling). A directed
fractal structure is said to be finite (resp. locally finite, quasi-disjoint,
tiling) if it has a finite (resp. locally finite, quasi-disjoint, tiling) base.

Note that any member of a finite directed fractal structure is a finite
covering.

A directed fractal structure can be induced in subspaces as follows.
If A ⊆ X, and (X,Γ) is a directed GF-space, then the induced directed
fractal structure over A is denoted by ΓA and is defined by ΓA = {ΓA :
Γ ∈ Γ}, where ΓA = {B ∩A : B ∈ Γ}.

We summarize some basic properties of directed fractal structures.

Proposition 2.2 ([3]).

1. If Γ is a directed fractal structure over X, then Γ is closure preserving

for each Γ ∈ Γ. Moreover, A is closed for every A ∈ Γ and Γ ∈ Γ.

2. If Γ is a directed fractal structure over X, then U−1
Γ (x) =

⋂{A ∈ Γ :
x ∈ A}.
Proposition 2.3 ([3]). Let U be a transitive (base of) quasi-uniformity

on a topological space X and let ΓU be the directed fractal structure

induced by U .

1. ΓU is finite if and only if U is totally bounded.

2. ΓU is starbase if and only if U is locally symmetric.

3. Directed fractal structures and covering properties

We introduce two tools, the regularization and the quasi-disjointifica-
tion of a covering.

Definition 3.1. Let Γ be a covering of a topological space X. We
define the regularization of Γ by reg(Γ) = {A◦ : A ∈ Γ}.

The proof of the following lemma is straightforward, so we omit it.

Lemma 3.2. Let {Fi : i ∈ I} be a finite family of closed sets of a

topological space X. Then (
⋃

i∈I Fi)◦ ⊆ (
⋃

i∈I F ◦i )◦.
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Proposition 3.3. Let Γ be a locally finite closed covering of a topo-

logical space X. Then

1. reg(Γ) is a locally finite closed covering of X.

2. Ureg(Γ)(x) ⊆ Cl(UΓ(x)).

3. St(x, reg(Γ)) ⊆ St(x, Γ).

4. If Γ2 ≺≺ Γ1, then reg(Γ2) ≺≺ reg(Γ1) (where Γ1 and Γ2 are locally

finite closed covering).

Proof. 1. Since Γ is locally finite and by the previous lemma, we
have that x ∈ St(x, Γ)◦ = (

⋃
x∈A;A∈Γ A)◦ ⊆ ⋃

x∈A;A∈Γ A◦, reg(Γ) is a
covering. The rest is clear.

2. Let y ∈ Ureg(Γ)(x), and suppose that y /∈ Cl(UΓ(x)). Then there ex-
ists an open neighborhood U of y such that U ∩UΓ(x) = ∅, U ⊆ Ureg(Γ)(x)
and U meets only a finite number of elements of Γ.

Since U ∩UΓ(x) = ∅, U ⊆ (
⋃{A ∈ Γ : x /∈ A; A∩U 6= ∅})◦ ⊆ ⋃{A◦ :

A ∈ Γ; x /∈ A; A ∩ U 6= ∅} ⊆ U ∩ ⋃{A◦ : A ∈ Γ; x /∈ A◦} 6= ∅ (by the
previous lemma), and hence U ∩⋃{A◦; A ∈ Γ;x /∈ A◦} 6= ∅.

On the other hand, since U ⊆Ureg(Γ)(x) it follows that U ∩ ⋃{A◦ : A ∈
Γ; x /∈ A◦} = ∅. The contradiction shows that Ureg(Γ)(x) ⊆ Cl(UΓ(x)).

3. The result is obvious.

4. If Γ2 is a refinement of Γ1, it is clear that reg(Γ2) is a refinement
of reg(Γ1).

Now, let x ∈ A◦1 with A1 ∈ Γ1. Then there exists an open neighbor-
hood of x such that U ⊆ A1 and U meets only a finite number of elements
of Γ1. By the previous lemma, we have that x ∈ U ⊆ (

⋃{A2 ∈ Γ2 : A2 ⊆
A1; A2 ∩ U 6= ∅})◦ ⊆ ⋃{A◦2 : A2 ∈ Γ2 : A2 ⊆ A1; A2 ∩ U 6= ∅}, and hence
A◦1 ⊆

⋃{A◦2 : A2 ⊆ A1; A2 ∈ Γ2} ⊆ A◦1, and taking closures we have that
A◦1 =

⋃{A◦2 : A2 ⊆ A1; A2 ∈ Γ2} (because Γ2 is locally finite and hence
closure-preserving). ¤

If Γ is a locally finite base of a directed fractal structure over a regular
space, we denote reg(Γ) = {reg(Γ) : Γ ∈ Γ}, and call it the regularization
of Γ.

The next result follows directly from the previous proposition.
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Proposition 3.4. Let Γ be a locally finite base of a directed fractal
structure over a regular space X. Then reg(Γ) is a locally finite base of
a directed fractal structure over X compatible with the topology induced
by Γ. If Γ is starbase, then so is reg(Γ).

Let ∆1 and ∆2 be locally finite bases of a directed fractal structure
Γ over a regular space X. By the fourth item of Proposition 3.3, it fol-
lows easily that reg(∆1) and reg(∆2) generate the same directed fractal
structure, which will be denoted by reg(Γ) and called the regularization
of Γ.

As an immediate consequence of Proposition 3.4 we have the following
result.

Theorem 3.5. Let Γ be a locally finite directed fractal structure over
a regular space X. Then reg(Γ) is a locally finite directed fractal structure
over X compatible with the topology induced by Γ. If Γ is starbase, so is
reg(Γ).

Definition 3.6. Let Γ = {Aλ : λ ∈ Λ} be a covering of a topological
space X. For each w ∈ P (Λ) (the set of nonempty subsets of Λ) we
define Aw = Cl(

⋂
λ∈w Aλ \ (

⋃
λ/∈w Aλ)). We define qdi(Γ) = {Aw : w ∈

P (Λ)} \ {∅}, and call it the quasi-disjointification of Γ.

The notation qdi(Γ) is motivated by the observation that qdi(Γ) is
quasi-disjoint, see 4 bellow.

Proposition 3.7. Let Γ = {Aλ : λ ∈ Λ} be a closed covering of a
topological space X. Then

1. For all w ∈ P (Λ), there exists x ∈ X such that Aw = Cl(U∗
Γ(x))

or Aw = ∅, and for all x ∈ X, there exists w ∈ P (Λ) such that
Aw = Cl(U∗

Γ(x)).
2. Aλ =

⋃{Aw : λ ∈ w; w ∈ P (Λ)} and hence qdi(Γ) ≺≺ Γ.

3. Uqdi(Γ) ⊆ UΓ.

4. qdi(Γ) is quasi-disjoint.

5. qdi(Γ) is a closed covering and if Γ is locally finite, so is qdi(Γ).
6. If Γ2 ≺≺ Γ1, then qdi(Γ2) ≺≺ qdi(Γ1) (where Γ1 and Γ2 are locally

finite closed coverings).

Proof. 1. Let w∈P (Λ), and suppose that there exists x∈⋂
λ∈w Aλ\

(
⋃

λ/∈w Aλ). Then it is clear that x ∈ Aλ if and only if λ ∈ w. Hence Aw =
Cl(

⋂
λ∈w Aλ \ (

⋃
λ/∈w Aλ)) = Cl(

⋂
x∈Aλ Aλ \ (

⋃
x/∈Aλ Aλ)) = Cl(U∗

Γ(x)).
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Let x ∈ X, and let w = {λ ∈ Λ : x ∈ Aλ}. Then it is clear that
x ∈ Aλ if and only if λ ∈ w, and hence Aw = Cl(U∗

Γ(x)), analogously to
the preceding paragraph.

2. It is clear that
⋃{Aw : λ ∈ w; w ∈ P (Λ)} ⊆ Aλ, since Aw ⊆ Aµ for

all µ ∈ w.
Let x ∈ Aλ. Then x ∈ Aw = Cl(U∗

Γ(x)) (by the first item and for
some w ∈ P (Λ)) and since x ∈ Aλ, λ ∈ w. This proves the equality.

3. This result follows easily from the previous item.

4. Aw = Cl(
⋂

λ∈w Aλ \ (
⋃

λ/∈w Aλ)) ⊆ X \ (
⋃

λ/∈w Aλ)◦, and hence
Aw ∩ (

⋃
λ/∈w Aλ)◦ = ∅.

On the other hand, if there exists λ ∈ v \ w, then Av ⊆ Aλ, and
(Av)◦ ⊆ (Aλ)◦ ⊆ (

⋃
λ/∈w Aλ)◦. Therefore Aw ∩ (Av)◦ = ∅, and hence Γ is

quasi-disjoint.

5. It follows from the first item that qdi(Γ) is a covering and it is
obvious that each Aw is closed. Suppose that Γ is locally finite, and let us
see that qdi(Γ) is also.

Let x ∈ X. Then there exists an open neighborhood U of x and a
finite set {λ1, . . . , λn} such that U ∩ Aλi 6= ∅ for each i ∈ {1, . . . , n}, but
U ∩Aµ = ∅ for all µ /∈ {λ1, . . . , λn}. Since Aw ⊆ Aλ for all λ ∈ w, we have
that w ∈ P ({λ1, . . . , λn}) for all w such that U ∩Aw 6= ∅. Therefore there
are only a finite number of w for which U ∩ Aw 6= ∅ and hence qdi(Γ) is
locally finite.

6. It is easy to see that U∗
Γ2

(x) ⊆ U∗
Γ1

(x) for all x ∈ X. Therefore
qdi(Γ2) is a refinement of qdi(Γ1).

Using that Γ2 is locally finite, it is easy to check that the family
{U∗

Γ2
(y) : y ∈ X} is closure preserving. Since y ∈ U∗

Γ1
(x) if and only

if U∗
Γ2

(y) ⊆ U∗
Γ1

(x) for all x ∈ X, we have that U∗
Γ1

(x) =
⋃{U∗

Γ2
(y) :

y ∈ U∗
Γ1

(x)} =
⋃{U∗

Γ2
(y) : U∗

Γ2
(y) ⊆ U∗

Γ1
(x)}. It follows that qdi(Γ2) ≺≺

qdi(Γ1). ¤

Let Γ be a locally finite base of a directed fractal structure over X.
We denote qdi(Γ) = {qdi(Γ) : Γ ∈ Γ} and call it the quasi-disjointification
of Γ.



364 M. A. Sánchez-Granero

Corollary 3.8. Let Γ be a locally finite base of a directed fractal

structure over X. Then qdi(Γ) is a locally finite quasi-disjoint base of a

directed fractal structure over X compatible with the topology induced

by Γ.

Proof. Consider on X the topology induced by Γ. By the fourth
and fifth items of Proposition 3.7, qdi(Γ) is a locally finite quasi-disjoint
closed covering for each Γ ∈ Γ and by the third item Uqdi(Γ)(x) ⊆ UΓ(x).
Therefore {Uqdi(Γ)(x) : Γ ∈ Γ} is an open neighborhood base of x for all
x ∈ X (note that Uqdi(Γ)(x) is open since qdi(Γ) is locally finite).

By the sixth item of Proposition 3.7 and from what we have already
proved, we have that qdi(Γ) is a locally finite quasi-disjoint base of a
directed fractal structure over X compatible with the topology induced
by Γ. ¤

Let ∆1 and ∆2 be locally finite bases of a directed fractal structure Γ
over X. By the sixth item of Proposition 3.7, it easily follows that qdi(∆1)
and qdi(∆2) generate the same directed fractal structure, which will be
denoted by qdi(Γ) and called the quasi-disjointification of Γ.

As an immediate consequence of Corollary 3.8 we have the following
result.

Corollary 3.9. Let Γ be a locally finite directed fractal structure over

X. Then qdi(Γ) is a locally finite quasi-disjoint directed fractal structure

over X compatible with the topology induced by Γ.

Definition 3.10. Let Γ be a covering of a topological space X. We
define til(Γ) = reg(qdi(Γ)).

Proposition 3.11. Let Γ be a closure preserving tiling of a topological

space X. Then UΓ(x) = St(x, Γ).

Proof. Let y ∈ St(x, Γ) and let A ∈ Γ such that x, y ∈ A. If z ∈ A◦

then A is the unique member of Γ which contains z and since x ∈ A then
it follows that x ∈ U−1

Γ (z) =
⋂{B ∈ Γ : z ∈ B} = A and hence z ∈ UΓ(x).

Therefore, y ∈ A = A◦ ⊆ UΓ(x) and hence St(x, Γ) ⊆ UΓ(x). Since Γ is
closure preserving, St(x, Γ) is closed and since UΓ(x) ⊆ St(x,Γ), it follows
that UΓ(x) = St(x, Γ). ¤
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Theorem 3.12. Let Γ be a locally finite directed fractal structure over
a regular space X. Then til(Γ) is a starbase locally finite tiling directed
fractal structure over X.

Proof. Since qdi(Γ) is a locally finite quasi-disjoint directed fractal
structure over X, by Corollary 3.9, it is clear from Theorem 3.5 that
til(Γ) = reg(qdi(Γ)) is a locally finite tiling directed fractal structure over
X. Finally, til(Γ) is starbase by Proposition 3.11. ¤

The next result is easily anticipated.

Lemma 3.13. Let Γ be a tiling of a topological space X. Then
til(Γ) = Γ.

Proof. Let Γ = {Aλ : λ ∈ Λ} be a tiling. We will use the notation
of Definition 3.6. Let w ∈ P (Λ). Suppose that there exist λ1 6= λ2 with
{λ1, λ2} ⊆ w. Then Aw ⊆ Aλ1 ∩ Aλ2 , whence (Aw)◦ ⊆ (Aλ1 ∩ Aλ2)

◦ = ∅.
On the other hand it is clear that if w = {λ} then (Aλ)◦ ⊆ (Aλ)◦ \⋃

µ6=λ Aµ ⊆ Aw, since Γ is a tiling, and hence (Aλ)◦∩Aµ = ∅ for all µ 6= λ.
Therefore, since Γ is a tiling, we have that Aλ = Cl((Aλ)◦) ⊆ Aw ⊆ Aλ,
whence Aw = Aλ. Consequently, we have that til(Γ) = Γ. ¤

Lemma 3.14 ([3]). Let Γ be the family of all finite closed coverings
of a topological space X. Then Γ is a finite directed fractal structure.
Moreover Γ = ΓP , where P is the Pervin quasi-uniformity (hence UΓ is
the Pervin quasi-uniformity).

We give the description of the finest finite tiling starbase base of a
directed fractal structure over a regular space.

Proposition 3.15. Let X be a regular space and let ΓP be the directed
fractal structure induced by the Pervin quasi-uniformity. Then til(ΓP) is
a finite tiling starbase base of a directed fractal structure compatible with
the topology of X. Moreover til(ΓP) is the family of all finite tilings of X.

Proof. It is clear that ΓP is a finite directed fractal structure over
X. Since X is regular, the Pervin quasi-uniformity is locally symmetric,
and hence ΓP is starbase by Proposition 2.3. Then til(ΓP) is a finite tiling
starbase base of a directed fractal structure over X.

If A is a finite tiling of X, then, by Lemma 3.14, A ∈ ΓP , and by
Lemma 3.13 it follows that til(A) = A, and hence A ∈ til(ΓP). Conversely,
if A ∈ til(ΓP), it is clear that A is a finite tiling of X. Therefore, til(ΓP)
is the family of all finite tilings of X. ¤
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Lemma 3.16. Let Γ be the family of all locally finite closed coverings

of a topological space X. Then Γ is a locally finite base of a directed

fractal structure compatible with the topology of X.

Proof. It is clear that if Γ1,Γ2 ∈ Γ then Γ1 ∧ Γ2 ∈ Γ, and since
Γ1 ∧Γ2 ≺≺ Γ1,Γ2, Γ is a base of a directed fractal structure that is clearly
locally finite.

Let x ∈ X and U open with x ∈ U . Then Γ = {X, X \ U} ∈ Γ and
UΓ(x) = U . Therefore, the topology induced by Γ is compatible with the
topology of X (note that UΓ(x) is open for each Γ ∈ Γ). ¤

Proposition 3.17. Let X be a regular space and let Γ be the family

of all locally finite tilings of X. Then Γ is a locally finite tiling starbase

base of a directed fractal structure over X.

Proof. Let ∆ be the base of directed fractal structure consisting of
all locally finite closed coverings of X (see Lemma 3.16). Then til(∆) is a
locally finite tiling starbase base of a directed fractal structure over X by
Theorem 3.12.

Let us show that Γ = til(∆). It is clear that til(∆) ⊆ Γ. Let A ∈ Γ,
by Lemma 3.13 it follows that A = til(A), and since A ∈ Γ ⊆ ∆ it follows
that A ∈ til(∆), and hence Γ = til(∆). ¤

Lemma 3.18 ([3]). Let Γ be the family of all closure preserving closed

coverings of a topological space X. Then Γ is a directed fractal structure

compatible with the topology of X. Moreover Γ = ΓFT , where FT is the

finest transitive quasi-uniformity on X.

Proposition 3.19. Let X be a regular space and let Γ be the family

of all closure preserving tilings of X. Then Γ is a tiling starbase base of a

directed fractal structure compatible with the topology of X.

Proof. Since Γ = til(∆), where ∆ is the family of all closure pre-
serving closed coverings of X, and ∆ is a directed fractal structure over
X by Lemma 3.18, Γ is a base of a directed fractal structure.

Since it is clear that Γ contains til(ΓP), which is a starbase base of
a directed fractal structure by Proposition 3.15, Γ is compatible with the
topology of X and Γ is a starbase and tiling. ¤
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Proposition 3.20. Let X be a topological space. The following state-

ments are equivalent:

1. X is a regular space.

2. ΓP (where ΓP is the directed fractal structure induced by the Pervin

quasi-uniformity) is starbase.

3. There exists a starbase directed fractal structure over X.

Proof. 1) implies 2). P is locally symmetric, since X is a regular
space, and hence ΓP is starbase (by Proposition 2.3).

2) implies 3). Obvious.

3) implies 1). Let Γ be a starbase directed fractal structure over X.
Let x ∈ X and U be an open set containing x. Since Γ is a starbase, there
exists Γ ∈ Γ such that x ∈ St(x, Γ) ⊆ U . Since Γ is closure preserving
by Proposition 2.2, we have that x ∈ UΓ(x) ⊆ UΓ(x) ⊆ St(x, Γ) ⊆ U .
Therefore X is regular. ¤

We recall that a coveringA is said to be directed if A∪B ∈ A whenever
A,B ∈ A.

Definition 3.21 (compare [8]). Let Γ be a (base of a) directed fractal
structure over a topological space X. We say that Γ is uniform (resp. F-
uniform, LF-uniform, C-uniform, D-uniform) if every open covering (resp.
finite, locally finite, countable, directed open covering) has a refinement
in Γ.

The following result easily follows from [8, Proposition 1.4] and its
proof.

Lemma 3.22. For a topological space X, the following statements are

equivalent:

1. X is normal

2. Every locally finite open covering has a closure preserving closed re-

finement.

3. Every finite open covering has a closure preserving closed refinement.
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Proposition 3.23. Let X be a topological space. The following state-

ments are equivalent:

1. X is normal.

2. The family of all locally finite closed coverings of X is a LF-uniform

locally finite base of a directed fractal structure over X.

3. There exists a LF-uniform directed fractal structure over X.

4. There exists an F-uniform directed fractal structure over X.

Proof. 1) implies 2). It follows from Lemma 3.16 that the family Γ
of all locally finite closed coverings of X is a locally finite base of a directed
fractal structure over X. Since every locally finite open covering in a
normal space has a locally finite closed refinement by [8, Proposition 1.4],
it follows that Γ is LF-uniform.

2) implies 3) and 3) implies 4) are evident.

4) implies 1). Let Γ be an F-uniform directed fractal structure over
X. Since Γ is F-uniform, every finite open covering has a refinement in Γ,
and since every element of Γ is closure preserving by Proposition 2.2, it
follows from Lemma 3.22 that X is normal. ¤

The proof of the following result is analogous to the proof of the
previous one.

Proposition 3.24. Let X be a T0 topological space. The following

statements are equivalent:

1. X is a normal Hausdorff space.

2. The family of all locally finite tilings of X is a LF-uniform locally

finite tiling starbase base of a directed fractal structure over X.

3. There exists a LF-uniform starbase directed fractal structure over X.

4. There exists an F-uniform starbase directed fractal structure over X.

Proposition 3.25. Let Γ be an F-uniform directed fractal structure

over a regular Hausdorff space X. Then Γ is starbase and X is a normal

Hausdorff space.

Proof. Let x ∈ X and U be an open neighborhood of x. Since X

is regular, there exists an open subset V of X such that x ∈ V ⊆ V ⊆ U .
Then U = {U,X \ V } is an open covering of X, and since Γ is F-uniform,
there exists Γ ∈ Γ such that Γ is a refinement of U . Then St(x, Γ) ⊆ U ;
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indeed, if A ∈ Γ with x ∈ A, then it is clear, since Γ is a refinement of
U and x ∈ A but x 6∈ X \ V , that A ⊆ U . Therefore, we have UΓ(x) ⊆
St(x, Γ) ⊆ U , and since UΓ(x) is open (since Γ is closure preserving) it
follows that Γ is starbase. Note that X is a normal Hausdorff space by
Propositon 3.24. ¤

Proposition 3.26. Let X be a T0 topological space. The following

statements are equivalent:

1. X is a paracompact Hausdorff space.

2. The family of all locally finite tilings of X is a uniform locally finite

tiling starbase base of a directed fractal structure over X.

3. There exists a uniform starbase directed fractal structure over X.

Proof. 1) implies 2). It follows from Proposition 3.17 that the family
Γ of all locally finite tilings of X is a locally finite starbase base of a directed
fractal structure over X. Since every open covering in a paracompact
Hausdorff space has a locally finite tiling refinement by [8, Lemma 1.5], it
follows that Γ is uniform.

2) implies 3) is evident.

3) implies 1). Let Γ be a uniform starbase directed fractal structure
over X. By Proposition 3.20, X is regular and hence it is Hausdorff. On
the other hand, since Γ is uniform it follows that every open covering has
a refinement in Γ, and since every element of Γ is closure preserving by
Proposition 2.2, it follows by [6, Theorem 9.2.3] that X is paracompact.

¤
Proposition 3.27. A Hausdorff space is strongly paracompact if and

only if it admits a uniform locally finite starbase base of a directed fractal

structure Γ such that ΓU−1
Γ

is a locally finite base of a directed fractal

structure (not necessarily compatible with the topology of the space).

Proof. First, note that ΓU−1
Γ

is locally finite in (X, T (U−1
Γ )) if and

only if the family {UΓ(x) : x ∈ X} is point finite for each Γ ∈ Γ.
Suppose that X is strongly paracompact and let Γ be the family of all

locally finite star-finite tilings of X. By [8, Proposition 1.6], it is easy to
check that Γ is a uniform locally finite starbase base of a directed fractal
structure compatible with the topology of X.

Let Γ ∈ Γ and let us prove that {UΓ(x) : x ∈ X} is point finite.
Let y ∈ X and xk ∈ X such that y ∈ UΓ(xk) for each k ∈ N. Then xk ∈
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U−1
Γ (y) ⊆ St(y, Γ). Since Γ ∈ Γ, Γ is locally finite and star-finite and hence

St(y, Γ) meets only a finite number of elements of Γ. Since xk ∈ St(y, Γ),
St(xk, Γ) ⊆ St(St(y, Γ), Γ). It follows that UΓ(xk) = X \ (L ∪Mk), where
L =

⋃
A∈Γ;A∩St(y,Γ)=∅A and Mk =

⋃
A∈Γ;A∩St(y,Γ) 6=∅;xk /∈A A. Since L does

not depend on xk and there are only a finite number of combinations
for the elements of the union in Mk, {Mk : k ∈ N} is finite and hence
{UΓ(xk) : k ∈ N} is finite. Therefore {UΓ(x) : x ∈ X} is a point finite
family.

Conversely, let Γ be a uniform locally finite starbase base of a directed
fractal structure such that ΓU−1

Γ
is locally finite, and let V be an open

covering of X. Since Γ is uniform, there exists Γ ∈ Γ such that Γ ≺ V.
Then it is clear that ΓUΓ = {U−1

Γ (x) : x ∈ X} refines V.
Let us show that ΓUΓ is star-finite. Let x ∈ X and xk ∈ X with

k ∈ N such that U−1
Γ (x) ∩ U−1

Γ (xk) 6= ∅, and let yk ∈ U−1
Γ (x) ∩ U−1

Γ (xk).
Then x ∈ UΓ(yk) and xk ∈ UΓ(yk). Since ΓU−1

Γ
is locally finite, the family

{UΓ(yk) : k ∈ N} is finite. Let n ∈ N be such that UΓ(yk) = UΓ(yi)
for each k > n and some i ≤ n. For each k it follows that the family
{U−1

Γ (xm) : yk ∈ U−1
Γ (xm)} is finite, since ΓUΓ is locally finite. Then

{U−1
Γ (xk) : k ∈ N} = {U−1

Γ (xk) : xk ∈ UΓ(yk)} = {U−1
Γ (xk) : xk ∈

UΓ(ym) for some m ≤ n} is a finite family. Therefore ΓUΓ is star-finite
(and locally finite since Γ is) and hence X is strongly paracompact by [8,
Proposition 1.6]. ¤

Next we characterize compact and metacompact Hausdorff spaces in
terms of uniform directed fractal structures.

Lemma 3.28. A Hausdorff space is compact if and only if every open

covering has a finite closed refinement (which is a tiling).

Proposition 3.29. Let X be a topological space. The following state-

ments are equivalent:

1. X is a compact Hausdorff space.

2. The family of all finite tilings of X is a uniform finite tiling starbase

base of a directed fractal structure over X.

3. There exists a uniform finite starbase directed fractal structure over X.

Proof. The proof is analogous to the proof of Proposition 3.23, if
we have in mind Lemma 3.28 and Proposition 3.15. ¤
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Proposition 3.30. Let X be a topological space. The following state-
ments are equivalent:

1. X is a metacompact Hausdorff space.

2. The family of all closure preserving closed coverings of X is a D-
uniform starbase directed fractal structure over X.

3. There exists a D-uniform starbase directed fractal structure over X.

Proof. The proof is analogous to the proof of Proposition 3.23, if
we have in mind [6, Theorem 9.3.5] and Proposition 3.18. ¤

Let f : X → Y , Γ be a family of subsets of X and Γ = {Γi : i ∈ I},
where Γi is a family of subsets of X. We denote {f(A) : A ∈ Γ} by f(Γ)
and {f(Γi) : i ∈ I} by f(Γ).

The proof of the following lemma is straightforward.

Lemma 3.31. Let X and Y be topological spaces, f : X → Y a
continuous function, Γ a family of subsets of X and Γ = {Γi : i ∈ I},
where Γi is a family of subsets of X whenever i ∈ I.

1. If f is closed and Γ is closure preserving, so is f(Γ).
2. If f is onto and Γ is uniform (resp. LF-uniform, F-uniform, C-uniform,

D-uniform), so is f(Γ).

Proposition 3.32. Let X, Y be T1 topological spaces and Γ an F-
uniform directed fractal structure over X. Let f be a continuous closed
mapping from X onto Y . Then f(Γ) is a (F-uniform starbase) base of a
directed fractal structure compatible with the topology of Y .

Proof. It is easy to check that f(Γ1) ≺≺ f(Γ2) for each covering Γ1,
Γ2 of X with Γ1 ≺≺ Γ2, and hence it follows that Γ is a base of a directed
fractal structure.

Since Γ is closure preserving (Proposition 2.2) whenever Γ ∈ Γ, it
follows from the previous lemma that f(Γ) is closure preserving for each
Γ ∈ Γ, and hence Uf(Γ)(x) is open for each x ∈ X and Γ ∈ Γ. Let y ∈ Y
and U an open neighborhood of y. Then A = {f−1(Y \ {y}), f−1(U)} is
a finite open covering of X, and since Γ is F-uniform, there exists Γ ∈ Γ
such that Γ refines A. Let z ∈ St(y, f(Γ)). Then there exists A ∈ Γ such
that z, y ∈ f(A). Since Γ ≺ A, it follows that A ⊆ f−1(U) and hence that
z ∈ f(A) ⊆ U . Thus, St(y, f(Γ)) ⊆ U . Therefore f(Γ) is compatible with
the topology of Y and is starbase. It is F-uniform by the previous lemma.

¤
Note that we obtain as a corollary that the closed image of a para-

compact (resp. normal) Hausdorff space is paracompact (resp. normal) and
Hausdorff.
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4. Lebesgue type properties for quasi-uniformities

We recall that a quasi-uniformity U is said to be Lebesgue if every
open covering has a refinement of the form {U(x) : x ∈ X} for some U ∈ U ,
and it is said to be cofinally complete if every directed open covering has
a refinement of the form {U(x) : x ∈ X} for some U ∈ U .

Definition 4.1. A quasi-uniformity U is said to be co-Lebesgue (resp.
F-co-Lebesgue, LF-co-Lebesgue, C-co-Lebesgue, D-co-Lebesgue) if every
open covering (resp. finite, locally finite, countable, directed open covering)
has a refinement of the form {U−1(x) : x ∈ X} for some U ∈ U .

The definition of F-Lebesgue, LF-Lebesgue, C-Lebesgue and D-Le-
besgue (= cofinally complete) quasi-uniformities is apparent.

It is clear that Lebesgue implies LF-Lebesgue, D-Lebesgue, C-Le-
besgue and that LF-Lebesgue (resp. C-Lebesgue) implies F-Lebesgue. An
LF-Lebesgue quasi-uniformiy in a paracompact space is Lebesgue, and a
C-Lebesgue quasi-uniformiy in a Lindelöf space is Lebesgue.

The analogous results for co-Lebesgue properties are also clear.

Remark 4.2. Note that a transitive quasi-uniformity U is co-Lebesgue
(resp. F-co-Lebesgue, LF-co-Lebesgue, C-co-Lebesgue, D-co-Lebesgue) if
and only if ΓU (the directed fractal structure associated with U) is uniform
(resp. F-uniform, LF-uniform, C-uniform, D-uniform).

Also note that if U is a point symmetric quasi-uniformity and U−1 is
a Lebesgue quasi-uniformity, then U is co-Lebesgue.

Proposition 4.3. Let Γ be a directed fractal structure over a topolog-

ical space X which is uniform (resp. F-uniform, LF-uniform, D-uniform).

Then so is ΓUΓ
.

Proof. This is evident, since ΓUΓ is a refinement of Γ for every Γ ∈ Γ.
¤

Proposition 4.4. A topological space X admits a directed fractal

structure Γ which is uniform (resp. F-uniform, LF-uniform, C-uniform,

D-uniform) if and only if it admits a transitive quasi-uniformity U which

is co-Lebesgue (resp. F-co-Lebesgue, LF-co-Lebesgue, C-co-Lebesgue, D-

co-Lebesgue).

Proof. Let Γ be a uniform directed fractal structure over X (the
cases F-uniform, LF-uniform, C-uniform and D-uniform are analogous).
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By Proposition 4.3, it follows that ΓUG is uniform. By Remark 4.2, it
follows that the quasi-uniformity UΓ associated with Γ is co-Lebesgue,
since ΓUΓ

is uniform.
Conversely, let U be a co-Lebesgue transitive quasi-uniformity, then

the directed fractal structure ΓU associated with U is uniform by Re-
mark 4.2. ¤

In order to fully understand the next corollary, we recall that a topo-
logical space is orthocompact (resp. weakly orthocompact) if and only
if FT (the finest transitive quasi-uniformity) is Lebesgue (resp. cofinally
complete) and that a Tychonoff space is paracompact if and only if the fine
uniformity is Lebesgue or cofinally complete. See also [4, Proposition 5.29].

Corollary 4.5. Let X be a Hausdorff space.

1. X is paracompact if and only if FT is co-Lebesgue.

2. X is paracompact if and only if it admits a co-Lebesgue (transitive)

quasi-uniformity.

3. X is compact if and only if P is co-Lebesgue.

4. X is compact if and only if it admits a totally bounded co-Lebesgue

(transitive) quasi-uniformity.

5. X is normal if and only if FT is F-co-Lebesgue (or LF-co-Lebesgue).

6. X is normal if and only if it admits a F-co-Lebesgue or a LF-co-

Lebesgue (transitive) quasi-uniformity.

7. X is metacompact if and only if FT is D-co-Lebesgue.

8. X is metacompact if and only if it admits a D-co-Lebesgue transitive

quasi-uniformity.

Proof. If X is a paracompact Hausdorff space then the directed frac-
tal structure Γ of all closure preserving closed coverings is uniform, since it
contains the base of directed fractal structure consisting of all locally finite
tilings of X and by Proposition 3.26. Since the quasi-uniformity induced
by Γ is FT by Proposition 3.18, and by Proposition 4.3 it follows that
ΓUΓ

= ΓFT is uniform then FT is co-Lebesgue by Remark 4.2.
If X admits a co-Lebesgue transitive quasi-uniformity, then X is para-

compact by Proposition 3.26 and Proposition 4.4.
The rest of the items have an analogous proof for the transitive cases,

using Propositions 3.29, 3.23 and 3.30 (Recall from Proposition 2.3 that U
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is totally bounded if and only if the directed fractal structure ΓU induced
by U is finite).

Now, let us prove the non-transitive cases.
(2) Suppose that X admits a co-Lebesgue quasi-uniformity. By [5,

Lemmas 2.3 and 3.4] every open covering of X has a cushioned refinement
(see [6] for a definition of a cushioned refinement) and so by [6, Theo-
rem 9.2.3(v)] X is paracompact.

(4) Suppose that X admits a totally bounded co-Lebesgue quasi-
uniformity U . Let F be an ultrafilter on X that does not converge. Then
for each x ∈ X there exists Ux ∈ U such that Ux(x) /∈ F and Ux(x)
is open. There is an entourage V such that {V −1(x) : x ∈ X} refines
{Ux(x) : x ∈ X}. Since U−1 is totally bounded, there exists p ∈ X with
V −1(p) ∈ F . But V −1(p) ⊆ Ux(x) for some x ∈ X and so Ux(x) ∈ F – a
contradiction.

(6) Suppose that U is F-co-Lebesgue. Let F1 and F2 be disjoint closed
subspaces of X. Then A = {X \ F1, X \ F2} is an open covering of X,
and since U is F-co-Lebesgue, there exists U ∈ U (we can suppose that
U(x) is open for each x ∈ X) such that {U−1(x) : x ∈ X} refines A.
Then U(F1) ∩ U(F2) = ∅. Indeed, if x ∈ U(F1) ∩ U(F2) we have that
U−1(x) ∩ F1 6= ∅ and U−1(x) ∩ F2 6= ∅, a contradiction. Since U(F1) and
U(F2) are open, X is normal. ¤

Question 4.6. Is it possible to drop the word transitive in item 8 of
the previous proposition?

Remark 4.7. Note that a topological space can admit a Lebesgue
quasi-uniformity without admitting a Lebesgue transitive quasi-uniformity
(see [4]).

It is known ([4]) that a topological space is compact if and only if
each admissible quasi-uniformity is Lebesgue. The next result shows that
this is also the case for co-Lebesgue and Hausdorff spaces. Note that the
Hausdorff condition is necessary in this proposition: by the sixth item of
the preceding corollary, an F-co-Lebesgue quasi-uniform space is normal
and so a non-Hausdorff compact T1 quasi-uniform space cannot admit a
co-Lebesgue quasi-uniformity.
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Proposition 4.8. A Hausdorff space X is compact if and only if every

compatible quasi-uniformity is co-Lebesgue.

Proof. Suppose that X is compact, and let U be a quasi-uniformity
on X, and V an open covering of X. Since X is compact, we can suppose
for our purposes that V is finite. For each x ∈ X, let Ux ∈ U be such
that Ux(x) ⊆ V for some V ∈ V, and let Vx ∈ U with Vx ⊆ Ux be such
that V −1

x (Vx(x)) ⊆ Ux(x) (note that since X is a compact Hausdorff space
every compatible quasi-uniformity is locally symmetric). Then {Vx(x) :
x ∈ X} is an open covering of X, so there exists a finite subcovering
{Vx1(x1), . . . , Vxn(xn)}; let W ∈ U be such that W ⊆ Vxk

for k = 1, . . . , n.
Let us check that {W−1(x) : x ∈ X} is a refinement of V. Indeed, let
x ∈ X, then there exists k ∈ {1, . . . , n} such that x ∈ Vxk

(xk). Then we
have that W−1(x) ⊆ V −1

xk
(x) ⊆ V −1

xk
(Vxk

(xk)) ⊆ Uxk
(xk) ⊆ V for some

V ∈ V. Therefore {W−1(x) : x ∈ X} is a refinement of V, and hence U is
co-Lebesgue.

Conversely, if every compatible quasi-uniformity is co-Lebesgue, then
P is co-Lebesgue, and by Corollary 4.5 it follows that X is a compact
space. ¤

Proposition 4.9. Let (X,U) be a F-Lebesgue or a F-co-Lebesgue

quasi-uniform space. Then it is equinormal.

Proof. Suppose that U is F-Lebesgue (if it is F-co-Lebesgue the
reasoning is analogous). Let F1 and F2 be disjoint closed subspaces of
X. Then A = {X \ F1, X \ F2} is an open covering of X, and since U is
F-Lebesgue, there exists U ∈ U such that {U(x) : x ∈ X} refines A. So
given x ∈ F1 we have that U(x) ⊆ X \ F2, and hence U(F1) ∩ F2 = ∅.
Therefore U is equinormal. ¤

Example 4.10. The Pervin quasi-uniformity for a regular non-normal
Hausdorff space is equinormal, but it is not F-co-Lebesgue.

Corollary 4.11. Let U be a co-Lebesgue (resp. C-co-Lebesgue, LF-co-

Lebesgue, F-co-Lebesgue) quasi-uniformity for a topological space X. If X

is regular (resp. R0), then U is locally symmetric (resp. point symmetric).

Proof. This follows from 4.9 and [4, Proposition 2.26]. ¤
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Definition 4.12. Let (X,U) be a quasi-uniform space.
A filter F is said to be co-Cauchy if for each U ∈ U there exists x ∈ X

such that U−1(x) ∈ F .
A filter F is said to be weakly co-Cauchy if for each U ∈ U there

exists x ∈ X such that U−1(x) ∩ F 6= ∅ for each F ∈ F .
U is said to be co-complete if every co-Cauchy filter clusters, and it is

said to be convergence co-complete if every co-Cauchy filter converges.
U is said to be co-uniformly locally compact if there exists U ∈ U such

that U−1(x) is compact for each x ∈ X.

Note that convergence co-complete implies co-complete and co-com-
plete implies Right K-complete (see [10] for a definition).

It is known (see [4]) that a Lebesgue (resp. D-Lebesgue) quasi-uni-
formity is convergence complete (resp. complete), and following the proof
of the corresponding results in [4], it can be proved that a co-Lebesgue
(resp. D-co-Lebesgue) quasi-uniformity is convergence co-complete (resp.
co-complete); a quasi-uniformity is D-co-Lebesgue if and only if every
weakly co-Cauchy filter clusters; a locally compact quasi-uniform space
is co-uniformly locally compact if and only if it is D-co-Lebesgue; the con-
jugate of a co-Lebesgue quasi-uniformity contains each neighborhood of
the diagonal and for a Tychonoff space the conjugate of a co-Lebesgue
quasi-uniformity contains the fine uniformity.

Proposition 4.13. Let X be a locally compact Hausdorff space. The

following statements are equivalent:

1. X is metacompact.

2. There exists a base Γ of a directed fractal structure over X such that

A is compact for each A ∈ Γ and each Γ ∈ Γ.

3. X admits a co-uniformly locally compact transitive quasi-uniformity.

Proof. 1) implies 2). Let Γ be the family of all closure preserving
coverings of X by compact sets. Let x ∈ X and V be an open neighborhood
of x. Let U be an open neighborhood of x with U compact and U ⊆ V . Let
Ux be an open neighborhood of x such that Ux ⊆ U . For each y ∈ X \Ux,
let Uy be an open neighborhood of y with Uy compact and Uy ∩ Ux = ∅.
Then B = {⋃i∈F Uyi : yi ∈ X \ Ux; F finite} is a directed open cover of
X \ U . Since X \ U is metacompact, by [6, Theorem 9.3.5], there exists a
closure preserving closed covering A of X \ U which refines B. It follows
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that Γ = A ∪ {U} is a closure preserving covering of X by compact sets
and hence Γ ∈ Γ. It easily follows that St(x, Γ) = U ⊆ V . Therefore Γ
is a starbase base of a directed fractal structure (note that Γ1 ∧ Γ2 ∈ Γ
whenever Γ1, Γ2 ∈ Γ, and that Γ1 ∧ Γ2 ≺≺ Γ1, Γ2) compatible with the
topology of X, so Γ verifies 2).

2) implies 3). UΓ is a co-uniformly locally compact transitive quasi-
uniformity.

3) implies 1). Suppose that X admits a co-uniformly locally com-
pact transitive quasi-uniformity. Then it is D-co-Lebesgue by the previous
comments, and hence X is metacompact by Corollary 4.5. ¤

Proposition 4.14. Let (X,U) be a quasi-uniform space. Then U is

co-Lebesgue if and only if X is paracompact and U−1 contains the fine

uniformity.

Proof. If U is co-Lebesgue, then X is paracompact by Corollary 4.5,
and U−1 contains the fine uniformity by the previous comments.

Conversely, suppose that X is paracompact and U−1 contains the fine
uniformity. Let A be an open covering of X. Since X is paracompact, the
fine uniformity is Lebesgue and there exists a symmetric element U of the
fine uniformity (and hence U ∈ U−1) such that {U(x) : x ∈ X} refines A.
Since U ∈ U−1 it follows that U is co-Lebesgue. ¤

5. Quasi-pseudometrics and Lebesgue type properties

In this section we study Lebesgue type properties for quasi-pseudo-
metric spaces and show that for regular quasi-metric spaces the notions
of Lebesgue, LF-Lebesgue, C-Lebesgue, co-Lebesgue, co-LF-Lebesgue and
co-C-Lebesgue are equivalent, as are the notions of equinormal, F-Lebesgue
and F-co-Lebesgue.

Proposition 5.1. Let (X, d) be a equinormal quasi-pseudometric

space. Then d is D-Lebesgue and F-Lebesgue. If X is regular, then d is

D-co-Lebesgue and F-co-Lebesgue.

Proof. It is proved in [7] that if d is equinormal then it is D-
Lebesgue. We are going to modify the proof of that result in order to
obtain the rest of the properties.
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Suppose that d is equinormal, and let {Un : n ∈ N} be a countable
base of quasi-uniformity for d such that Um ⊆ Un for m ≥ n.

Let us prove that d is F-Lebesgue.
Let A be a finite open covering, and suppose that d is not F-Lebesgue.

For each n ∈ N there exists xn ∈ X such that Un(xn) * A for each
A ∈ A. Suppose that x is a cluster point of (xn), and let A ∈ A such
that x ∈ A. Then there exists k ∈ N such that U2

k (x) ⊆ A. On the other
hand, there exists m ≥ k such that xm ∈ Uk(x), and hence Um(xm) ⊆
Uk(xm) ⊆ U2

k (x) ⊆ A, which contradicts the choice of xm. Therefore the
set {xn : n ∈ N} is hereditarily closed. Since A is finite, there exists A ∈ A
such that xn ∈ A for each n ∈ M , where M is an infinite subset of N.

For each n ∈ M let yn ∈ Un(xn)∩ (X \A). Since X \A is closed and
{xn : n ∈ M} ⊆ A, it follows that {yn : n ∈ M} ∩ {xn : n ∈ M} = ∅, and
we also have that yn ∈ Un(xn), which contradicts that d is equinormal.

Let us prove that d is F-co-Lebesgue (D-co-Lebesgue), assuming that
X is regular.

Let A be a finite (directed) open covering, and suppose that d is not
F-co-Lebesgue (D-co-Lebesgue). For each n ∈ N there exists xn ∈ X

such that U−1
n (xn) * A for each A ∈ A. We show that {xn : n ∈ N} is

hereditarily closed. Suppose that x is a cluster point of (xn), and let A ∈ A
be such that x ∈ A. Since X is regular, d is locally symmetric and hence
there exists k ∈ N such that U−1

k ◦ Uk(x) ⊆ A. On the other hand, there
exists m ≥ k such that xm ∈ Uk(x), and hence U−1

m (xm) ⊆ U−1
k (xm) ⊆

U−1
k ◦ Uk(x) ⊆ A, which contradicts the choice of xm. Therefore the set
{xn : n ∈ N} is hereditarily closed. If A is finite, there exists A ∈ A such
that xn ∈ A for each n ∈ M , where M is an infinite subset of N.

For each n ∈ M let yn ∈ U−1
n (xn) ∩ (X \A). Since each cluster point

of (yn) is a cluster point of (xn) it follows that {yn : n ∈ M} is closed and
{yn : n ∈ M} ∩ {xn : n ∈ M} = ∅, and we also have that yn ∈ U−1

n (xn),
which contradicts that d is equinormal.

We now consider the case that A is a directed open covering. Suppose
that for each n ∈ N there is an m(n) > n such that xm(n) ∈ U−1

n (xn).
Then we can construct two subsequences (an) and (bn) of (xn) such that
{an : n ∈ N} ∩ {bn : n ∈ N} = ∅ and bn ∈ U−1

n (an), which is not
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possible since d is equinormal. Therefore, we can assume, without loss
of generality, that for each n ∈ N, U−1

n (xn) ∩ {xm : m > n} = ∅. Let
yn ∈ U−1

n (xn) ∩ (X \ An), where An ∈ A is such that xn ∈ An for each
n ∈ N and An−1 ⊆ An if n > 1 (note that this is possible since A is
directed). Then it is clear that yn 6= xm for each n,m ∈ N. Since each
cluster point of (yn) is a cluster point of (xn) it follows that {yn : n ∈ M}
is closed and {yn : n ∈ M} ∩ {xn : n ∈ M} = ∅, and we also have that
yn ∈ U−1

n (xn), which contradicts that d is equinormal. ¤

Corollary 5.2. A quasi-pseudometric is equinormal if and only if it is

F-Lebesgue. A regular quasi-pseudometric space is equinormal if and only

if it is F-co-Lebesgue.

Corollary 5.3. Let (X, d) be a F-co-Lebesgue quasi-metric space.

Then X admits a cofinally complete metric.

Proof. By Corollary 4.5 it follows that X is normal, and hence d is
equinormal, so it is locally symmetric and X is metrizable. By the previous
proposition d is cofinally complete and hence X admits a cofinally complete
metric by [7, Corollary 1]. ¤

Proposition 5.4. Let (X, d) be a C-co-Lebesgue quasi-pseudometric

space. Then it is Lebesgue. Moreover, if (X, d) is a C-Lebesgue regular

quasi-pseudometric space, then it is co-Lebesgue.

Proof. Suppose that (X, d) is not Lebesgue. Then there exist an
open cover G = {Gα : α ∈ ∆} of X and a sequence (xn) in X such that
Un(xn) \ Gα 6= ∅ for all n ∈ N and α ∈ ∆. It follows that the sequence
(xn) has no cluster point (see the proof of Proposition 5.1). Hence for each
n ∈ N there is kn ∈ N with xj /∈ Ukn(xn) whenever j 6= n.

For each n ∈ N, let Gαn ∈ G be such that xn ∈ Gαn . Construct the
open cover of X, A = {Ukn(xn) ∩Gαn : n ∈ N} ∪ {X \ {xn : n ∈ N}}.

Since (X, d) is C-co-Lebesgue, there is m ∈ N such that {U−1
m (x) : x ∈

X} refines A. Let x ∈ Um(xm) \Gαm . Then U−1
m (x) * X \ {xn : n ∈ N}

because xm ∈ U−1
m (x), U−1

m (x) * Ukm(xm) ∩ Gαm because x /∈ Gαm and
U−1

m (x) * Ukj (xj) ∩ Gαj , j 6= m, because xm /∈ Ukj (xj) for j 6= m. This
contradiction proves that (X, d) is Lebesgue.

The proof of the second part is analogous. ¤
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Proposition 5.5. Let (X, d) be a LF-co-Lebesgue quasi-pseudometric

space. Then (X, d) is LF-Lebesgue.

Proof. The proof is analogous to the proof of the previous proposi-
tion, only note that A is locally finite if G is. ¤

Now, we summarize the previous results.

Corollary 5.6. Let (X, d) be a regular quasi-metric space. Then it is

Lebesgue if and only if it is co-Lebesgue or LF-Lebesgue or LF-co-Lebesgue

or C-Lebesgue or C-co-Lebesgue. It is equinormal if and only if it is F-

Lebesgue or F-co-Lebesgue.

Proof. Note that if (X, d) is equinormal and regular then X is
metrizable since d is locally symmetric and hence paracompact.
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