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Coincidence of correspondences
in Kähler–Finsler manifolds

By RADU PETER (Cluj-Napoca)

Abstract. In this paper we present some results on coincidence of correspon-
dences and fixed point properties in Kähler–Finsler manifolds. We follow the method
of Frankel [6], which was generalized for the Finsler case by the author and L. Koz-
ma [8].

1. Introduction

Holomorphic correspondences are generalizations of holomorphic map-
pings as multivalued maps of a complex manifold ([4], [7]). Fixed points
of correspondences of complex Kähler manifolds have been studied by
T. Frankel [6]. He proved that for a Kähler manifold of positive sec-
tional curvature a correspondence always has a fixed point (i.e. it intersects
the diagonal of N ×N). The method of its proof, based upon the second
variation formula of geodesics, proved effective in different situations ([1],
[6]). L. Kozma and the present author generalized Frankel’s results on
intersections of submanifolds for the case of Finsler manifolds [8]. In this
paper the result of Frankel concerning correspondences are extended to
the Finslerian case. We mention that we deduce results on coincidence
of correspondences, while Frankel’s theorem refers only to fixed points of
a correspondence. The proof follows the line of the original version of
Frankel, however, at some points more elaborated arguments are needed
due to the Finslerian context. Though S. S. Chern says [5] that Finsler
geometry is more natural than Riemannian geometry as a concept, the
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computational part of the subject requires much more effort. For the re-
cent flourishing literature of Finsler geometry see [2], [3], [10], [11]. Our
basic reference in this paper is [1].

2. Preliminaries

We recall some facts about Kähler–Finsler manifolds (see [1]).
Let M be a complex manifold of complex dimension n. The complex-

ification TCM of the real tangent bundle is decomposed as

TCM = T 1,0M ⊕ T 0,1M

where T 1,0M is the holomorphic tangent bundle over M and T 0,1M is the
conjugate of T 1,0M . T 1,0M is also a complex manifold of dimC T 1,0M = n.
T 1,0M and T 0,1M are the eigenspaces of the complex structure J belonging
to the eigenvalues i and −i, respectively.

A complex Finsler metric on a complex manifold is a continuous func-
tion F : T 1,0M → R satisfying

i) G := F 2 is smooth on M̃ = TM \ {zero section},
ii) F (v) > 0, ∀v ∈ M̃ ,

iii) F (µξ(v)) = |ξ|F (v) for all v ∈ T 1,0M and ξ ∈ C.

Recall that µξ : T 1,0M → T 1,0M is given by µξ(p, v) = (p, ξv), ∀(p, v) ∈
T 1,0M and ξ ∈ C. F is called strongly pseudoconvex if the Levi matrix
(Gαβ) is positive definite on M̃ , where

Gαβ =
∂G2

∂vα∂vβ
.

The complex vertical bundle is

VC = ker dπ ⊂ TCM̃.

There is a canonical isomorphism ιv : T 1,0
π(v) → Vv. The complex radial

vertical vector field ι : M̃ → V is defined by ι(v) = ιv(v) ∀v ∈ T 1,0M̃ . The
projection dπ commutes with J . It follows that we have the splitting VC =
V1,0 + V0,1. The complex vertical bundle is V = V1,0 = ker dπ ⊂ T 1,0M̃ .
The complex horizontal bundle is a complex subbundle of TCM̃ which is
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a direct summand of V and is J-invariant. We have also the splitting
HC = H1,0 +H0,1, and the complex horizontal bundle is H = H1,0.

The complex horizontal map is a complex bundle map Θ : VC →
TC which commutes with J and the conjugation and which satisfies the
relation (dπ◦Θ)v|V1,0 = ι−1

v |V1,0 . The complex radial (Liouville) horizontal
vector field is given by χ = Θ ◦ ι.

Then there exists a unique good vertical connection which makes the
Hermitian structure (Gαβ) in the vertical bundle V parallel. It can be

extended via the horizontal map to a complex linear connection on M̃ .
This is called the complex Chern–Finsler connection ∇.

The geodesics σ are characterized by the equation

∇
T H+T

H TH = 0

where TH is the horizontal lifting of the tangent vector T = σ̇, and T

means the conjugate of T .
A vector field U along a curve σ is said to be parallel along σ iff

∇
T H+T H UH = 0.

The torsions θ, and τ of ∇ are defined as follows

θ(X,Y ) = ∇XY −∇Y X − [X, Y ], ∀X,Y ∈ X(T 1,0M̃)

τ(X, Y ) = ∇XY −∇Y X − [X, Y ], ∀X,Y ∈ X(T 1,0M̃).

The curvature Ω is defined as usual. The holomorphic bisectional curvature
is given as follows [1]:

R(T,U) =
〈
Ω

(
TH + T

H
, UH + U

H)
UHTH

〉
, ∀T, U ∈ T 1,0M.

In the case of Chern–Finsler connection this takes the form

R(T, U) =
〈
Ω

(
TH , U

H)
UH , TH

〉− 〈
Ω

(
UH , T

H)
UH , TH

〉
.

A strongly pseudoconvex Finsler metric F is called Kähler if its (2, 0)
torsion θ satisfies θ(H,χ) = 0, ∀H ∈ H, where χ denotes the horizontal
Liouville vector field and it is called strongly Kähler if its (2, 0) torsion
satisfies θ(H, K) = 0, ∀H, K ∈ H.
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The horizontal (1, 1) torsion is defined by

τH(X, Y ) = Θ(τ(X, Y ))

where Θ is the horizontal map. The symmetric product 〈〈·, ·〉〉 : H×H → C
is locally given by

〈〈H, K〉〉v = Gαβ(v)HαHβ , ∀ H, K ∈ Hv, v ∈ M̃.

In the following the second variation formula will play a crucial role
(see [1]).

Consider F : T 1,0M → R be a Kähler Finsler metric on a complex
manifold M . Take a geodesic σ0 : [a, b] → M with F (σ̇) = 1 and a regular
variation Σ : (−ε, ε)× [a, b] → M of σ0. Then it is known [1, p. 103],

d2lΣ
ds2

(0) = Re
〈∇

UH+U
H UH , TH

〉
σ̇

∣∣b
a

+
∫ b

a

{
‖∇

T H+T
H UH‖2σ̇ −

∣∣∣∣
∂

∂t
Re

〈
UH , TH

〉
σ̇

∣∣∣∣
2

− Re
[〈

Ω
(
TH , U

H)
UH , TH

〉
σ̇
− 〈

Ω
(
UH , T

H)
UH , TH

〉
σ̇

+
〈〈

τH
(
UH , T

H)
, UH

〉〉
σ̇
− 〈〈

τH(TH , U
H

), UH
〉〉

σ̇

]}
dt.

3. Product of Kähler Finsler manifolds

In this section we construct the product of strongly Kähler Finsler
manifolds.

Let (M1, F1), (M2, F2) be two strongly Kähler Finsler manifolds with
the Chern–Finsler connection. Consider the product manifold M1 × M2

with the metric

F (v1, v2) =
√

F 2
1 (v1) + F 2

2 (v2) ∀(v1, v2) ∈ TM1 × TM2.

This is homogeneous, smooth and positive definite on M̃1×M̃2 because
F1, F2 have these properties on M̃1, M̃2. The Levi matrix of F is positive

definite on M̃1 × M̃2 because it is of the form
(

A 0
0 B

)
where A, B are

the Levi matrix of F1, F2.
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LetH1,H2 be the horizontal bundle of the manifolds (M1, F1), (M2, F2)
and H = H1 ⊕H2.

The metrics F1, F2 induce the Hermitian structures 〈 , 〉1 and 〈 , 〉2 on
the horizontal bundles. It follows that on the bundle H = H1 ⊕ H2 we
have the Hermitian metric

〈X + U, Y + V 〉 = 〈X,Y 〉1 + 〈U, V 〉2.

The Chern–Finsler connection of the product manifold is related to
the Chern–Finsler connections of M1 and M2 as follows:

∇X+U (Y + V ) = ∇XY +∇UV, ∀X, Y ∈ X(H1), U, V ∈ X(H2).

From these relation follows that the product manifold is strongly Kähler
if the manifolds M1 and M2 are. The holomorphic bisectional curvature
of M1 ×M2 satisfies the relation:

R(X + U, Y + V ) = R(X,Y ) + R(U, V )

∀X,Y ∈ T 1,0M1, and U, V ∈ T 1,0M2.

We have the isomorphism o : TRM1 → T 1,0M1

∀u ∈ TRM1 uo =
1
2
(u− iJu).

Using the above isomorphism we can associate to F a function F o :
TRM1 → R+ by setting

∀u ∈ TRM1 F o(u) = F (uo).

It is shown in [1, p. 114] that the geodesics of F and F o are the same if F

is Kähler.
Applying these facts we show that if σ = (α, β) is a geodesic for

F , then α and β are geodesic for F1 and F2, resp. In fact, α is also
a geodesic for F o, therefore, applying our result about geodesic on real
warped product in [9] for f ≡ 1, α and β are geodesic for F o

1 and F o
2 , resp.

It follows by [1, p. 114] again that α and β are geodesics for F1 and F2

resp.
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4. The main result

A holomorphic correspondence of a complex manifold N of dimen-
sion n with itself is an n-dimensional complex analytic submanifold of
N × N . Two (holomorphic) correspondences V,W are said to have a co-
incidence iff V ∩ W 6= ∅. A holomorphic correspondence V ⊂ N × N

is called transversal if T(p,q)V ⊕ T(p,q)({p} × N) = T(p,q)(N × N) and
T(p,q)V ⊕ T(p,q)(N × {q}) = T(p,q)(N × N) hold for all (p, q) ∈ V . Since
T(p,q)({p} × N) and T(p,q)(N × {q}) are orthogonal, it follows that any
vector orthogonal to V at (p, q) cannot be tangent to {p}×N or N ×{q}.

A holomorphic map f : N → N gives rise to a correspondence, the
graph G(f) of f ; G(f) = {(p, f(p))| p ∈ N}. G(f) is a special type of
correspondence since f is single valued. Let ∆ = {(p, p)| p ∈ N} be the
diagonal of N × N . It is clear that a map f has a fixed point whenever
G(f) intersects the diagonal ∆. A correspondence will be said to have a
fixed point if it intersects the diagonal.

The main result is the following

Theorem 1. Two holomorphic compact correspondences V , W – one

of them is transversal – of a connected strongly Kähler Finsler manifold

N with positive holomorphic bisectional curvature have a coincidence.

Proof. The correspondences are complex analytic submanifolds V ,
W of N × N . On the product manifold N × N we consider the metric
F : T 1,0N × T 1,0N → R+ given by

F (v1, v2) =
√

F 2
1 (v1) + F 2

1 (v2) for (v1, v2) ∈ T 1,0N × T 1,0N.

We use the notations used in [1] and [8]. We take M = N × N and
V , W are submanifolds of M .

We need only to show that V and W intersect. Suppose V ∩W = ∅.
Then there exists a minimal geodesic σ : [a, b] → M . Let σ(a) ∈ V ,
σ(b) ∈ W . σ is orthogonal to V and W in σ(a) and σ(b), respectively i.e.
σ̇H(a) ⊥ T

(1,0)H
σ(a) V and σ̇H(b) ⊥ T

(1,0)H
σ(b) W . According to the last argument

of the previous section the geodesic has the form σ = (α, β) ∈ N×N where
both α and β geodesics. By the assumption of transversality of V or W

we have α̇ 6= 0 and β̇ 6= 0. Then it follows that F is smooth along σ.
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We construct a regular variation Σ : (−ε, ε) × [a, b] → M such that
∇

T H+T
H UH = 0. Denoting by Hσ̇(b)T

1,0M the horizontal lift of T 1,0M to
horizontal space in σ̇(b), let P ⊂ Hσ̇(b)T

1,0M be the parallel translation
of TH

σ(a)(V ) with respect to the Chern–Finsler connection along σ̇ to the

point σ̇(b). Considering the horizontal lifts to M̃ along σ̇ we get

dimC(P ∩ TH
σ(b)(W ))

= dimC P + dimC(TH
σ(b)W )− dimC(P + TH

σ(b)W ) ≥ 1,

for dimC(P + TH
σ(b)W ) ≤ 2 dimCN − 1.

So we can choose a vector UH in the intersection. Its parallel trans-
lation along σ̇ will be denoted by UH , too. Since UH is orthogonal to σ̇
at the end point, it remains orthogonal along the entire curve by the met-
rical property of the Chern–Finsler connection. We consider the regular
variation of σ with transversal vector field U .

In this case the second variation formula reduces to the following form

d2lΣ
ds2

(0) = Re〈∇
UH+U

H UH , TH〉σ̇
∣∣b
a

+
∫ b

a

{
‖∇

T H+T
H UH‖2σ̇ −

∣∣∣ ∂

∂t
Re〈UH , TH〉σ̇

∣∣∣
2

− Re[Rσ̇(T,U)]
}

dt

because of Proposition 2.6.7 in [1, p. 120].
The first term of the integral is zero for U is parallel along σ̇. Fur-

thermore, UH and TH are orthogonal.
By the hypothesis on the holomorphic sectional curvature all the terms

will be negative or zero except the first one at most.
In fact we have

d2lΣ
ds2

(0) = Re〈∇
UH+U

H UH , TH〉σ̇
∣∣∣
b

a
−

∫ b

a

Re[Rσ̇(T, U)]dt.

The integral is positive because Rσ̇(T, U) = Rσ̇(T1, U1)+Rσ̇(T2, U2) where
T1 = α̇ 6= 0 and T2 = β̇ 6= 0 and U1, U2 are orthogonal to T1, T2 resp.

By the minimality of σ it follows that d2lΣ
ds2 (0) ≥ 0 for any transversal

vector field U .
If we consider the variation belonging to the transversal vector JUH ,

we show that the initial terms in the second variation cannot be posi-
tive in the same time (for the variations corresponding to UH and JUH

respectively). This will give the contradiction.
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Therefore we calculate ∇
JUH+JU

H JUH .

∇
JUH+JU

H JUH = J(∇JUH UH +∇
JU

H UH).

Using the torsion we have

∇JUH UH = ∇UH JUH + [JUH , UH ] + θ(JUH , UH).

The last term θ(JUH , UH) vanishes because F is strongly Kähler
Finsler metric and using again the Proposition 2.6.7 in [1, p. 120] it follows:

∇
JU

H UH = ∇UH JU
H − [

UH , JU
H]

= J
[∇

U
H UH +

[
UH , U

H]]− [
UH , JU

H]

= J∇UH UH + J
[
UH , U

H]− [
UH , JU

H]
.

It follows now

∇
JUH+JU

H JUH = J(∇UH JUH +
[
JUH , UH

]
+ J∇

U
H UH

+ J
[
UH , U

H]− [
UH , JU

H]
) = −∇

UH+U
H UH

+ J
[
JUH , UH

]− J
[
UH , U

H]− [UH , JU
H]

.

Now V and W are complex manifolds, UH is a horizontal lift, and
tangent to Ṽ and W̃ in σ̇(a) and σ̇(b) respectively. Since the horizontal
space is a complex linear space, and we use the Chern–Finsler connection,
all the brackets above are horizontal vectors, and are orthogonal to TH in
σ̇(a) and σ̇(b). So

Re〈∇
JUH+JU

H JUH , TH〉 = −Re〈∇
UH+U

H UH , TH〉.

This means that d2lΣ
ds2 (0) cannot be non-negative for U and JU at the

same time, which gives the contradiction. ¤

5. Coincidence of mappings in Kähler Finsler manifolds

In this section we derive a theorem about coincidence of mappings
in Kähler Finsler manifolds of positive holomorphic bisectional curvature.
Let f, g : N → N be two holomorphic maps. We say that f and g have
coincidence if G(f)∩G(g) 6= ∅. A map f : N → N is called biholomorphic
if f is a holomorphic diffeomorphism.
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Theorem 2. Let N be a compact strongly Kähler Finsler manifold of
positive holomorphic bisectional curvature and f, g : N → N biholomor-
phic maps. There exists at least one point p ∈ N such that f(p) = g(p).

Proof. We consider the manifolds V = G(f) and W = G(g) resp.
Both of these manifolds have complex dimension n, equal to the complex
dimension of the manifold N . We apply now Theorem 1 for V, W and N
and we obtain that G(f) ∩G(g) 6= ∅. ¤

Corollary 3. Let N be a compact strongly Kähler Finsler manifold of
positive holomorphic bisectional curvature and f : N → N a holomorphic
map. The map f has at least one fixed point.
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