Publ. Math. Debrecen 61 / 3-4 (2002), 429–437

Solubility of finite groups admitting a fixed-point-free operator group

By YANMING WANG (Guangzhou) and SULING PANG (Guangzhou)

Abstract. The main purpose of this paper is to prove the following result: Let G be an S_3 -free finite group. Let A be an operator group of G. Denote $\pi = \pi(G)$. Suppose that $A \in E_{\pi}^n$ and A is π -nilpotent. If $C_G(A) = 1$, then G is soluble. With the help of CFSG we also prove a result enabling us to drop the S_3 -free assumption and to replace $A \in E_{\pi}^n$ by $A \in E_{\pi}^c$. This result may be viewed as a unified generalization of two well-known theorems on fixed-point-free automorphism groups which are consequences of the classification theorem of finite simple groups.

§1. Introduction

It is of considerable interest to investigate the solubility of a finite group G which admits a fixed-point-free automorphism group A. When A is cyclic or (|G|, |A|) = 1, people have given a positive answer by using the classification theorem of finite simple groups. (Refer to [W-C] and [G].) In [G], Gorenstein stated without proof that, as a consequence of the classification theorem of finite simple groups, a finite group with a fixed-point-free automorphism is soluble. Recently ROWLEY gave a short proof to confirm the result [Ro]. In fact, by using CFSG, people can ask more general questiones. In [W-C], we proved that fixed-point-freeness is too strong a restriction. What we have obtained shows that if G admits a coprime order operator group with fixed point subgroup S_3 , A_4 and Sz(2)free (i.e. no subgroup of its quotient group isomorphic to these groups),

Key words and phrases: solvable group, fixed-point-free, automorphism group.

Mathematics Subject Classification: 20D15, 20D45.

The authors was supported in part by the NSF of Guangdong, Fund of the Eduacation Ministry and Advanced Center of ZSU.

then G is soluble. In particular, if the fixed point subgroup $C_G(A)$ is either nilpotent or is of odd order then G is soluble. The result is best possible since we can find simple groups which admit a coprime order operator group with fixed point subgroup isomorphic to each of these 3 groups. Recently BELTRAN gave another proof for the case in which $C_G(A)$ is nilpotent [B]. However, the cyclic case has no significant improvement. The restriction of "fixed-point-freeness" plays an essential role in the induction of ROWLEY's recent proof [Ro]. Meanwhile some people also try to drop, or at least modify, the hypotheses of coprime order or cyclicity to get similar results in more general cases [P].

All the groups in this paper are finite. The symbols and terms are standard (refer to [H] or [R]).

We denote by $\pi(G)$ the set of prime divisors of |G|.

We write $G \in E_{\pi}$ if there exists a Hall π -subgroup of $G, G \in C_{\pi}$ if any two Hall π -subgroups of G are conjugate in $G; G \in D_{\pi}$ if every π -subgroup of G is contained in a given Hall π -subgroup of G up to conjugation, i.e. $G \in C_{\pi}$ and every π -subgroup of G contained in some Hall π -subgroup of G.

We write $G \in E_{\pi}^{n}$ if G has a nilpotent Hall π -subgroup; $G \in E_{\pi}^{c}$ if G has a cyclic Hall π -subgroup.

In this paper, we consider the following more general.

Hypothesis (*). Let G be a finite group. Let A be an operator group of G with $C_G(A) = 1$. Denote $\pi = \pi(G)$. Suppose that $A \in E_{\pi}^c$ and A is π -nilpotent.

Our purpose is to prove the following

Theorem (Theorem 2.4). If (G, A) satisfies the hypothesis (*), then G is soluble.

Remark 1. The following two important special examples which satisfy hypothesis (*) are of special interest for many scholars.

(1) A is cyclic (with natural π -Hall subgroup and normal complement);

(2) |G|, |A| = 1 (with identity Hall $\pi(G)$ -subgroup).

Hence, the hypothesis (*) may be viewed as a natural and unified generalization of these two special cases.

Our main theorem is a consequence of the classification theorem of finite simple groups.

Without CFSG, we use Glauberman's result on S_3 -free simple groups to give a generalization of Parrott's main theorem and we try to get best possible hypotheses on the operator group. From our proof, it is reasonable to conjecture that we may replace $A \in E^c_{\pi(G)}$ by $A \in E^n_{\pi(G)}$. The main idea in this paper is to find suitable hypotheses which allow us to use induction and to reduce the operator group to the easy case of automorphism of a simple group. It seems that the $\pi(G)$ -part of A plays the most important role in controlling the solubility of the groups.

$\S 2$. Theorems and proofs

Lemma 2.1. Let N be a p-group, A, A_1 be two p-nilpotent operator groups of N with $N \cap A = 1$. If $N \rtimes A = G = N \rtimes A_1$ and $C_N(A) = 1 = C_N(A_1)$, then there exists $n \in N$, such that $A_1 = A^n$.

PROOF. We prove the lemma by induction on |G|. Obviously, we may assume that $N \neq 1$.

Since A is p-nilpotent, there exists a p-subgroup $A_p \in \text{Syl}_p(A)$ and a normal Hall p'-subgroup $A_{p'}$ of A such that $A_{p'} \trianglelefteq A$ and $A = A_p A_{p'}$.

Firstly, we prove that $N_G(A_{p'}) < G$.

In fact, if $N_G(A_{p'}) = G$, then $[N, A_{p'}] \leq N \cap A_{p'} = 1$, i.e. $N \leq C_G(A_{p'})$. Now, the *p*-group A_p acts on the nontrivial *p*-subgroup N, by the orbit formula, it is easy to see that $C_N(A_p) \neq 1$. Hence, $1 \neq C_N(A_p) \leq C_N(A) = 1$, a contradiction.

Denote $G_1 = N_G(A_{p'})$. Then $G > G_1 \ge A$. Let $(A_1)_{p'}$ be a Hall p'subgroup of A_1 . Since $A \cong G/N \cong A_1$ and both of them are p-nilpotent, we have that both $A_{p'}$ and $(A_1)_{p'}$ are Hall p'-subgroups of G. Hence $(A_1)_{p'}N/N = A_{p'}N/N \triangleleft G/N$, that is $(A_1)_{p'}N = (A)_{p'}N$. By the Schur-Zassenhaus Theorem [R] 9.1.2, there exists $n_1 \in N$ such that $(A_1)_{p'}^n = A_{p'}$. It is easy to show that $G_1 = N_G(A_{p'}) = N_G((A_1)_{p'}^{n_1}) = (N_G((A_1)_{p'}))^{n_1} \ge$ $A_1^{n_1}$. Now Dedekind's Law implies that $G_1 = G_1 \cap (NA) = (G_1 \cap N)A$ and $G_1 = G_1 \cap (NA_1^{n_1}) = (G_1 \cap N)A_1^{n_1}$. Since $G_1 < G$ and G_1 satisfies the hypothesis in the lemma, by induction there exists $n_2 \in N$ such that $A_1^{n_1n_2} = A$, i.e. $A_1^n = A$ where $n = n_1n_2 \in N$. This completes our proof.

Y. Wang and S. Pang

Theorem 2.2. Let G be a finite group and suppose that G is S_3 -free. Let A be an operator group of G. Suppose that $A \in E^n_{\pi(G)}$ and A is π -nilpotent. If $C_G(A) = 1$, then G is soluble.

PROOF. Assume that the theorem is false and choose G to be a counterexample with |G| + |A| minimal. Then

(1) For every nontrivial A-invariant proper subgroup M of G, M is soluble and $A \leq \operatorname{Aut}(G)$.

Let M < G and M is A-invariant. We have that $C_M(A) \leq C_G(A) = 1$ and M is S_3 -free. Furthermore, $\pi(M) \subseteq \pi(G)$. Since $A \in E_{\pi(G)}^n$, by definition we have that $A \in E_{\pi(M)}^n$. A is π -nilpotent hence A has a normal $\pi(G)$ complement $A_{\pi(G)'} = K$. Since A has a nilpotent Hall $\pi(G)$ -subgroup $A_{\pi(G)}$, we have that $A_{\pi(G)} = A_{\pi(M)} \times A_{\pi(G)-\pi(M)}$. $(A_{\pi(G)-\pi(M)})K$ is the normal $\pi(M)$ -complement of A. Hence (M, A) satisfies the hypotheses of (G, A). The minimal choice of G implies that M is soluble. A similar proof yields that $A \leq \operatorname{Aut}(G)$.

Now we assume that $A \leq \operatorname{Aut}(G)$ and $GA = G \rtimes A$ and we denote $\pi = \pi(G)$.

(2) There is no nontrivial A-invariant normal subgroup N of G.

Let N be a minimal normal A-invariant subgroup of G, by (1) N is soluble. Therefore N is an elementary abelian p-group for a prime $p \in \pi(N)$. Consider $\overline{G} = G/N$. Certainly \overline{G} is S_3 -free, since $\pi(\overline{G}) \subseteq \pi(G)$. The same argument as in (1) implies that $A \in E^n_{\pi(\overline{G})}$ and A has a normal $\pi(\overline{G})$ -complement. In order to show that (\overline{G}, A) satisfies the hypotheses of the theorem, we only need to show that $C_{\overline{G}}(A) = \overline{1}$.

Let $\bar{g} \in C_{\overline{G}}(A)$. Then $[g, A] \subseteq N$. Hence, $\forall x \in N, a \in A$, and we have $xa^g = xg^{-1}aga^{-1}a \in NA$, i.e. $NA^g \leq NA$. Since $|NA^g| =$ $|N^g A^g| = |NA|$, we have $NA = NA^g$. Furthermore, by hypothesis, $A = A_{\pi}A_{\pi'} A_{\pi'} \leq A$ and A_{π} is nilpotent. Since $p \in \pi(N) \subseteq \pi$, we have that $O_{p'}(A_{\pi})A_{\pi'}$ is the normal *p*-complement of *A*. It is clear that $C_N(A) \leq C_G(A) = 1$ and $C_N(A^g) = (C_N(A))^g = 1$. Now the hypotheses of Lemma 2.1 are satisfied for (N, A, A^g) . By Lemma 2.1, there exists $n \in$ N such that $A^g = A^n$, i.e. $gn^{-1} \in N_G(A)$. Hence $[gn^{-1}, A] \leq G \cap A = 1$, that is $gn^{-1} \in C_G(A) = 1$. This yields that $g = n \in N$ and so $\bar{g} = \bar{1}$.

432

Now (G/N, A) satisfies the hypotheses of (G, A). The minimal choice of G implies that G/N is soluble. Now both N and G/N are soluble and so is G, a contradiction.

(3) G is a nonsoluble simple group.

By (2), G has no nontrivial A-invariant normal proper subgroup and so G is characteristic simple. Since G is a nonsoluble simple group, we have that $G = G_1 \times \cdots \times G_k$ is a direct product of isomorphic non-abelian simple groups. $k \ge 1$, G_1 is a minimal normal subgroup of G.

Now we prove that k = 1.

Suppose it is false, i.e. k > 1. Then $N_A(G_1) = A_1 < A$ by (1). Since $A \in E^n_{\pi(G)}$, the Wielandt Theorem [R] 9.1.10 yields that $A \in D^n_{\pi(G)}$. has a normal $\pi(G)$ -complement hence A_1 has a normal $\pi(G)$ -complement. By the Schur–Zassenhaus Theorem [R] 9.1.2, there exists a Hall $\pi(G)$ subgroup $(A_1)_{\pi(G)}$ of A_1 . Since $A \in D^n_{\pi(G)}$ and $(A_1)_{\pi(G)}$ is nilpotent, we have that $A_1 \in E^n_{\pi(G)}$. Now $\pi(G_1) \subseteq \pi(G)$ implies that $A_1 \in E^c_{\pi(G_1)}$. It is clear that the product of the normal $\pi(G)$ -complement of A_1 and the normal $\pi(G_1)$ -complement of $(A_1)_{\pi(G)}$ is exactly the normal $\pi(G_1)$ complement of A_1 . If $C_{G_1}(A_1) = 1$, then (G_1, A_1) satisfies the hypothesis of the theorem. Since k > 1, we have that $G_1 < G$. By the minimal choice of G we have that G_1 is soluble and hence G is soluble, a contradiction. Therefore $C_{G_1}(A_1) \neq 1$. Let $A = A_1 + A_1 a_2 + \cdots + A_1 a_n$, $\{1 = a_1, a_2, \dots, a_n\}$ be the coset transversal of A_1 in A. Since G_i is a minimal normal subgroup of G, $G_1^{a_i} = G_1^{a_j}$ if and only if $a_i = a_j$. Since G has no nontrivial A-invariant normal proper subgroup, we have that $1 \neq \langle G_1^a : a \in A \rangle = G$. Note that each $G_1^{a_i}$ is a minimal normal subgroup of G and each of them is a nonabelian simple group. By induction on n, (see [H] Satz I.9.12), we have that $G = G_1 \times \cdots \times G_k = G_1 \times G_1^{a_2} \times \cdots \times G_1^{a_n}$. Hence n = k. Since $C_{G_1}(A_1) \neq 1$, there exists $1 \neq g_1 \in C_{G_1}(A_1)$. It is easy to show that $1 \neq g = g_1 g_1^{a_2} \cdots g_1^{a_n} \in C_G(A) = 1$, in contradiction to our hypothesis. Hence k = 1.

(4) $A \leq \operatorname{Out}(G)$.

By (1), we have $A \leq \operatorname{Aut}(G)$. It is a basic fact that $\operatorname{Inn}(G) \leq \operatorname{Aut}(G)$. By (3), G is a nonabelian simple group and so $\operatorname{Inn}(G) \cong G/Z(G) \cong G$. Let $I_g \in \operatorname{Inn}(G)$ with $g \in G$. By definition, $\forall x \in G$, we have $I_g : x \to x^g$. Let $\operatorname{Inn}(G) \cap A = A_1$, then $A_1 \leq A$. Since A_1 is a $\pi(G)$ -subgroup of Aand $A \in E^n_{\pi(G)}$ and hence $A \in D^n_{\pi(G)}$, we have that $A_1 \leq A_{\pi(G)}$, where $A_{\pi(G)}$ is a Hall $\pi(G)$ -subgroup of A. Suppose $A_1 \neq 1$. Since $A_1 \leq A$ and A has a normal $\pi(G)$ -complement $A_{(\pi(G))'}$, we have that $Z(A_1)A_{(\pi(G))'} = Z(A_1) \times A_{(\pi(G))'}$. Since $A_{\pi}(G)$ is nilpotent, we have that $1 \neq B_1 = A_1 \cap Z(A_{\pi}(G)) \leq Z(A_1)$. It follows that $B_1 \leq Z(A)$. Let $1 \neq I_g \in B_1$ with $1 \neq g \in G$. For any $h \in A$, we have $h^{-1}I_gh = I_g$, that is, $\forall x \in G$, $h^{-1}I_gh : x \to (x^{h^{-1}})I_gh = (g^{-1})x^{h^{-1}}g)^h = (g^{-1})^h xg^h = x^{g^a}$, i.e. $I_{g^h} = I_g$. Hence $g^{-1}g^h \in Z(G) = 1$. It follows that $g = g^h$ for every $h \in A$, i.e. $1 \neq g \in C_G(A) = 1$, a contradiction. Hence $A \cap \text{Inn}(G) = A_1 = 1$. $A \cong A/A \cap \text{Inn}(G) \cong A \text{Inn}(G)/\text{Inn}(G) \leq \text{Aut}(G)/\text{Inn}(G) = \text{Out}(G)$.

Since G is an S_3 -free nonabelian simple group, by a result of GLAUBER-MAN ([Gl] Corollary 7.3) it follows that G is isomorphic to either $S_z(2^{2n+1})$ or $PSL(2, 3^{2n+1})$.

The structure of the outer automorphism groups of the above groups is well known. Assume that G is $S_z(2^{2n+1})$. By [S], $\operatorname{Out}(G)$ is isomorphic to a field automorphism group F. In this case, F is cyclic. Let p be a prime divisor of 2m + 1. If p < 2n + 1, then $S_z(2^p)$ is an A-invariant subgroup since $A \leq F$. By (1), $S_z(2^p)$ is soluble, a contradiction. Hence 2n + 1 = p is a prime. That means A is a fixed point free automorphism group of prime order. A well known theorem of THOMPSON [T] implies that G is soluble, a contradiction.

Now we assume that G is $PSL(2, 3^{2n+1})$. By [C] XVI, we know that Out(G) = DF because the graph automorphism is the identity group. Furthermore we know that |D| = 2 and |F| = 2n + 1. Hence $F \triangleleft DF$ since F has index 2. By [G] p. 303, F normalizes D, and we have that $DF = D \times F$. Since the field automorphism group is a cyclic of odd order, we have that DF is a cyclic group in this case. It follows that A is cyclic fixed point free automorphism group of G. Refering to Rowley's proof of the theorem (4) [Ro], we get a contradiction.

Corollary 2.3. Let G be a finite group. Let A be an operator group of G. Suppose that $C_G(A) = 1$ and G is S_3 -free. Then G is soluble provided that one of the following conditions holds:

(a) A is nilpotent; (b) A is S_3 ; (c) (|G|, |A|) = 1.

This corollary implies the main theorems of [P] and [W].

If we appeal to CFSG, we can use a similar proof to prove our main theorem.

Theorem 2.4. Let G be a finite group. Let A be an operator group of G. Suppose that $A \in E^{c}_{\pi(G)}$ and A is π -nilpotent. If $C_{G}(A) = 1$, then G is soluble.

PROOF. Suppose that this is false and consider the counterexample G with |G| + |A| minimal. Then (1) to (4) of the proof of Theorem 2.2 are valid for our proof. We have that G is a simple group with every proper A-invariant ubgroup soluble and $A \leq \operatorname{Out}(G)$. Furthermore we have that A is cyclic.

If $A_{(\pi(G))'} = 1$, then A is a π -group. $A \in E^c_{\pi(G)}$ implies that A is cyclic.

Now we assume that the normal $\pi(G)$ -complement $A_{(\pi(G))'}$ of A is not the identity group. By [G] 4.239, $|\operatorname{Out}(G)/G| \leq 4$ when G is one of the sporadic simple groups, alternative groups or the Tits simple group. So we know that G is not isomorphic to any of the above simple groups. By the classification theorem of finite simple groups, we see that G is a simple group of Chevalley type. By [G] p. 303, $Out(G) \cong DFM$, where D, F, M are the diagonal, the field and the graph automorphism of G respectively. Since $\pi(A_{(\pi(G))'}) \cap \pi(G)$ is empty, by [C] p. XV, $|\operatorname{Out}(G)| =$ dfg, f = |F|. By [C] page XVI Table 5 and Table 6, (q-1)q(q+1) | |G|. Hence $\pi(d) \cup \pi(g) \subseteq \pi(G)$. So $\pi(A_{(\pi(G))'}) \subseteq \pi(F)$. Since F is cyclic, there is a Hall- $\pi(A_{(\pi(G))'})$ -subgroup F_1 of F. By our hypothesis, F_1 is also a Hall- $\pi(A_{(\pi(G))'})$ -subgroup of Out(G). By Wielandt's Theorem [R] 9.1.10, $A^x_{(\pi(G))'} \leq F_1$ for some $x \in \operatorname{Out}(G)$. Without loss of generality, we can assume that $A_{(\pi(G))'} \in F_1 \leq F$. (We refer to the proof of [W-C] Theorem 2 (2).) Let $1 \neq \langle \alpha \rangle = A_{(\pi(G))'}$. Take a prime order element β of $\langle \alpha \rangle$, say $|\beta| = p$. Since $1 \neq \langle \beta \rangle \operatorname{char} \langle \alpha \rangle = A_{(\pi(G))'} \leq A, C_G(\beta)$ is an A-invariant proper subgroup of G. By (1), $C_G(\beta)$ is soluble. By [G-L] 1.2 (5), G is isomorphic to one of the following simple groups: $A_1(2^p), A_1(3^p), {}^2A_2(2),$ $p \neq 2, 3$, a prime, or ${}^{2}B(2^{p}), p \neq 2, 5$, a prime.

Now we see that $A_{(\pi(G))'}$ is a cyclic group of order p. By [C] p. XVI Table 5 and Table 6, d = g = 1 when G is $A_1(2^p)$ or $S_z(2^p) = {}^2B(2^p)$. In these cases, $1 < |A| \le |\operatorname{Out}(G)| = p$ is cyclic. If $G = A_1(3^p)$, then g = 1, d = 2, f = p. Since $A_{\pi'} \ne 1, p \notin \pi(G), |A_{\pi(G)}| = 1$ or 2. If $|A_{\pi(G)}| = 2$, then $A_{\pi(G)} = D$. By [G] p. 303, $A_{(\pi(G))'}$ normalizes D. Hence $A = A_{\pi(G)}A_{(\pi(G))'} = A_{\pi(G)} \times A_{(\pi(G))'}$ is a cyclic group of order 2p. If $|A_{\pi(G)}| = 1$, then A is a cyclic group of order p.

Now the only case left is $G = {}^{2}A_{2}(2^{p})$. In this case, d = 3 or 1 and f = 2p. If d = 1 then A is cyclic so we assume that d = 3. Since $\{2,3\} \subset \pi(G)$ in this case, we know that $p \neq 2, 3$. By [G] p. 303, D is normalized by F and hence D is the unique nontrivial 3-subgroup of DF. If $3 \notin \pi(A)$, then $A \leq F$ by conjugation and hence A is cyclic. Now assume that $3 \in \pi(A)$ and hence $D \triangleleft A$. Since A has normal $\pi(G)$ -complement and cyclic $\pi(G)$ -subgroup, we have that $A_{(\pi(G))'}$ commutes elementwise with D and F, and hence $A = A_{\pi(G)}A_{(\pi(G))'} = A_{\pi(G)} \times A_{(\pi(G))'}$ is a cyclic group.

Now by the same proofs of ROWLEY [Ro] it follows that G is soluble and the final contradiction completes our proof.

According to the proof of Theoremes 2.2 and 2.4, we would like to pose the following

Conjecture. Let G be a finite group. Let A be an operator group of G with $C_G(A) = 1$. Suppose that $A \in E^n_{\pi(G)}$ and A is $\pi(G)$ -nilpotent. Then G is soluble.

Remark 2. We have an example to show that the hypothesis of $A \in E_{\pi(G)}^n$ is necessary. Let $A_5 = G$ and $A_3 = A$. Consider A acts on G by conjugate. Then we have that $C_G(A) = 1$ but G is non-abelian simple.

Acknowledgement. The authors are grateful to the referee for his/her helpful suggestions.

References

- [B] A. BELTRAN, Actions with nilpotent fixed point subgroups, Arch. Math. 69 (1997), 177–184.
- [C] J. CONWAY et al., ATLAS of Finite Groups, Clarendon Press, Oxford, 1985.
- [G] D. GORENSTEIN, Finite Simple Groups, Plenum Press, New York, 1982.
- [G-L] D. GORENSTEIN and R. LYONS, Nonsolvable signilizer functor revisited, J. of Algebra 133 (1990), 446–466.
- [GI] G. GLAUBERMAN, Local Analysis of finite groups, CBMS Monograph 33, Amer. Math. Soc., 1977.
- [H] B. HUPPERT, Endlich Gruppen, Springer-Verlag, 1967.
- [P] D. PARROTT, Finite groups which admit a fixed-point-free automorphism group isomorphic to S₃, J. Austral. Math. Soc. (Series A) 48 (1990), 384–396.

- [R] D. ROBINSON, A Course of Groups Theory, Springer-Verlag, Berlin, New York, 1982.
- [Ro] P. ROWLEY, Finite groups admitting a fixed-point-free automorphism group, J. of Algebra 174 (1995), 724–728.
- [S] M. SUZUKI, On a class of double transitive groups, Ann. of Math. 75 (2) (1962), 105–145.
- [T] J. THOMPSON, Finite groups admitting a fixed-point-free automorphism of prime order, Proc. Nat. Acad. Sci. USA 45 (1959), 578–581.
- [W] Y. WANG, Solubility of finite groups admitting a fixed-point-free automorphism group, Math. Res. Expo. 1 (1990), 78–81.
- [W-C] Y. WANG and Z. CHEN, Solubility of finite groups admitting a coprime order operator group, Boll. Union. Ital. Mat. (7) A (1993), 84–88.

YANMING WANG LINGNAN COLLEGE AND SCHOOL OF MATHEMATICS ZHONGSHAN UNIVERSITY GUANGZHOU 510275 P.R. CHINA *E-mail*: stswym@zsu.edu.cn

SULING PANG DEPARTMENT OF MATHEMATICS JINAN UNIVERSITY AND ZHONGSHAN UNIVERSITY GUANGZHOU, 510632 P.R. CHINA

E-mail: slpang@mail.scut.edu.cn

(Received July 12, 2001; revised January 2, 2002)