
Publ. Math. Debrecen

61 / 3-4 (2002), 495–509

Groups of p-automorphisms for finite p-groups

By JAN KREMPA (Warszawa) and IZABELA MALINOWSKA (BiaÃlystok)

Abstract. For any finite p-group G put Ep(G) = k if pk is the order of a Sylow
p-subgroup of Aut G.

It is well known that if G is a group of order pn then Ep(G) ≤ n(n− 1)/2 and all
p-groups for which this upper bound is achieved are described. On the other hand, for
any noncyclic p-group G of order pn, where n ≥ 3, it is conjectured that Ep(G) ≥ n,
and it is confirmed in several important cases.

Our aim in this paper is to study, if for any n ≤ r < n(n − 1)/2 there exists a
group G of order pn such that Ep(G) = r. In particular we find all groups of order pn,
such that Ep(G) = n(n− 1)/2− 1.

1. Introduction

In this paper G will always denote a nontrivial finite p-group, where
p is a prime number, Ap(G) a Sylow p-subgroup of Aut G and Ep(G) =
logp |Ap(G)|. Most of notation and terminology used here is standard. In
particular, if N is a normal subgroup of a group G then:

AutN (G) = {α ∈ Aut G | Nα = N and g−1 · gα ∈ N, ∀ g ∈ G},
AutN

N (G) = {α ∈ AutN (G) | nα = n ∀n ∈ N}.

Further we will use some abbreviations for sums of natural numbers.
Put s(0) = s(1) = 0 and s(n) = (n−1)+ · · ·+1 for any n ≥ 2. If 1 ≤ d ≤ n

put s(n, d) = (n− 1) + · · ·+ (n− d) = s(n)− s(n− d). Clearly, for n ≥ 2
we have s(n) = s(n, n) = s(n, n− 1).
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It is well known that if G is a cyclic group of order pn then Ep(G) =
n−1 = s(n, 1) and, if G is an elementary abelian p-group of order pn then
Ep(G) = n(n− 1)/2 = s(n, n).

The following general result about the upper bound of Ep(G) is in
fact due to P. Hall (see [11] 5.3.3):

Theorem 1.1. Let G be a group of order pn generated by d elements.

Then Ep(G) ≤ s(n, d). In particular, Ep(G) ≤ s(n).

G. A. Miller has known the last estimation and, in a paper [9] from
1911, he described all groups G of order pn with Ep(G) = s(n) (for details
see Theorems 3.2 and 4.6 below).

For the lower bound of Ep(G) situation is much more complicated. In
particular we have the following well known conjecture (see [6], 12.77): If
G is any noncyclic p-group of order at least p3, then |G| ∣∣ |Aut(G)| or,
equivalently , logp |G| ≤ Ep(G). This conjecture is confirmed, among other
cases, for abelian groups, groups of order at most p7 and for groups of
maximal class (see [3], [4], [10]). Inspired by above mentioned results, and
some others, we shall consider here the following problems:

1. Let n ≥ 3 and s(n) > k ≥ n. Find a group Gnk of order pn such that
Ep(Gnk) = k.

2. For given n ≥ 3 and for k close either to n or to s(n) find all p-groups
G of order pn such that Ep(G) = k.

If G is a noncyclic group of order p3 then certainly Ep(G) = 3 = s(3).
Hence further we consider in fact only p-groups of order at least p4.

In this paper we solve Problem 1 in the following cases: k = s(n, d)
(Proposition 3.1), s(n) − 6 ≤ k ≤ s(n) (Theorem 3.6), n ≤ k ≤ 2n − 3
(Theorem 3.2) and n ≤ k ≤ s(n) for all n ≤ 7 (Corollary 3.9).

We also solve Problem 2 for some special values k in the class of
abelian groups (Theorem 3.2, Proposition 3.3), and for k = s(n)−1 where
G is an arbitrary group (Theorems 3.2 and 5.3). We use this opportunity
to refresh the proof of Miller’s result mentioned above.

2. Some auxiliary results

For detailed calculation of Ep(G) for abelian p-groups G the following
result from [10] can be used:
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Lemma 2.1. Let G be an abelian group of type (m1, . . . ,ms), and of

order pn. For every k ≥ 1 let ak denote the number of occurrences of k in

the sequence (m1, . . . , ms), and let expG = pr. Then

Ep(G) =
r∑

k=1

[
k
(
a2

k+1 + 2ak ·
∑

x>k

ax

)
+

1
2
ak(ak − 1)

]
.

Using either this lemma or linear argument one can check

Example 2.2. Let n = kl and G = (Cpk)l. Then Ep(G) = l2(k − 1) +
l(l − 1)/2 = s(n, l).

As a consequence of Theorem I.17.1 from [5] we have

Lemma 2.3. Let N ⊆ Z(G) be a subgroup. Then the groups AutN
N (G)

and Hom(G/N, N) are isomorphic.

If, in particular, G is a p-group, P ⊆ Aut(G) is a Sylow p-subgroup

and N is a P -invariant subgroup then

Ep(G) = logp |P | ≤ Ep(N) + Ep(G/N) + logp |Hom(G/N,N)|.

For our consideration we also need some results on endomorphisms of
direct products of groups.

Let G = K1 ×K2 be a direct product of groups. Then any endomor-
phism ϕ of G is uniquely determined by four functions ϕij : Ki −→ Kj ,
for i, j ∈ {1, 2}, which are defined by the following formula:

(1) ϕ(k1, k2) = (ϕ11(k1)ϕ21(k2), ϕ12(k1)ϕ22(k2)), for ki ∈ Ki.

Proposition 2.4 ([2]). Let ϕ be an endomorphism of a group G. Then,

under notation as above, the following holds:

(a) ϕ11 and ϕ22 are endomorphisms;

(b) ϕ12 and ϕ21 are homomorphisms;

(c) [ϕ11(K1), ϕ21(K2)] = 1 and [ϕ12(K1), ϕ22(K2)] = 1.
Conversely, if ϕij : Ki −→ Kj are any functions satisfying conditions

(a)–(c), then ϕ defined by equality (1) is an endomorphism of G.

If G is any p-group then Φ(G) = GpG′. Hence, if ϕ is a homomorphism
of a p-group G into a p-group H, then we have an induced homorphism
ϕ of G/Φ(G) into H/Φ(H). Under this notation, if H = G, then ϕ is an
automorphism if and only if ϕ is an automorphism.
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Proposition 2.5. Let a p-group G be the direct product of a group

K1 with Ωm(Z(K1)) ⊆ Φ(K1) and an abelian group K2 with exp K2 = pm.

If ϕ is an endomorphism of G then ϕ ∈ AutG if and only if ϕ11 ∈ Aut K1

and ϕ22 ∈ Aut K2.

Proof. Let ϕ11 ∈ Aut K1 and ϕ22 ∈ Aut K2. Then, from Proposi-
tion 2.4 we know, that ϕ21(K2) ⊆ Z(K1). By assumption it means that
ϕ21(K2) ⊆ Φ(K1). Now factorizing modulo Φ(G) = Φ(K1) × Φ(K2) we
have that for ϕ the homomorphism ϕ21 = ϕ21 is trivial while, due to the
assumption, ϕ11 = ϕ11 and ϕ22 = ϕ22 are automorphisms. By linear ar-
gument it means that ϕ is an automorphism, hence ϕ is an automorphism
too.

Conversely, let ϕ ∈ AutG. Then, by assumption, ϕ(K2) ⊆ Z(G) =
Z(K1)×K2 and consequently ϕ21(K2) ⊆ Ωm(Z(K1)) ⊆ Φ(K1). It means
that for the automorphism ϕ the homomorphism ϕ21 is trivial. Hence,
linear argument implies that ϕ11 and ϕ22 are automorphisms. It means,
that ϕ11 and ϕ22 are automorphisms too. ¤

Corollary 2.6. Let G, K1 and K2 be as above. Then

(1) |AutG|=|Aut K1|·|Hom(K1,K2)|·|Hom(K2, Ωm(Z(K1)))|·|Aut K2|.
(2) |Ap(G)|=|Ap(K1)|·|Hom(K1,K2)|·|Hom(K2, Ωm(Z(K1)))|·|Ap(K2)|.

As a special case of this corollary we obtain:

Corollary 2.7. Let a group G of order pn be the direct product of

a group H with Ω1(Z(H)) ⊆ Φ(H) and an elementary abelian group E.

Put

|H| = pq, |H/Φ(H)| = pd and |Φ(H)/Ω1(Z(H))| = pc.

Then, for r = n− q, |E| = pr, G has d + r generators and

Ep(G) = Ep(H) + s(r) + (q − c)r = Ep(H) + s(r) + (q − c)(n− q).

If, in addition, Ep(G) = s(n, d + r) − x, and Ep(H) = s(q, d) − y then

x = y + rc.

Proof. The first claim is evident. For the rest of the proof we follow
assumed notation.

By assumption G satisfies all the conditions of Corollary 2.6 with m =
1. Also |Hom(H, E)| = prd, |Hom(E,Z(H))| = |Hom(E, Ω1(Z(H)))| =
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pr(q−d−c) and Ep(E) = s(r). Hence, Ep(G) = Ep(H)+s(r)+rd+r(q−d−c),
which means that

(2) Ep(G) = Ep(H) + s(r) + rq − rc = Ep(H) + s(r) + (q − c)(n− q).

It is not hard to check that s(n) = s(q + r) = s(q) + s(r) + qr. Hence,
s(n, d+r) = s(q+r, d+r) = s(q+r)−s(q−d) = s(q)+s(r)+rq−s(q−d) =
s(q, d) + s(r) + rq. Thus

(3) s(n, d + r) = s(q, d) + s(r) + rq.

With the help of the formulas (2), (3) and the definiton we obtain that

x = s(n, d + r)− Ep(G)

= s(q, d) + s(r) + qr − Ep(H)− s(r) + (q − c)r.

Hence x = y + rc. ¤

3. Examples

We begin by the result showing that the estimation for Ep(G) given
in Theorem 1.1 is the best possible even if we restrict our attention to the
class of abelian p-groups.

Proposition 3.1. Let 1 ≤ d ≤ n. Then there exists an abelian group

G of order pn with d generators such that Ep(G) = s(n, d).

Proof. Write n = dm + r where m ≥ 1 and 0 ≤ r < d and put

G =
{ (Cpm)d if r = 0,

(Cpm+1)r × (Cpm)d−r if r > 0.

In both cases, either by Lemma 2.1 or by Example 2.2 and Corollary 2.6
we have the required equality. ¤

Let G be an abelian group of order pn ≥ p4. In [8] it was shown that
Ep(G) = n if and only if G is of type (n − 1, 1) and Ep(G) = n + 1 if
and only if G is of type (2, 2). Using similar arguments we will show some
other results on our problems for abelian groups.
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Theorem 3.2. Let G be a noncyclic abelian group of order pn.

1. If n ≥ 5 then Ep(G) = n+2 if and only if G is either of type (n−2, 2)
or (n− 2, 1, 1).

2. If n ≥ 4 then Ep(G) = s(n) if and only if G is either elementary

abelian or of type (2, 1, 1, . . . , 1).

3. If n ≥ 4 then Ep(G) = s(n)− 1 if and only if G is of type

(2, 2, 1, . . . , 1).

4. If n ≥ 6 then Ep(G) = s(n)− 3 if and only if G is of type

(2, 2, 2, 1, . . . , 1).

Proof. The first point of the theorem can be verified directly, as
analogous result from [8], mentioned above.

Let Ep(G) ≥ s(n) − 2. Then, by Theorem 1.1 G has at least n − 2
generators. Hence we have to consider only the following types: (1, . . . , 1),
(2, 1, . . . , 1), (3, 1 . . . , 1) and (2, 2, 1, . . . , 1). In each of these cases one can
use either Lemma 2.1 or Example 2.2 and Corollary 2.7.

The case Ep(G) ≥ s(n)−3 implies, by Theorem 1.1, that G has at least
n−3 generators. Using previous part of the proof it leads to consideration
of groups with exactly n− 3 generators.

From such considerations the result follows easily. ¤

Let G be an abelian group of order pn. It appears that, at least
for enough large n, some values of Ep(G), where n ≤ Ep(G) ≤ s(n) are
impossible. Some of such values are presented in the result below. It can
be proved analogously to the previous theorem.

Proposition 3.3. Let G be an abelian group of order pn.

1. If n > 6 then Ep(G) 6= n + 3.

2. If n > 4 then Ep(G) 6= s(n)− 2.

3. If n > 6 then Ep(G) 6= s(n)− 4.

4. If n > 7 then Ep(G) 6= s(n)− 5.

Now we will indicate that the estimations on n in the two above results
are the best posssible.
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Example 3.4. In the table below we present maximal values of n ≥ 4
for which single statements of the above results are not valid.

Type of G |G| Ep(G) Comments

(1, 1, 1, 1) p4 6 = 4 + 2
(3, 3) p6 9 = 6 + 3
(3, 1) p4 4 = s(4)− 2

(3, 1, 1) p5 7 = s(5)− 3
(3, 2, 1) p6 11 = s(6)− 4

(3, 2, 1, 1) p7 16 = s(7)− 5

Now we will show that some of gaps in values of Ep(G) for abelian
groups G can be realized in the case of nonabelian groups.

Example 3.5. Let G1 be the central product of a nonabelian group of
order p3 and the cyclic group of order p2. Then it is easy to check that
|G1| = p4, Φ(G1) = Ω1(Z(G1)) is of order p and Ep(G1) = 4 = s(4)− 2.

Let G2 be the central product of two nonisomorphic nonabelian groups
of order p3. Then |G2| = p5, Φ(G2) = Ω1(Z(G2)) = Z(G2) is of order p

and Ep(G2) = 6 = s(5)− 4.
Let G3 be the direct product of the group G1 and the cyclic group of

order p2. Then we have: |G3| = p6, Φ(G3) = Ω1(Z(G3)) is of order p2 and
Ep(G3) = 10 = s(6)− 5.

Theorem 3.6. For n ≥ 5 and any s(n)− 6 ≤ k ≤ s(n) there exists a

group Gnk of order pn with Ep(Gnk) = k.

Proof. For s(n) − k ∈ {0, 1, 3, 6} it is enough to apply Proposi-
tion 3.1, because in this case we have k = s(n, d) for suitable d.

Let k = s(n) − 2. Put G = G1 × Cn−4
p , where G1 is taken from

Example 3.5. Then by Corollary 2.7 we obtain that Ep(G) = s(n)− 2.
Using groups G2 and G3 from the above example and similar argu-

ments one can verify the case k = s(n)− 4 and k = s(n)− 5 for n > 5. In
the case n = 5 and k = s(5)− 5 it is enough to take G = Cp4 × Cp. ¤

Observe that for any abelian group G of type (n − m,m), where
2m < n we have Ep(G) = n + 2m − 2. In this case, as above, gaps
can be filled by nonabelian groups.
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Lemma 3.7. Let numbers n > m be given and G be a group of order

pn with presentation:

G = 〈x, y, z | xpn−m−1
= ypm

= zp = 1, [y, x] = z, [y, z] = [x, z] = 1〉.

a) If n = 2m + 1, then Ep(G) = (n− 1) + (n− 3) = 2n− 4;

b) If n > 2m + 1, then Ep(G) = (n− 1) + 2m = n + 2m− 1.

Immediately from the above results and Theorem 1.1 we obtain

Theorem 3.8. Let G be a noncyclic group of order pn. If G is

generated by two elements then Ep(G) ≤ 2n − 3. Conversely, for any

n ≤ k ≤ 2n − 3 there exists a group G of order pn and generated by two

elements such that Ep(G) = k.

As an easy consequence of previous results we have

Corollary 3.9. For any n ≤ 7 and n ≤ k ≤ s(n) there exists a group

Gnk of order pn such that Ep(Gnk) = k.

Proof. The case n = 4 is evident. For n = 5 and 6 we have 2n−3 ≥
s(n)− 6. Hence our claim follows from Theorems 3.8 and 3.6.

For n = 7, due to the same arguments, we need only to consider cases
k = 12, 13 and 14. For k = 12 it is enough to take G = Cp4 × (Cp)3, for
k = 13 – G = (Cp3)2 × Cp, and for k = 14 – G = H × (Cp2)2, where H is
a nonabelian group of order p3. ¤

4. Miller’s theorem

In this section we are going to prove Miller’s theorem mentioned in
Secton 1. However first we formulate some auxiliary results, which will also
be used in the next section. It is not very difficult to verify the following:

Lemma 4.1 ([12]). Let G be a nonabelian p-group and N ⊆ G be

a maximal subgroup. Then |AutN
N (G)| ≤ |Z(N)|. If, in addition, N is

abelian and g ∈ G \N then the mapping: σ → g−1σ(g) is a bijection from

AutN
N (G) to {n ∈ N : (gn)p = gp}. Moreover, |N | = |Z(G)| · |G′|.
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Lemma 4.2. Let G be a nonabelian group of order pn with Ω1(Z(G))⊆
Φ(G) and Ep(G) ≥ s(n)−1. Then p ≤ |Φ(G)| ≤ p2, there exists a maximal

subgroup N ⊆ G which is abelian and Z(G) = Ω1(Z(G)).

Proof. The inequality p ≤ |Φ(G)| ≤ p2 follows directly from the
assumption and Theorem 1.1.

Let P ⊆ AutG be a Sylow p-subgroup and let N ⊆ G be a maximal
subgroup of G which is P -invariant. Each automorphism from P induces
the identity map on G/N . Hence P ⊆ AutN (G). Then the restriction map
Ψ : P −→ Aut N is a homomorphism with the kernel AutN

N (G).
Theorem 1.1 gives

| Im Ψ| ≤ |Ap(N)| ≤ p(n−2)+···+1.

From the assumption |P | ≥ p(n−1)+···+2, and it follows

|AutN
N (G)| = |KerΨ| = |P |

| ImΨ| ≥ pn−2.

Hence, Lemma 4.1 yields

pn−2 ≤ |AutN
N (G)| ≤ |Z(N)| ≤ |N | = pn−1,

which implies that N is abelian.
Put |Z(G)| = pq and |Ω1(Z(G))| = pk. Assume that k < q. Our

subgroup Z(G) ⊆ G is characteristic. In particular, with the help of
Lemma 2.3 and an assumption we have

(4) ps(n)−1 ≤ |Ap(Z(G))| · |Ap(G/Z(G))| · |Hom(G/Z(G), Z(G))|.

But |Ap(Z(G))| ≤ ps(q), |Ap(G/Z(G))| ≤ ps(n−q) and G/Z(G) is certainly
noncyclic. If G/Z(G) is elementary abelian then

|Hom(G/Z(G), Z(G))| = |Hom(G/Z(G), Ω1(Z(G)))| = p(n−q)k.

This means that |Ap(G)| ≤ ps(q)+s(n−q)+(n−q)k. By assumption Ep(G) ≥
s(n)− 1. Hence,with the help of formula (4), we have

s(n)− 1 = s(n− q) + s(q) + q(n− q)− 1

≤ s(q) + s(n− q) + (n− q)k
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and consequently, (q − k)(n − q) ≤ 1. But the equality means that Z(G)
is of index p in G. However it is impossible.

Thus G/Z(G) is neither cyclic nor elementary abelian. Then

|Hom(G/Z(G), Z(G))| ≤ p(n−q−1)q.

Thus, as in the previous case

s(n)− 1 = s(n− q) + s(q) + q(n− q)− 1

≤ s(q) + s(n− q) + (n− q − 1)q

and consequently, q ≤ 1. But it is impossible, since k < q. In this way we
have proved, that q = k and Z(G) = Ω1(Z(G)). ¤

Corollary 4.3. Let G be a nonabelian group of order pn with

Ω1(Z(G)) ⊆ Φ(G) and Ep(G) ≥ s(n) − 1. Then the following conditions

are equivalent:

(1) Ep(G) = s(n),

(2) |Φ(G)| = p,

(3) n = 3.

Proof. Let Ep(G) = s(n). Then, by the assumption and Theo-
rem 1.1 we have |Ω1(Z(G))| = |G′| = |Φ(G)| = p.

From the equality |Φ(G)|= p and Lemma 4.2 we obtain that |Z(G)|=p

and by Lemma 4.1, we have a maximal abelian subgroup N ⊂ G of or-
der p2, and it has to be |G| = p3.

If n = 3 then G is noncyclic and evidently Ep(G) = 3 = s(3). ¤

An analogue of the above corollary for Ep(G) = s(n) − 1 is more
complicated. However we have

Corollary 4.4. Let G be a nonabelian group of order pn with

Ω1(Z(G)) ⊆ Φ(G) and Ep(G) ≥ s(n) − 1. Then Ep(G) = s(n) − 1 if and

only if |Φ(G)| = p2. In this case Z(G) = Ω1(Z(G)) and we have one of the

following cases:

(1) |Z(G)| = p, |G′| = p2 and |G| = p4;

(2) |Z(G)| = p2, |G′| = p and |G| = p4;
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(3) |Z(G)| = p2, |G′| = p2 and |G| = p5.

Proof. Our first claim follows directly from the assumptions, from
Lemma 4.1 and Corollary 4.3. By the same arguments we also have Z(G) =
Ω1(Z(G)) ⊆ Φ(G).

Let |Z(G)| = pk, and |G′| = pl. Then 1 ≤ k, l ≤ 2 and, by Lemma 4.1,
n = k+ l+1. By Corollary 4.3 the case k = l = 1 is impossible. Hence, we
have only the possibilities listed in the formulation of our corollary. ¤

Proposition 4.5. Any nonabelian p-group can be represented as H ×
E, where Ω1(Z(H)) ⊆ Φ(H) and E is elementary abelian.

Proof. Take E as a maximal subgroup of Ω1(Z(G)) having trivial
intersection with Φ(G), and H as a subgroup of G with minimal set of
generators, such that G = EH. It is easy to check that this is a proper
choice. ¤

All abelian groups of order pn with Ep(G) = s(n) are described by
Theorem 3.2. Hence, for proving Miller’s Theorem we need only to consider
the nonabelian case.

Theorem 4.6 (Miller [9]). Let G be a nonabelian group of order pn.

Then Ep(G) = s(n) if and only if G is a direct product of a nonabelian

group of order p3 and an elementary abelian group.

Proof. Let G = H × E, where H is non-abelian of order p3 and
E is elementary abelian. Then all the assumptions of Corollary 2.7 are
satisfied with q = 3, d = 2, c = 0 and y = 0. Hence in this case we have
Ep(G) = s(n).

For the converse, assume that G is a nonabelian group of order pn such
that Ep(G) = s(n). Then by Theorem 1.1 |Φ(G)| = p. By Proposition 4.5
we can write G = H × E, where Ω1(Z(H)) ⊆ Φ(H) and E is elementary
abelian. Hence |Φ(H)| = p. If we put |H| = pq, then all the assumptions
of Corollary 2.7 are satisfied with d = q − 1 and x = c = 0. Hence, from
this Corollary we have y = 0 and Ep(H) = s(q). Then, by Corollary 2.7
we obtain that |H| = p3. ¤

One might expect that, if |Φ(G)| = p, then Ep(G) = s(n) or is very
close to this number. However it is not the case (see groups from Exam-
ple 3.5).
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5. A generalization of Miller’s theorem

Now we shall prove a generalization of the theorem of Miller: The
abelian case is completely covered by Theorem 3.2. Hence we can restrict
our attention only to the nonabelian case.

The result below is in fact contained in Table 1 in [8] (see also [1]).

Lemma 5.1. Let G be a group of maximal class and of order p4. Then

Ep(G) = 5 if and only if G is one of the following groups:

G = 〈x, y | x8 = y2 = 1, [x, y] = x−2〉,(1)

G = 〈x, y | x8 = y4 = 1, [x, y] = x−2, y2 = x4〉,(2)

G = 〈x, y, z | x9=y3=1, [x, y]=x3, [x, z]=y, [y, z] = 1, z3 = x6〉,(3)

G = 〈x, y, z | x9 = y3 = z3 = 1, [x, y] = 1, [x, z] = y, [y, z] = x6〉,(4)

G = 〈x, y, z, t | xp = yp = zp = tp = 1, [z, t] = y, [y, t] = x,(5)

[x, t] = [y, z] = [x, z] = [x, y] = 1〉, (where p > 3),

G = 〈x, y, z | xp2
= yp = zp = 1, [x, y] = xp, [x, z] = y, [y, z] = 1〉.(6)

Lemma 5.2. Let M be a nonabelian group of order pq. Then Ep(M) =
s(q) − 1 and Ω1(Z(M)) = Φ(M) if and only if one of the following cases

holds:

M = 〈x, y | xp2
= yp2

= 1, [x, y] = xp〉;(1)

M = 〈x, y, z | xp2
= yp = zp = 1, [x, z] = y, [x, y] = 1, [y, z] = 1〉.(2)

M = 〈x, y, z, u, v | xp = yp = zp = up = vp =1, [x, y] = u, [x, z] = v,(3)

[x, u] = [x, v] = [y, z] = [z, u] = [y, u] = [z, v] = [y, v] = [u, v] = 1〉,
where p > 2;

M = 〈x, y, z, u | xp2
= yp = zp = up = 1, [x, y] = u, [x, z] = xp,(4)

[x, u] = [y, z] = [z, u] = [y, u] = 1〉, where p > 2;

M = 〈x, y, z | x4 = y4 = z2 = 1, [x, z] = x2, [y, z] = y2, [x, y] = 1〉;(5)

M = 〈x, y, z | x4 = y4 =1, z2 = x2, [x, z] = x2, [y, z] = y2, [x, y] = 1〉.(6)
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Proof. Let M be one of listed group. Then it is not hard to check
that Ep(M) = s(q)− 1 and Ω1(Z(M)) = Φ(M).

Now let Ep(M) = s(q)− 1 and Ω1(Z(M)) = Φ(M). Then, by Corol-
lary 4.4 we have to consider only the following cases:

1. |M | = p4 and |M ′| = p;
2. |M | = p5 and |M ′| = p2.
In the first case, by the presentations of groups of order p4 given by

Burnside in [1] (see also [5, Satz III.12.6, Aufgaben III.12.29–30]) we
obtain that M is either of type 1 or of type 2.

Let us consider now the second case. Let, as in the proof of Lemma 4.2,
P ⊆ Aut M be a Sylow p-subgroup and N ⊆ M be a maximal subgroup
which is P -invariant. We can also assume, that Z(M) ⊆ N .

By Lemma 4.2 N is abelian. Since |M | = p5, by Corollary 4.4,
Z(M) = Φ(M) = M ′ is elementary abelian of order p2, so exp M ≤ p2.

We already know that the restriction map Ψ : P −→ AutN is a ho-
momorphism with the kernel AutN

N (M). Our assumption and Theorem 1.1
give

| ImΨ| ≤ |Ap(N)| ≤ p6 and |AutN
N (M)| · | ImΨ| = |P | = p9.

Hence, Lemmas 4.1 and 4.2 yield

p3 ≤ |AutN
N (G)| ≤ |Z(N)| = |N | = p4.

Assume, that |AutN
N (M)| = p3. Then | Im Ψ| = p6 and, by Theo-

rem 1.1, Im Ψ is a Sylow p-subgroup of Aut N . It means, by Theorem 3.2,
that N is either elementary abelian or abelian of type (2, 1, 1).

Let T be a maximal subgroup of N such that Tα = T for all α ∈ ImΨ.
We can assume that T is elementary abelian and Z(M) ⊆ T .

Take u0 ∈ N such that N = 〈u0, T 〉. Of course |AutT
T (N)| = p3. Then

we have p3 automorphisms αu ∈ AutT
T (N) such that uαu

0 = u0u for u ∈ T .
The corresponding automorphisms ϕu ∈ P possess properties ϕu|N = αu

and gϕu = ghu for some hu ∈ N . Then since αu ∈ AutT
T (N), [u0, g] =

[u0, g]αu = [u0, g]ϕu = [uϕu

0 , gϕu ] = [u0u, ghu] = [u0u, g] = [u0, g][u, g].
Then T ⊆ Z(M). So we have a contradiction.

In this way we have proved that |AutN
N (M)| = p4. Thus, by Lem-

ma 4.1, for fixed g ∈ M \N and for every n ∈ N we obtain (gn)p = gp.
First let p = 2. Then ng = n−1 and n2 6= 1, so we have the group (3),

if g2 = 1; and the group (4), if g2 6= 1.
Now let p > 2. Then np = 1 and we have the group (1), if gp = 1;

and the group (2) if gp 6= 1. ¤
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Theorem 5.3. Let G be a nonabelian group of order pn. Then Ep(G) =
s(n) − 1 if and only if either G is a group of maximal class listed in
Lemma 5.1 or G is the direct product of an elementary abelian group
and a group M , where M is listed in Lemma 5.2.

Proof. If G is of maximal class and as in Lemma 5.1 then |G| = p4

and Ep(G) = 5 = s(4)− 1.
Let G = M×E, where M is as required and E is an elementary abelian

p-group. Denote |M | = pq. From Lemma 5.2 we have Ep(M) = s(q) − 1.
Since Φ(M) = Ω1(Z(M)) then Corollary 2.7 gives Ep(G) = s(n)− 1.

On the contrary, let G be of order pn with Ep(G) = s(n) − 1. By
Proposition 4.5 we can write G = M × E, where E is elementary abelian
(possibly trivial) and Ω1(Z(M)) ⊆ Φ(M). Let |M | = pq and |M/Φ(M)| =
pd. Then |E| = pr, where r = n− q. We have Φ(G) = Φ(M)× 1. Hence,
G has d+r generators and by Theorem 1.1 d+r ≥ q+r−2. It means that
either d = q−1 or d = q−2, because M is nonabelian. As in Corollary 2.7
put

x = s(n, d + r)− Ep(G), y = s(q, d)− Ep(M)

and |Φ(M)/Ω1(Z(M))| = pc.

Then, from this corollary we have

(5) x = y + rc.

Let d = q − 1. Then, x = 1, |Φ(M)| = p and c = 0. Thus, by the formula
(5), y = 1. Hence, from Corollary 4.3 we have that M is a nonabelian group
of order p3. Therefore, by Theorem 4.6, Ep(G) = s(n), a contradiction.

In this way we have proved, that d = q − 2. Hence x = 0 and by
formula (5) we have y = 0 and rc = 0. This means that Ep(M) = s(q)−1.

If c > 0 then r = 0, hence G = M . Moreover, Ω1(Z(G)) 6= Φ(G).
With the help of Corollary 4.4 it is clear that G is of order p4 and of
maximal class with Ep(G) = 5. Hence G satisfies all the conditions of
Lemma 5.1.

Let c = 0. Then Ω1(Z(M)) = Φ(M) and, by Corollary 4.4 M satisfies
all the conditions of Lemma 5.2, which completes the proof. ¤

Another full proof of the above theorem can be found in [7].
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