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A Lie group structure on strict groups

By TOMASZ RYBICKI (Kraków)

Abstract. The notion of strict groups encompasses many important infinite di-
mensional groups in differential geometry. It is shown that important strict groups
carry the structure of a regular Lie group in the convenient setting. In the contact case
this is related to the integrability of the Poisson algebra of a prequantizable Poisson
manifold.

1. Introduction

Given a Lie groupoid Γ ⇒ M let Bis(Γ) be the group of all its bi-
sections. Any subgroup G ⊂ Bis(Γ) is called a strict group. This concept
adopts the C. Ehresmann’s point of view to groups in geometry [6]. By
considering the coarse groupoids it is apparent that all diffeomorphism
groups are strict. The same is true for the space of smooth sections of a
vector bundle, the space of connections of a trivial principal fibre bundle,
and other important groups.

In this note we show that Bis(Γ) is a regular Lie group for every Lie
groupoid Γ. A main ingredient of the proof is the statement that the
space of all sections of a submersion is a convenient manifold. Next we
make some comments on the contact case. In particular, we show that the
group of all Legendrian bisections of a contact groupoid is a convenient
Lie group, and we draw some conclusion concerning the integrability of
the Poisson algebra of a prequantizable Poisson manifold.
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We will use the definition of a Lie group in the convenient setting of
the infinite dimensional Lie theory due to A. Kriegl and P. Michor [12],
and we follow methods used there. In the convenient setting the clue point
is the idea of testing smoothness along smooth curves. A mapping between
two possibly infinite dimensional manifolds is smooth if, by definition, it
sends smooth curves to smooth curves. This concept is based on Boman’s
theorem which states that a mapping f : Rn → R is smooth whenever
f ◦ c is smooth for any smooth curve c : R → R. Furthermore, for mod-
eling manifolds a special type of LCTVS is in use, namely a so-called
convenient (for differential calculus) vector spaces which fulfil the Mackey
completeness. Equivalently, E is convenient if any curve c : R→ E which
is scalarwise smooth is smooth. This is also characterized by the fact that
any smooth curve possesses an integral (antiderivative). Notice that all
Fréchet spaces are convenient. The manifolds are defined by using open
sets in the c∞-topology on E, which is the final topology with respect to
the space of smooth curves C∞(R, E). For Fréchet spaces the c∞-topology
coincides with the initial one.

Recall that a convenient Lie group G is called regular [15] if for g =
TeG there exists a bijective evolution map

evolrG : C∞(R, g) → C∞((R, 0), (G, e))

such that its evaluation at 1, X 7→ evolrG(X)(1), is smooth. The inverse of
evolrG is then called the right logarithmic derivative and denoted by δr

G.
An advantage of the convenient setting is that Diff(M) for M open

is still a regular Lie group. Note that diffeomorphism groups on open
manifolds cannot be described in terms of ILB-groups (H. Omori [16]).
On the other hand, the identity component of Diff(M) in the convenient
setting consists only of compactly supported diffeomorphisms. As in [12]
also in our results there are no restrictive assumptions on Γ or M . It seems
that [12] applied to strict groups give a unified method of introducing a
Lie group structure for most remarkable transitive groups in differential
geometry. In the nontransitive case this method is in general useless in
view of a so-called “holonomic imperative”, cf. [18]. It states that to any
bisection of a groupoid over a foliated manifold is attached its holonomy
class. Consequently, infinite dimensional regular Lie groups considered
in [19] are modeled on the space of foliated 1-forms, rather than on the
space of ordinary 1-forms.
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Observe that often there is a closed subgroup H ⊂ G and a Lie algebra
h such that smooth curves with values in h are sent bijectively by evolrG to
isotopies with values in H. However we would like to stress that in such
a situation H possesses only a weak Lie subgroup structure (cf. [22]), and
not the usual one. Such a situation could be also described in terms of dif-
feological Lie groups (J. M. Souriau [23]). The advantage of this setting
is that Lie group structures are defined without using charts. However not
all concepts and facts of the “usual” infinite dimensional Lie theory could
be possible in such a framework.

The strict groups (e.g. the Lagrangian or Legendrian bisection groups)
have been studied extensively by P. Dazord in [4] and [5] in terms of
diffeological groups. We would like here to indicate that his results can
be derived on the ground of usual Lie theory as well. For the case of
symplectic groupoids, see [20]. Most of the presented results have been
announced in [21].

Throughout all finite dimensional manifolds are assumed to be para-
compact and C∞-smooth, and all infinite dimensional manifolds are in the
sense of [12].

2. The group of bisections and the main result

A groupoid is a small category all of whose arrows are invertible.
We begin with the notation of a Lie groupoid following [2] (the “French
notation” for groupoids, contrary to [14]).

A groupoid structure on a set Γ is given by two surjections (the source
and target) α, β : Γ → M ⊂ Γ, by a multiplication m : Γ2 → Γ, where
Γ2 = {(x, y) ∈ Γ × Γ : α(x) = β(y)}, and by an inversion i : Γ → Γ such
that the following axioms are fulfilled:

(Ass) If one of the products m(x,m(y, z)) and m(m(x, y), z) is defined
then so is the other and they are equal.

(Id) The products m(β(x), x), m(x, α(x)) are both defined and equal
to x.

(Inv) m(x, i(x)) is defined and equal to β(x), and m(i(x), x) is defined
and equal to α(x).

The elements of M are called unities. For simplicity we write x.y for
m(x, y) and x−1 for i(x). The symbol Γ ⇒ M will stand for the groupoid
(Γ,M, α, β, m, i).
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Next, a groupoid Γ is said to be a Lie groupoid if Γ is a smooth
manifold (not necessarily separated), M is a separated submanifold, α and
β are submersions, m is a smooth mapping, and i is a diffeomorphism.
Notice that Γ is separated iff M is closed in Γ, cf. [2]. Moreover, the
separatedness near M can be always assumed due to

Lemma 2.1 [2]. Let N be a not necessarily separated manifold, and let

M ⊂ N be a separated submanifold. If there is a submersion p : N → M ,

p|M = idM , then there is a neighborhood U of M in N which is separated

and with connected p-fibers. In case Γ is a Lie groupoid with p = β, U can

be chosen symmetric (with respect to i) and such that M is closed in U .

For u ∈ M the set α(β−1(u)) = β(α−1(u)) is called the orbit at u. If
Γ is α-connected (or, equivalently, β-connected), the family of orbits form
a generalized foliation FΓ of M ; it is given by integrating the distribution
α∗ kerTβ|M . Γ is called transitive if it has only one orbit M .

For any subsets A1, A2 ⊂ Γ we have the product

A1.A2 = {x1.x2 | x1 ∈ A1, x2 ∈ A2, α(x1) = β(x2)}.

The family of all subsets of Γ with this product is a semi-group. By a
bisection (or admissible section, cf. [14]) of a Lie groupoid Γ we mean a
submanifold B of Γ such that α | B and β | B are diffeomorphisms onto M .
Bis(Γ), the set of all bisections, is exactly the group of all invertible ele-
ments of the above semigroup.

Bis(Γ) has natural left and right representations in Γ given by

ψl : Bis(Γ) 3 B 7→ ψl(B) := {x 7→ B.x} ∈ Diff(Γ),

ψr : Bis(Γ) 3 B 7→ ψr(B) := {x 7→ x.B} ∈ Diff(Γ).

Next there are the left and right representations in the unit space (M,FΓ)

φl : Bis(Γ) 3 B 7→ φl(B) := β ◦ ψl(B)|M ∈ Diff(M,FΓ),

φr : Bis(Γ) 3 B 7→ φr(B) := α ◦ ψr(B)|M ∈ Diff(M,FΓ),

where Diff(M,FΓ) is the group of leaf preserving diffeomorphisms. Bis(Γ)c

will stand for the subgroup of all compactly controlled elements, that is
all B such that φl(B), or equivalently φr(B), has compact support. In
general, compactly controlled bisections need not have compact support,
cf. Example 3 below.
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Definition. A Lie algebroid over a manifold M is a triple (E, [[ , ]], ρ)
such that there is a vector bundle E → M , [[ , ]] is a Lie algebra bracket
on the space Sect(E) of all smooth sections of E, and ρ : E → TM is a
vector bundle morphism such that the following conditions are fulfilled:

(1) ρ induces ρ̃ : Sect(E) → X(M) which is a Lie algebra homomor-
phism;

(2) [[σ1, fσ2]] = f [[σ1, σ2]] + ρ̃(σ1)(f)σ2, ∀σ1, σ2 ∈ Sect(E),
f ∈ C∞c (M).

The map ρ is called an anchor.

Let us remind that a left-invariant vector field X on Γ is characterized
by Tβ(X) = 0 and T lx(X) = X for any left translation

lx : β−1(α(x)) 3 y 7→ x.y ∈ β−1(β(x)).

Let XL(Γ) be the Lie algebra of all left-invariant vector fields on Γ. Then
XL(Γ) ' kerTβ|M . Also Tα|XL(Γ) : XL(Γ) → X(M) is well defined.

It is well known (J. Pradines [17]) that to any Lie groupoid Γ ⇒ M is
assigned the associated Lie algebroidA(Γ), namelyA(Γ)=(NΓM, [[ , ]],Tα),
where [[ , ]] is a Lie algebra bracket on Sect(kerTβ|M ) introduced by means
of the above identification and NΓM ' kerTβ|M . Hereafter NNM stands
for the normal bundle of M in N .

Our main result is the following

Theorem 2.2. The groups Bis(Γ) and Bis(Γ)c are regular Lie groups

with the same Lie algebra Sectc(NΓM).

Examples. 1. Lie groups coincide with Lie groupoids with a unique
unity.

2. Another extreme example are manifolds: Γ = M .

3. If α = β then for all u ∈ M the fiber α−1(u) carries a Lie group
structure. Any vector bundle is a Lie groupoid of this type, and its bisec-
tion is just a smooth section.

4. For any set M put Γ = M × M , α((x, y)) = y, β((x, y)) = x,
m((z, y), (y, x)) = (z, x) and i((x, y)) = (y, x). We get the coarse groupoid
with the space of units M ' ∆M . Notice that bisections of Γ = M ×M

coincide with with the diffeomorphisms on M .
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5. Given a principal fiber bundle P (M, π,G) one defines the equiva-
lence relation∼ on P×P by (p1, p2) ∼ (q1, q2) iff ∃a ∈ G such that pia = qi.
Putting Γ = P × P/ ∼, α([(p1, p2)]) = π(p2), β([(p1, p2)]) = π(p1), we get
the gauge groupoid (with obvious m and i). Γ is identified with the set of
equivariant bundle morphisms over idM , and Bis(Γ) with the space of all
connections on the trivial principal fibre bundle M ×G.

6. Assume that a Lie group G acts on a manifold M . Then we set:
Γ = G × M , α((g, x)) = g.x, β((g, x)) = x, (g′, x′).(g, x) = (g′g, x), and
(g, x)−1 = (g−1, g.x). We say that Γ is a transformation groupoid. Here
Bis(Γ) = {φ : C∞(M,G) such that x 7→ φ(x).x is a diffeomorphism}.

7. For any Lie groupoid Γ the tangent space
TΓ = (TΓ ⇒ TM,Tα, Tβ,⊕, I) possesses a structure of Lie groupoid.
Here the multiplication ⊕ is given by

X ⊕ Y =
(

d
d t

(x(t).y(t))
) ∣∣∣∣

t=0

,

where X = d x
d t |t=0, Y = d y

d t |t=0, α(x(t)) = β(y(t)), and the inversion
IX = d x

d t x(t)−1|t=0 if X = d x
d t |t=0. It is visible that Bis(TΓ) = {TS, S ∈

Bis(Γ)}.

3. Proof of Theorem 2.2

The proof follows the one for diffeomorphisms in [12], and makes use
of tubular neighborhoods and the identification NΓM ' kerTβ|M . The
topology of Bis(Γ) is the identification topology by charts of a Lie group
structure of Bis(Γ). In particular, all bisections in the identity component
are compactly controlled.

First we show that C∞(M ← N), the space of all smooth sections
of a surmersion p : N → M , carries a manifold structure. We need the
following fact [12]

Proposition 3.1. Let E → M and F → M be two smooth vector

bundles, let U be an open subset in E and Sectc(U) = {s ∈ Sectc(E) :
s(M) ⊂ U}. If φ : U → F is a smooth fiber respecting (nonlinear) map

then φ∗ : Sectc(U) → Sectc(F ) is smooth, where φ∗(s)(x) = φ(s(x)).
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Proposition 3.2. Let p : N → M ⊂ N be an arbitrary surmersion

such that p|M = idM . The space C∞(M ← N) equipped with the iden-

tification topology is a smooth separated manifold modeled on the spaces

Sectc(NNf(M)), where f ∈ C∞(M ← N).

Proof. Let Fp be the foliation by p-fibers on a convex open separated
neighborhood V of M in N (Lemma 2.1). The tangent bundle TV has
the form TV = TFp⊕NFp, where TFp (resp. NFp) is the tangent (resp.
normal) bundle of Fp. Choose any linear connections ∇1 in TFp and ∇2

in NFp. Then we get the product connection ∇ in TV by ∇Xs = ∇1
Xs1 +

∇2
Xs2, where X ∈ Sect(TV ), s = s1 +s2 ∈ Sect(TV ), s1 ∈ Sect(TFp), and

s2 ∈ Sect(NFp). The fibers of p are then totally geodesic submanifolds
of V .

Now let f ∈ C∞(M ← N). By applying Lemma 2.1 to f ◦ p and by
choosing a connection ∇ as above but in a neighborhood of f(M) rather
than M , there exist a convex open separated neighborhood Uf of f(M) in
NNf(M), a neighborhood Vf of f(M) in N , and a diffeomorphism

µf : NNf(M) ⊃ Uf → Vf ⊂ N

such that µf (0x) = x for all x ∈ f(M), and µf is fiber preserving. Indeed,
one can choose µf = exp∇ |Uf

.
In view of [12], the space Sectc(NNf(M)) is endowed with the in-

ductive limit topology of the subspaces SectK(NNf(M)), K running over
compact subsets of f(M), with the usual C∞ topology.

For f, g ∈ C∞(M ← N) we write f ∼ g if f and g agree off a compact
subset. We define a chart φf : Vf → Sectc(NNf(M)) where

Vf := {g ∈ C∞(M ← N) : f ∼ g and µ−1
f g(x) ∈ Uf , ∀x ∈ M},

φf (g)(x) := µ−1
f g(x).(3.1)

Then φf maps bijectively Vf onto Uf := {s ∈ Sectc(NNf(M)) : s(f(M)) ⊂
Uf}, an open subset of Sectc(NNf(M)) in the above topology.

For all f, g ∈ C∞(M ← N) and s ∈ Sectc(NNg(M))

(3.2) (φf ◦ φ−1
g )(s) = (µ−1

f ◦ µg)∗(s).

In view of Proposition 3.1 with E = NNg(M), F = NNf(M) and U =
Uf ∩ (µ−1

f ◦ µg)(Ug) the chart changing φf ◦ φ−1
g are defined on open sets
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and smooth. So {(Vf , φf )} is an atlas for C∞(M ← N). The identifi-
cation topology of this atlas is finer than the Whitney topology (cf. [12],
41.13) and, consequently, separated. The equality (3.2) implies that the
smooth structure induced by this atlas is independent of the choice of a
connection ∇ used in the definition of µf . Indeed, the choice of another
such connection leads to an equivalent atlas. ¤

Lemma 3.3. A mapping c : R → C∞(M ← N) is a smooth curve iff

ĉ : R ×M 3 (t, x) 7→ c(t)(x) ∈ N is smooth and the following condition

is fulfilled: (∗) for any compact interval [a, b] ⊂ R there exists a compact

subset K ⊂ M such that for all t ∈ [a, b] c(t) stabilizes off K.

Proof. In view of [12], 42.5, one has such a description of smooth
curves for the manifold of all smooth mappings from M to N , C∞(M,N).
Since C∞(M ← N) is a splitting submanifold of C∞(M, N) this implies
our assertion. ¤

Proof of Theorem 2.2. Let Γ ⇒ M be a Lie groupoid. The first part
of the proof consists in showing that the group Bis(Γ) can be viewed as an

open subset of C∞(M
β←− Γ), the space of all sections of β : Γ → M . By

Proposition 3.2 the space C∞(M
β←− Γ) is a manifold, so that this yields

a Lie group structure on Bis(Γ) with the Lie algebra Sectc(NΓM).

For any s ∈ C∞(M
β←− Γ) one has α ◦ s ∈ C∞(M, M), and α ◦

s ∈ Diff(M) iff s ∈ Bis(Γ). Here we identify Bis(Γ) with a subset of

C∞(M
β←− Γ) by means of the embedding B 7→ ψr(B)|M . Let c : R →

C∞(M
β←− Γ) be a smooth curve with α(c(0)) being a diffeomorphism.

Then t 7→ α(c(t)) is a smooth curve in C∞(M, M) and in view of the
proof of Theorem 43.1 in [12] α(c(t)) stays surjective and injective for t

close to 0. It stays as well in the set of immersions by [12], 41.10. Thus

Bis(Γ) is open in C∞(M
β←− Γ).

We show that the multiplication and the inversion in Bis(Γ) are
smooth. It suffices to prove that these mappings send smooth curves to
smooth curves. We identify B ∈ Bis(Γ) with ψr(B)|M .

Let B, C : R→ Bis(Γ). Observe that for u ∈ M

ψr(B.C)(u) = u.(B.C) = (u.B).(α(u.B).C)

= m(ψr(B)(u), ψr(C)(α(ψr(B)(u))).
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This gives the smoothness of multiplication due to Lemma 3.3 and the
smoothness of m. To show the smoothness of inversion let B : R→ Bis(Γ)
and ψ̂r(B) : R × M 3 (t, u) 7→ ψr(B)(t)(u) ∈ M . We have then that
ψ̂r(B)(t, ̂ψr(B−1)(t, u)) = u for any t ∈ R, u ∈ M . Therefore by the
implicit function theorem for M ̂ψr(B−1) in smooth in the variables (t, u).
In view of Lemma 3.3 B−1 is smooth. Thus the inversion in Bis(Γ) is
smooth.

In the second part we prove the regularity of Bis(Γ). Let X ∈
Sectc(NΓM). There is a unique X̃ ∈ XL(Γ) which extends X. Ob-
serve that the flow of a vector field tangent to the fibers of β exists
uniquely since the fibres are separated. Let Ct be a flow of X̃. We wish
to show that α ◦ Ct|M is a bijection for all t. Note that by definition
Ct ◦ lx = lx ◦ Ct, ∀t ∈ R, and l−1

x = lx−1 , so we can write

(3.3) l−1
x ◦ C−t = C−t ◦ l−1

x .

The injectivity: Suppose w = α(Ct(u)) = α(Ct(v)), where u, v ∈ M ,
and put x = Ct(u), y = Ct(v). Then l−1

x (x) = l−1
y (y) = w. Hence for

z = C−t(w) one gets by (3.3) the equalities z = l−1
x (C−t(x)) = l−1

x (u)
and z = l−1

y (C−t(y)) = l−1
y (v). This yields α(z) = α(u) = u and α(z) =

α(v) = v, resp. Thus u = v as required.
The surjectivity: Let v ∈ M . For x = C−t(v) we have l−1

x (v) =
(Ct ◦ l−1

x ◦C−t)(v) = Ct(α(x)) in view of (3.3). Therefore v = α(l−1
x (v)) =

α(Ct(α(x))) which implies the surjectivity.
By considering time-dependent families from Sectc(NΓM) instead of

its elements we get the bijection

evolrBis(Γ) : C∞(R,Sectc(NΓM)) → C∞((R, 0), (Bis(Γ), e)).

By definition the evaluation of it at 1 is smooth. This shows that Bis(Γ)
is regular. ¤

Remark. In traditional settings of infinite dimensional analysis, e.g.
[9], special and very technical implicit function theorems are needed to
prove the smoothness of the group inversion. The above argument shows
the usefullness and elegance of the convenient setting.

Let us describe δr
Bis(Γ), the inverse of evolrBis(Γ). For u ∈ M and

B ∈ Bis(Γ) one has a diffeomorphism σB
u : β−1(u) → β−1(u) given by

σB
u (x) = x.ψr(B)(α(x)).
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Then clearly σB
u (u) = ψr(B)(u). By gluing-up the tangent mappings TσB

u

of diffeomorphisms σB
u we get the canonical identification

(3.4) σB : ker Tβ ' NΓM ' NΓB.

We have also Tψr(B) : TM ' TB. By combining it with (3.4) we get
σ̃B : TΓ|M ' TΓ|B .

Given a smooth isotopy Bt in Bis(Γ) with B0 = M there is a unique
time-dependent family of vector fields X̂t along ψr(Bt)(M) corresponding
to Bt, i.e. for all u ∈ M

X̂t(ψr(Bt)(u)) =
d

ds
ψr(Bs)(u)|s=t.

By definition, X̂t are tangent to the fibers of β. Hence we get a unique
smooth curve Xt in Sectc(ker Tβ|M ) such that σ̃Bt∗ Xt = X̂t. Then
δr
Bis(Γ)(Bt) = Xt, and X̂t = X̃t on ψr(Bt)(M).

4. The case of contact groupoids

It is also possible to endow with a Lie group structure two important
strict groups which are not of the form Bis(Γ), i.e. are not equal to the
group of all bisections of a Lie groupoid. In [20] this has been shown for
the Lagrangian bisection group of a symplectic groupoid. Now we will deal
with the Legendrian bisection group of a contact groupoid.

Definition. A Lie groupoid Γ endowed with a contact form θ (i.e.
θ ∧ d θn 6= 0, where dimΓ = 2n + 1) is called contact if there are smooth
mappings u, v : Γ → R∗ (actually groupoid morphisms) such that the
following conditions hold:

(i) θ(Xx ⊕ Yy) = u(x)θ(Yy) + v(y)θ(Xx);

(ii) the inversion i is a conformal θ-morphism.

The operation ⊕ is defined in Example 7.

Proposition 4.1 below reveals how contact groupoids are connected
with Jacobi structures. Let us recall that a Jacobi structure on a manifold
M is a pair (Λ, E), where Λ is a bivector field on M , E is a vector field
on M , and the equalities

[Λ, Λ] = 2E ∧ Λ, [E, Λ] = 0
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are satisfied, where [ . , . ] is the Schouten–Nijenhuis bracket. Specifically
transitive odd-dimensional Jacobi manifolds coincide with contact mani-
folds. The importance of the Jacobi strucures comes from the fact that
they correspond bijectively to Lie algebra brackets on C∞(M) which are
local, i.e.

supp{u, v} ⊂ (supp(u) ∩ supp(v)), u, v ∈ C∞(M).

We have also the bundle homomorphism associated with Λ given by

Λ] : T ∗M → TM, <Λ]α, β> = Λ(α, β),

for any α, β ∈ T ∗M . The distribution generated by Λ](T ∗x M) and Ex,
x ∈ M , integrates to a generalized foliation (cf. [24]). This foliation is
called characteristic and denoted by F = F(Λ, E). It is well-known that
any Jacobi structure induces a locally conformal symplectic (resp. contact)
structure on each leaf of F(Λ, E) of even (resp. odd) dimension. If E = 0
then we get a Poisson structure, and each leaf of the characteristic foliation
carries a symplectic structure.

Proposition 4.1 [11], [5]. If Γ = (Γ, θ, u, v) be a contact groupoid
over M then:

(i) the space of units M is canonically endowed with a Jacobi structure
(Λ, E) whose characteristic foliation is equal to FΓ;

(ii) α (resp. β) is a conformal Jacobi u-morphism (resp. (−v)-morphism);

(iii) the inversion i is a contact anti-morphism (i.e. i∗θ = −θ), and M is
a Legendrian submanifold.

The symbol (Γ, θ) ⇒ (M, Λ, E) will stand for Γ.

Recall that S ⊂ M , where (M, θ) is a contact manifold, is called
a Legendrian submanifold if it is a maximal integral submanifold of the
symplectic distribution ker(θ). Clearly the set Bis(Γ, θ) of all Legendrian
bisections is a subgroup of Bis(Γ). This group has natural left and right
representations in the contactomorphism group of Γ

ψl : Bis(Γ, θ) 3 C 7→ ψl(C) = {x 7→ C.x} ∈ Cont(Γ, θ),

ψr : Bis(Γ, θ) 3 C 7→ ψr(C) = {x 7→ x.C} ∈ Cont(Γ, θ).

The corresponding representations φl and φr take their values in
Diff(M, Λ, E), the automorphism group of (M, Λ, E).
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Example. Given two contact manifolds (Mi, θi), i = 1, 2, one defines a
contact form θ on M1×M2×R∗ by θ = π∗1θ1−tπ∗2θ2, where πi is the canon-
ical projection on Mi. Now f : M1 → M2 is a contact φ-diffeomorphism,
φ ∈ C∞(M1), if and only

graph(f) := {(x, f(x), φ(x)) | x ∈ M1}

is a Legendrian submanifold of M1 ×M2 × R∗, cf. [10].
If (M, θ) is a contact manifold then Γ = M × M × R∗ with θ̂ =

π∗1θ− tπ∗2θ is the coarse contact groupoid. Here the multiplication and the
inversion are given by

(x1, y1, a1).(x2, y2, a2) = (x1, y2, a1a2) iff y1 = x2,

(x, y, a)−1 = (y, x, a−1).

Consequently, Bis(Γ, θ) = {graph(f) : f ∈ Diff(M, θ)}.
It is important that the Lie algebroid associated with a contact group-

oid assumes a special form.

Proposition 4.2. (i) If (M, Λ, E) is a Jacobi manifold the one jet

bundle π : J1(M,R) → M is endowed with a Lie algebroid structure such

that the one jet mapping

j : C∞(M) 3 f 7→ (f, d f) ∈ C∞(M ← J1(M,R))

is a bounded splitting Lie algebra monomorphism.

(ii) The algebroid associated with a contact groupoid (Γ, θ) ⇒ (M,Λ,E)
is canonically isomorphic to the algebroid associated with (M, Λ, E).

Note that J1(M,R) ' T ∗M×R is endowed with the canonical contact
structure θM − d t, where θM is the canonical 1-form on T ∗M . See [5] for
the proof and more detailed exposition.

5. A Lie group structure on Bis(Γ, θ)

We begin with V. Lychagin’s result [13] concerning the existence of
canonical neighborhoods of Legendrian submanifold.
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Lemma 5.1. If S is a Legendrian submanifold of a contact manifold

(M, θ) then there exist an open neighborhood U of S, an open neighbor-

hood V of the zero section in T ∗S × R, and a diffeomorphism ξ : U → V

such that ξ|S = idS and ξ∗(θS − d t) = θ.

Theorem 5.2. For any contact groupoid (Γ, θ) ⇒ (M, Λ, E), the

groups Bis(Γ, θ) and Bis(Γ, θ)c (the subgroup of compactly controlled bi-

sections) are regular splitting Lie subgroups of Bis(Γ), both with the Lie

algebra C∞c (M).

Remark. In [12], 43.13 it is shown that for a contact manifold (M, θ)
the group Diff(M, θ) is a regular Lie group. However it is not a splitting
Lie subgroup of Diff(M), because the graphs of contact diffeomorphisms
are contained in M ×M × R, and not in M ×M .

Proof. In view of Proposition 4.2 we use the identification NΓM '
T ∗M × R ' J1(M,R). We consider the β-fiber preserving chart (3.1) at
f = e

µ : J1(M,R) ⊃ U → V ⊂ Γ

with µ(0u) = u for u ∈ M . Then on U we have two contact forms: θM−d t

and µ∗θ. By composing µ with the diffeomorphism ξ from Lemma 5.1 and
possibly shrinking U and V we may have µ∗θ = θM − d t, but now µ no
longer preserves the β-fibers.

Let V be a neighborhood of e = M in Bis(Γ) consisting of all sub-
manifolds B ⊂ Γ such that ψrB|M : M → Γ is compactly supported,
ψr(B)(M) ⊂ V , and so small that µ−1(B) is still the image of a β-section.
We define a chart Φ : Bis(Γ) ⊃ V → U ⊂ Sectc(J1(M,R)) at e = M by

Φ(B) := µ−1 ◦ ψr(B)|M ◦ (π ◦ µ−1 ◦ ψr(B)|M )−1.

This gives a new chart of Bis(Γ) at e = M .
We write Φ(C) = (Φ1(C), Φ2(C)) where Φ1(C) ∈ C∞(M) and

Φ2(C) ∈ Ω1
c(M). Observe that the following statements are equivalent:

(i) C ∈ Bis(Γ) is Legendrian; (ii) µ−1(C) is Legendrian in J1(M,R); (iii)
Φ(C)∗(θM − d t) = 0; (iv) Φ2(C) = d(Φ1(C)). Since the mapping j in
Proposition 4.2 is a bounded linear splitting embedding, we get that Φ1 is
a splitting submanifold chart (with values in C∞c (M)) for Bis(Γ, θ).

Next for arbitrary C ∈ Bis(Γ, θ) we get a submanifold chart at C as
follows: VC := {B : B.C−1 ∈ V} and ΦC(B) := Φ(B.C−1). Thus Bis(Γ, θ)
is a splitted submanifold of Bis(Γ) and a Lie group.
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To show the regularity of Bis(Γ, θ) let us recall the following [12], 38.7.
Let H be a topological Lie subgroup of a regular Lie group G. If there are
an open neighborhood U ⊂ G of e and a smooth mapping p : U → E, where
E is a convenient vector space, such that p−1(0) = U ∩H and p is constant
on left cosets Hg ∩ U , then H is regular. In our case one can use U = V
and p(C) = Φ2(C)−d(Φ1(C)). The regularity can be also checked directly
as at the end of section 3. In particular, evolrBis(Γ,θ) = evolrBis(Γ) |C∞c (M).

¤
Remark. One can consider as well contact groupoids in the wider

sense, that is given by a distribution of hyperplanes H. A Lie groupoid Γ
equipped with H is contact if

(i) X, Y ∈ H ⇒ X ⊕ Y ∈ H,

(ii) i preserves H.

Then analogous statements remain true but the space of units is now
endowed with a structure of Jacobi bundle. The group Bis(Γ, θ) still admits
a regular Lie group structure.

6. Integrability of prequantizable Poisson algebras

The third theorem of Lie asserts that any finite dimensional Lie al-
gebra is actually the Lie algebra of a Lie group. Since a famous paper [7]
it is well known that, in general, this theorem is no longer true in the
infinite dimensional case. However there are several generalizations of this
theorem, e.g. [1], [3], [8], [17]. Let us add that an abstract approach to the
problem has been recently proposed in [22]. It appeals to the concept of
weak Lie subgroups.

Let us recall that a Poisson manifold (M, Λ) is prequantizable if there
exists a (global) symplectic groupoid (Γ0, ω) ⇒ (M, Λ) such that (Γ0, ω)
is prequantizable. If Γ is separated, the latter means that [ω] ∈ H2(Γ0,Z).
Then there is a contact groupoid (Γ, θ) ⇒ (M, Λ), called a natural contact
groupoid over a prequantizable Poisson manifold (M, Λ), cf. [5]. In [5]
P. Dazord gave conditions characterizing prequantizable Poisson mani-
folds: (M, Λ) is prequantizable iff (M, Λ) admits a contact groupoid with
finite period.

If (M, Λ) is prequantizable, the exact sequence of Lie algebras

0 → R→ C∞c (M) d−→ BΩ1
c(M) → 0
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can be integrated to the exact sequence of regular Lie groups

1 → S1 → Bis(Γ, θ)0 → Bisexact(Γ0, ω) → 1.

Here BΩ1
c(M) is the space of compactly supported exact 1-forms, while

Bisexact(Γ0, ω) is the group of all exact Lagrangian bisections of the sym-
plectic groupoid (Γ0, ω), cf. [4], and Bis(Γ, θ)0 is the identity compo-
nent of Bis(Γ, θ). This means that Bis(Γ, θ)0 is a central extension of
Bisexact(Γ0, ω). Therefore Theorem 5.2 can be reformulated as follows (see
also [5]).

Theorem 6.1. Any prequantizable Poisson algebra on a manifold M

(i.e. a Lie algebra (C∞c (M), {, }), where the bracket {, } is defined by a

prequantizable Poisson structure (M, Λ)) can be integrated to a regular

Lie group Bis(Γ, θ)0, where (Γ, θ) ⇒ (M, Λ) is a natural contact groupoid

over (M, Λ).

Notice that a main result of [1] states that the Poisson algebra of any
prequantizable symplectic manifold is integrable, and in [8] this was shown
for locally conformal symplectic structures.

Acknowledgement. I would like to thank the referee for helpful re-
marks.
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Acad. Sc. Paris 267 (1968), 21–23.

[18] J. Pradines, Feuilletages: Holonomie et graphes locaux, C. R. Acad. Sc. Paris
289 (1984), 297–300.

[19] T. Rybicki, On foliated, Poisson and Hamiltonian diffeomorphisms, Diff. Geom.
Appl. 15 (2001), 33–46.

[20] T. Rybicki, On the group of Lagrangian bisections of a symplectic groupoid, Ba-
nach Center Publ. 54 (2001), 235–247.

[21] T. Rybicki, On contact groupoids and Legendre bisections, Global diff. geometry:
the mathematical legacy of A. Gray, Bilbao, 2000, Contemp. Math. 288 (2001),
420–424.

[22] T. Rybicki, An infinite dimensional version of the third Lie theorem, Rend. Circ.
Mat. Palermo, suppl., (in press).
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