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On nilpotent loop rings and a problem of Goodaire

By GÁBOR P. NAGY (Szeged)

Abstract. Let p be a prime, L a finite loop of p-power order and F a field of
characteristic p. We show that the fundamental ideal of the loop ring FL is nilpotent if
and only if the multiplication group of L is a p-group. We apply this theorem to answer
a question of E. G. Goodaire.

1. Introduction

As in [2], we define loop rings as follows. Let L = (L, ·) be a loop
with unit 1 and R be a commutative associative ring with unity. The
elements of the loop ring A = RL are the formal (finite) sums

∑
g∈L cgg;

addition and multiplication are defined in the obvious way. The augmen-
tation map ε : RL → R is the map ε(

∑
g∈L cgg) =

∑
g∈L cg; this map is

clearly a surjective ring homomorphism. The kernel ∆(L) of ε is called the
fundamental ideal of RL.

In general, it is of interest to study loops with weak associativity
properties; the most important classes are the Moufang and Bol loops.
The class of right Bol loops is characterized by the right Bol identity

(1) (xy · z)y = x(yz · y),

while Moufang loops are loops satisfying (1) and its dual x(y·xz) = (x·yx)z
simultaneously.
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These forms of weak associativity are important in rings, as well.
However, on the one hand, in the presence of R-linearity, the identities can
take different forms which explains different terminology. For example,
the Moufang identity in rings is equivalent with the fact that the ring
associator [x, y, z] = xy ·z−x ·yz alternates, such rings are therefore called
alternative rings. Rings with the (right) Bol property are called strongly
right alternative rings. On the other hand, weak associativity identities
of a loop in general do not inherit to the loop ring. Recent investigations
(for example [2], [4], [3]) are going on to characterize loops where this is
yet the case. Another way to deal with this problem is to look for ideals
of the loop ring such that the factor algebra belongs to a class with given
weak associativity properties (see [6, Section 5]).

In this paper, we consider loop rings FL over a field F of characteristic
p > 0 and assume that the order of L is a power of p. In Theorem 2.4,
we show that the nilpotence of the fundamental ideal ∆(L) = ker ε of the
loop ring FL is equivalent with the nilpotence of the multiplication group
of L. We apply this result to give an affirmative answer to the following
question of Goodaire [2]: Let L be an indecomposable Bol loop L with
a unique non-identity associator and commutator and let F be a field of
characteristic 2. Is it true that the fundamental ideal ∆(L) is nilpotent?

2. Nilpotent loop rings

Let A be an arbitrary algebra over the field F . We denote by Lx and
Rx the left and right multiplication maps of A; these are clearly F -linear
maps with

Lx+y = Lx + Ly and Rx+y = Rx + Ry.

By [7], we define the associative multiplication algebra M(A) as the as-
sociative subalgebra of End(A), generated by {Lx, Rx | x ∈ A}. For any
subset S of A, we write M(A,S) for the subalgebra of M(A), generated
by {Lx, Rx | x ∈ S}.

We define the powers An of the algebra A inductively: We put A1 = A

and An =
∑n−1

i=1 AiAn−i. The algebra A is nilpotent if Ak = {0} for some
positive integer k. By Schafer’s theorem [7, Theorem II.2.4], the ideal I

of A is nilpotent if and only if the associative algebra M(A, I) is nilpotent.
If A is an algebra (ring) with unity 1, then we call an element a ∈ A

unit of A if elements u, v ∈ A exist with au = va = 1. Observe that in
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contrast to [2], we do not require u = v. We denote by A∗ the set of units
of A.

If the algebra (ring) A has no unity, then one constructs the algebra
A1 = F ⊕A with unity by a well-known method (adjunction of unity, see
[7, p. 11]). For a nilpotent algebra A, we shall write 1 + A for the subset
{1 + x | x ∈ A} of A1.

Lemma 2.1. Let A be a nilpotent algebra over F . Then we have
A∗1 = {c + x | c ∈ F ∗, x ∈ A}. Moreover, A∗1 and 1 + A are loops and the
isomorphy A∗1 ∼= F ∗ × (1 + A) holds.

Proof. We first show that 1 + A consists of units. For any element
a ∈ A, (1 + a)u = 1 is equivalent with L−1

1+a(1) = u, thus, it is sufficient to
show that the linear map L1+a of A1 is invertible. Indeed, by the nilpotence
of A, the restriction of La to A is nilpotent and by La(A1) ⊆ A, La is
nilpotent. This means that L1+a = 1 + La is invertible and u = L−1

1+a(1)
is a right inverse of 1 + a. Similarly, v = R−1

1+a(1) exists and it is a left
inverse of 1 + a.

For any c ∈ F , one has (1+a)(c+A), (c+A)(1+a) ⊆ c+A. This means
L1+a(1+A) = L−1

1+a(1+A) = 1+A and R1+a(1+A) = R−1
1+a(1+A) = 1+A,

which implies that 1 + A is a loop.
Finally, the map

F ∗ × (1 + A) → {c + x | c ∈ F ∗, x ∈ A}, (c, 1 + x) 7→ c + cx

is bijective and preserves product, hence {c + x | c ∈ F ∗, x ∈ A} ⊆ A∗1.
The converse inclusion being trivial, the proof is done. ¤

Let L be a finite loop of order n and let us denote by λx and ρx the left
and right translation maps in L, respectively. Let M be the multiplication
group

M = 〈λx, ρx | x ∈ L〉
of L, and let us denote by M1 the stabilizer subgroup of 1 ∈ L. Clearly
M is a finite transitive permutation group on L and n = |M : M1| holds.
Moreover, M1 cannot include a proper normal subgroup of M .

For a given field F , we denote by Mn(F ) the space of n× n matrices
over F . We put FL for the loop ring of L over F . We define the repre-
sentation π : M → GL(n, F ) by permutation matrices, π can be extended
to a homomorphism FM → Mn(F ) of associative algebras in an obvious
way. We denote the extension by π, as well. By definition, for the loop
ring FL, one has Lx = π(λx) and Rx = π(ρx) for all x ∈ L, which implies
M(FL) = π(FM).
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Lemma 2.2. Let L be a finite loop of prime power order n = pm and

let be F a field of characteristic p > 0. Then the following statements are

equivalent.

(i) The multiplication group M of L is nilpotent.

(ii) The order of the group M is a power of p.

(iii) The fundamental ideal ∆(M) is nilpotent.

Proof. The equivalence of (ii) and (iii) is known from [1] and (ii)
=⇒ (i) is trivial. If we assume (i), then we have the decomposition
M = H × Sp, where Sp denotes the p-Sylow subgroup of M and H is
the product of the p′-Sylow subgroups. Since |L| is a p-power, we have
H ≤ M1 and since M acts faithfully, we have H = {1}. This shows (i)
=⇒ (ii). ¤

Lemma 2.3. Let L and F be as in Lemma 2.2, let M denote the

multiplication group of L and assume that the fundamental ideal ∆(L)
is nilpotent. Then we have π(g) ∈ 1 + M(FL, ∆(L)) for all g ∈ M . In

particular, M is isomorphic to a subgroup of 1 + M(FL, ∆(L)).

Proof. Since ∆(L) is a nilpotent ideal of the loop ring FL, by
Schafer’s theorem, M(FL, ∆(L)) is a nilpotent associative algebra. This
means that 1 + M(FL, ∆(L)) is a subgroup of GL(n,L). Since π is
a faithful representation of M , all we have to show is that the images
of the generators of M are contained in 1 + M(FL, ∆(L)). For any
x ∈ L, we have π(λx) = Lx = 1 + Lx−1 ∈ 1 + M(FL, ∆(L)). Similarly,
π(ρx) ∈ 1 + M(FL, ∆(L)), which finishes the proof. ¤

Theorem 2.4. Let L be a finite loop of prime power order pn and

let F a field of characteristic p > 0. Then, the fundamental ideal ∆(L) is

nilpotent if and only if the multiplication group M of L is nilpotent.

Proof. By Schafer’s theorem, ∆(L) is nilpotent if and only if the
associative algebra M(FL, ∆(L)) is nilpotent. By chr(F ) = p, this implies
that the group 1+M(FL, ∆(L)) has an exponent of the form pk. Assuming
now the nilpotency of ∆(L), we obtain by Lemma 2.3 that M is nilpotent
with exponent a power of p.

Conversely, if we assume the nilpotency of M , we have by Lemma 2.2,
that ∆(M) is a nilpotent algebra. Then, the proof is done if we show

M(FL, ∆(L)) ≤ π(∆(M)).
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Since {1−x | x ∈ L\{1}} is a basis of ∆(L), the associative multiplication
algebra M(FL, ∆(L)) is generated by the set

{L1−x, R1−x | x ∈ L}.

As we have already seen, L1−x = 1−π(λx) = π(1−λx), R1−x = 1−π(ρx) =
π(1 − ρx), all the generators of M(FL, ∆(L)) are contained in π(∆(M)).
Thus, M(FL, ∆(L)) and ∆(L) are nilpotent. ¤

3. Goodaire’s problem

In the last section, we apply Theorem 2.4 for the class of finite inde-
composable Bol loop with a unique associator and commutator element.
The following fact gives the reason for the importance of this class: By [4],
if L is a loop of this class and F is a field of characteristic 2, then FL is a
right alternative algebra.

We recall that the property P is said to hold universally for a loop L,
if every loop isotope of L possesses P . In this sense, the following concept
are universal: the isomorphism classes of M , L′, Z(L), right Bol property.

We say that the Bol loop L is a 2-loop, if every element has 2-power
order. In general, it is not known if this property is universal or not. By
[5, Theorem 3.2], L is a finite universal Bol 2-loop if and only if |L| is a
power of 2.

We are now in a position to answer Goodaire’s question.

Theorem 3.1. Let L be a finite indecomposable Bol loop with a

unique associator and commutator element and let F be a field of charac-

teristic 2. Then, the fundamental ideal ∆(L) is nilpotent.

Proof. The theorem follows immediately from Theorem 2.4 and the
next lemma.

Lemma 3.2. Let L be a finite indecomposable Bol loop with a unique

non-identity associator and commutator element. Then the multiplication

group M of L is a 2-group. In particular, the order of L is a power of 2.

Proof. Let us denote by s the unique non-identity associator and
commutator element of L. The fact that such element exists is equivalent
to {1, s} = L′ ≤ Z(L) (cf. [4, Lemma 3.2]). Clearly, this last property
and the indecomposability are both universal, that is, any isotope of L
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possesses them. By [2, Theorem 4.1], these properties imply that L is a
2-loop, hence a universal 2-loop. Then, by [5, Theorem 3.2], the order of
L is a power of 2.

Let us now take an element g ∈ M1. Obviously, g(x) ≡ x mod L′,
hence g(x) = x or g(x) = sx for any element x ∈ L. It is also true that
g(sx) = sg(x), which implies g2(x) = x and g2 = 1. That means that M1

is an elementary Abelian 2-group and |M | = |L||M1| is a power of 2. ¤
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