Publ. Math. Debrecen 42 / 3–4 (1993), 315–321

Formal languages and primitive words¹

By PÁL DÖMÖSI² (Debrecen), SÁNDOR HORVÁTH² (Budapest) and MASAMI ITO (Kyoto)

Dedicated to Professor Lajos Tamássy on his 70th birthday

Abstract. The mathematical theory of formal languages has a very important role in theoretical computer science. In this paper we study various formal language problems related to the class of all primitive words over a fixed alphabet. Some results and problems are presented.

1. Introduction

The interest in combinatorial properties of words over a finite alphabet dates back to at least as far as THUE's 1906 and 1912 papers (see [20] and [21]). There exist a number of sistematical studies on combinatorics of words (see, for example, [6], [13], [19]). The concept of primitive words is defined and the unique existence of primitive roots is proved in [14]. Disjunctive languages are introduced in [17]. Disjunctive languages and primitive words are intensivity studied in [18] and [19]. Primitive words are considered with respect to the CHOMSKY-hierarchy in [10] and [11]. Classical works on formal languages and automata with respect to the CHOMSKY-hierarchy are, for example, [3], [4], [6], [7], [15] and [16]. In this paper we overview some results and problems on formal languages and primitive words.

 $^{^1{\}rm This}$ paper was presented at the Conference "Sesiunea Anuală de Comunicări Sțiințifice Universitatea Oradea", Oradea, Roumania, 6-8 June, 1991.

 $^{^2{\}rm The}$ work of the first and second authors was supported in part by the Hungarian National Science Foundation "OTKA", Grants Nos. 1654/91, 1655/91 and 4295/92, and Nos. 334/88 and 4295/92, respectively.

2. Preliminaries

In this part we provide some notions and notations on formal languages. (For notions and notations not defined here see, for example, [6], [7], [15], [16], [19]. The elements of an alphabet X are called letters (X is supposed to be finite and nonempty). A word over an alphabet X is a finite string consisting of letters of X. The string consisting of zero letters is called the *empty word*, written λ . The *length* of a word w, in symbols |w|, means the number of letters in w when each letter is counted as many times as it occurs. By definition, $|\lambda| = 0$. At the same time, for any set H, |H| denotes the cardinality of H. If u and v are words over an alphabet X. then their *catenation uv* is also a word over X. Catenation is an associative operation and the empty word λ is the identity with respect to catenation: $w\lambda = \lambda w = w$ for any word w. For a word w and natural number n, the notation w^n means the word obtained by catenating n copies of the word w. w^0 equals the empty word λ . w^m is called the *m*-th *power* of w for any nonnegative integer m. A word p is *primitive* iff it is nonempty and not of the form w^n for any word w and $n \ge 2$. Throughout this paper, the set of all primitive words over X is denoted by Q. Let X^* be the set of all words over X, moreover, let $X^+ = X^* - \{\lambda\}$. X^* and X^+ are a free monoid and a free semigroup, respectively, generated by X under catenation. Every subset L of X^* is called a (formal) language over X. L is said to be dense iff $X^*uX^* \cap L \neq \emptyset$ for any $u \in X^*$. (For $u \in X^*$ we use the shorthand u instead of $\{u\}$.) Obviously, a dense language is an infinite language. It can easily be seen that Q is a dense language, whenever |X| > 2. Throughout this paper, \subseteq and \subseteq denote (set-theoretic) inclusion and proper inclusion, respectively, and N stands for the set $\{0, 1, 2, ...\}$.

Let $L \subseteq X^*$. The congruence relation P_L on X^* , called the *principial* congruence determined by L, is defined as $u \equiv v(P_L)$ if and only if $xuy \in$ $L \Leftrightarrow xvy \in L$ for any $x, y \in X^*$. A language $L \subseteq X^*$ is said to be regular iff P_L has finite index, i.e., the number of the equivalence classes of P_L is finite. In opposition to regular languages, a language $L \subseteq X^*$ is disjunctive iff every congruence class of P_L consists of a single element. It is clear that every disjunctive language is a dense language.

3. Chomsky classification of grammars

A generative (CHOMSKY-type) grammar [4] is an ordered quadruple $G = (V_N, V_T, S, P)$ where V_N and V_T are disjoint alphabets, $S \in V_N$, and P is a finite set of ordered pairs (u, v) such that v is a word over the alphabet $V = V_N \cup V_T$ and u is a word over V containing at least one letter of V_N . The elements of V_N are called *nonterminals* and those of V_T terminals. S is called the *start symbol*. Elements (u, v) of P are called productions and are written $u \to v$. A word u over V derives directly a word v, in symbols, $u \Rightarrow v$, iff there are words u_1, u_2, u_3, v_1 such that

 $u = u_2 u_1 u_3$, $v = u_2 v_1 u_3$, and $u_1 \rightarrow v_1$ belongs to *P*. *w* derives *z*, or in symbols, $w \Rightarrow *z$ (*w* really derives *z*, or in symbols, $w \Rightarrow +z$) iff there is a finite sequence of words

$$w_0, w_1, \dots, w_k, k \ge 0 \ (k > 0)$$

over X where $w_0 = w$, $w_k = z$ and $w_i \Rightarrow w_{i+1}$ for $0 \le i \le k-1$. In other words, $\Rightarrow *(\Rightarrow +)$ is the reflexive transitive closure (the transitive closure) of the binary relation \Rightarrow . The (formal) *language* L(G) generated by G is defined by

$$L(G) = \{ w \mid w \in V_T^*, S \Rightarrow +w \}.$$

G is regular (or G is of the type 3) iff each production is of one of the two forms $U \to vV$ or $U \to v$ where $U, V \in V_N$ and $v \in V_T^*$ (and then $P_{L(G)}$ has finite index).

G is context-free (or G is of type 2) iff each production is of the form $X \to u$ where $X \in V_N$ and $u \in (V_N \cup V_T)^*$. G is context-sensitive (or G is of type 1) iff each production is of the form $q_1Xq_2 \to q_1uq_2$, where $q_1, q_2 \in (V_N \cup V_T)^*$, $X \in V_N$, and $u \in (V_N \cup V_T)^+$, with the possible exception of the production $S \to \lambda$ whose occurrence in P implies, however, that S does not occur on the right side of any production in P. Finally, G is phrase-structure (or G is of type 0) if P has no restriction.

If there exists a generative grammar G of type i = (0, 1, 2, 3) such that L = L(G) holds for a language $L \subseteq X^*$ then we also say that L is of type *i*. \mathcal{L}_i (i = 0, 1, 2, 3) denotes the class of type *i* languages. It is well-known that they form the *Chomsky-hierarchy* with $\emptyset \neq \mathcal{L}_3 \subset \mathcal{L}_2 \subset \mathcal{L}_1 \subset \mathcal{L}_0$. It is well-known too that to each language class \mathcal{L}_i there corresponds a class \mathcal{A}_i (i = 0, 1, 2, 3) of abstract nondeterministic discrete automata in the sense that for any $L \subseteq X^*, L \in \mathcal{L}_i$ holds iff there is an $A \in \mathcal{A}_i$ "accepting", from among all words of X^* , exactly those belonging to L. In the latter case we also say that A accepts L. Nondeterminism means here that A always freely chooses its "next move" from a finite number of actions possible at that stage of its operation. By definition, A accepts an (input) word w iff there is a finite sequence of consecutive possible moves of A during the "processing" of w, leading to an *accepting* or *final* state of A. Deterministic automata are special cases of nondeterministic automata, in which during the processing of any (input) word, at any stage at most one next move is possible. A language is called a *deterministic* language iff it is accepted by a deterministic automaton. For any type i, let det \mathcal{L}_i denote the class of deterministic languages of type *i*. It is known that det $\mathcal{L}_3 = \mathcal{L}_3$, det $\mathcal{L}_2 \subset \mathcal{L}_2$, and det $\mathcal{L}_0 = \mathcal{L}_0$, but it is a famous open question, the so-called "*lba problem*", whether det $\mathcal{L}_1 = \mathcal{L}_1$ or det $\mathcal{L}_1 \subset \mathcal{L}_1$. Here "lba" is a shorthand for "*linear bounded automaton*", as the elements of \mathcal{A}_1 are termed. (For a detailed discussion of these notions and results, see, e.g., [6], [7] or [12].)

4. Some results and problems related to primitive words

In this section we suppose $|X| \ge 2$, and we consider only words, languages and language classes over X. (The results and problems discussed in this part are trivial or even untrue if X is a singleton.) We first study where Q is in the Chomsky-hierarchy.

A typical example of a disjunctive language is Q. Thus Q is not regular. To prove that Q is not deterministic context-free we use well-known results.

The following Theorem I, a classical result on the class of context-free languages, is widely known as "Bar-Hillel's lemma", or more precisely, "BAR-HILLEL, PERLES and SHAMIR's lemma" [1]. Here we formulate this lemma in its "full", "modern" form (i.e. m = 0 may stand too in $uv^m wx^m y$). Moreover, we note that the second author of the present paper showed in [8] that there exist properly context-sensitive, recursive, recursively enumerable, and non-recursively-enumerable languages that do satisfy this lemma. (For further combinatorial properties of context-free languages see, e.g., [2] and [9].)

Theorem I (BAR-HILLEL's lemma, [1]). For each context-free language L there exists a positive integer n with the following property: each word z in L, |z| > n, is of the form uvwxy, where $|vwx| \le n$, |vx| > 0, and $uv^m wx^m y$ is in L for all $m \ge 0$.

We also use the following

Theorem II (for a proof, see [5] or [7]). *L* is deterministic context-free iff $X^* - L$ is deterministic context-free, i.e., $L \in \det \mathcal{L}_2$ iff $X^* - L \in \det \mathcal{L}_2$.

Now we are ready to show the following

Proposition 1. Q is not deterministic context-free, i.e., $Q \notin \det \mathcal{L}_2$.

PROOF. By Theorem II it is enough to prove that $X^* - Q$ does not satisfy the conditions of Bar-Hillel's lemma (Theorem I). Suppose the contrary and let $a, b \in X$, $a \neq b$, $n \geq 1$ (with *n* having the property described in Theorem I) such that $(a^{n+1}b^{n+1})^2$ is of the form uvwxy with $|vwx| \leq n, |vx| > 0, uv^m wx^m y \in X^* - Q, m \geq 0$. Then for m = 0 we have

 $uwy \in \{a^i b^j a^s b^t \mid i, j, s, t \ge 1, \ (i, j) \ne (s, t)\} \subseteq Q,$

contradicting $uwy \in X^* - Q$. \Box

It can easily be seen that Q is accepted by a deterministic linear bounded automaton. Thus we have the following

Proposition 2. $Q \in \det \mathcal{L}_1 - \det \mathcal{L}_2$.

Conjecture. Q is not context-free, i.e. $Q \notin \mathcal{L}_2$.

Problem (ITO and KATSURA [11]). Does L disjunctive imply $L \cap Q$ disjunctive?

We give a negative answer for the case $L \in \det \mathcal{L}_1 - \mathcal{L}_2$ in

Proposition 3. There is a disjunctive language $L \in \det \mathcal{L}_1 - \mathcal{L}_2$ such that $L \cap Q$ is dense but not disjunctive (and $L \cap Q \in \mathcal{L}_2$).

PROOF sketch. Let $L = L' \cup Q^{(2)}$ where

$$L' = \{wba^{|w|} \mid w \in X^*\}, \ Q^{(2)} = \{q^2 \mid q \in Q\}.$$

Similarly to the case of Q, it is easy to see that L too can be accepted by a deterministic linear bounded automaton, so $L \in \det \mathcal{L}_1$. On the other hand, $L \notin \mathcal{L}_2$ can be shown exactly as $X^* - Q \notin \mathcal{L}_2$ was shown in the proof of Proposition 1 above. Further, it can easily be seen that $L' \subseteq Q$ (and $L' \in \mathcal{L}_2$). So $L \cap Q = L' \in \mathcal{L}_2$ (since $Q \cap Q^{(2)} = \emptyset$).

For any $w \in X^*$ we have $wba^{|w|} \in L'$ $(a, b \in X, a \neq b)$. Thus L' is dense. On the other hand, $ab \equiv bb(P_{L'})$ $(a, b \in X, a \neq b)$. Therefore, L' is not disjunctive. Finally, by [19] we have that for the disjunctivity of L it is enough to check the case $|w_1| = |w_2|, w_1 \neq w_2 \quad (w_1, w_2 \in X^*)$. Indeed, we obtain $w_1ba^{|w_1|}w_1ba^{|w_1|} \in Q^{(2)} \subseteq L$ and $w_2ba^{|w_1|}w_1ba^{|w_1|} \notin L$. \Box

We note that the above problem is still open for $L \in \mathcal{L}_2$. We conclude this paper with proving three further propositions.

Proposition 4. There is a disjunctive language $L \in \mathcal{L}_2$ such that $L - Q^{(1)} \neq \emptyset$, $L \cap Q \neq \emptyset$ (where $Q^{(1)} = Q \cup \lambda$ as usual).

PROOF. Let $L = \{xyz \mid y \in X, x, z \in X^+, |x| = |z|, x \neq z\}$. It is easy to see that $L \in \mathcal{L}_2$. Furthermore, $(abb)^3 = abbabbabb \in L - Q^{(1)}$ $(x = abba, y = b, z = babb, |x| = |z|, x \neq z)$. On the other hand we have for any pair $w_1, w_2 \in X^*$, with $w_1 \neq w_2$, $|w_1| = |w_2|$, that

$$w_1 a^{2|w_1|+1} b w_1 a^{2|w_1|+1} \notin L,$$

and

$$w_2 a^{2|w_1|+1} b w_1 a^{2|w_1|+1} \in L \cap Q,$$

so by [19] L is disjunctive. It is clear that even both $L - Q^{(1)}$ and $L \cap Q$ are infinite.

Proposition 5. There are infinitely many dense languages in $\mathcal{L}_1 - \mathcal{L}_2$ and $\mathcal{L}_0 - \mathcal{L}_1$, and continuum-many outside \mathcal{L}_0 .

PROOF. Concerning dense languages outside \mathcal{L}_0 , the statement follows from:

1. there are continuum-many disjuctive languages (see [19]),

- 2. there are only denumerably many type 0 languages, and
- 3. disjunctivity implies density (this simply follows from the definitions).

Concerning the existence of infinitely many dense languages in $\mathcal{L}_1 - \mathcal{L}_2$ and $\mathcal{L}_0 - \mathcal{L}_1$, let $f: N \to N$ be a function and $L_f = \{a^{f(|w|)}bwba^{f(|w|)}|w \in X^*\}$. By suitably choosing f, L_f will be in $\mathcal{L}_1 - \mathcal{L}_2$ or $\mathcal{L}_0 - \mathcal{L}_1$, respectively.

Remark. From the above construction we can see that dense languages can in fact be arbitrarily "thin" in the "statistical sense".

Proposition 6. There are infinitely many nondisjunctive languages in $\mathcal{L}_1 - \mathcal{L}_2$ and $\mathcal{L}_0 - \mathcal{L}_1$, and continuum-many outside \mathcal{L}_0 .

PROOF. Let again $f: N \to N$ be a function and

$$L_f = \{ a^{f(n)} b^{f(n)} a^{f(n)} \mid n \in N \}.$$

Clearly $(w_1, w_2 \in L_f - \{\lambda\}, w_1 \neq w_2) \Rightarrow w_1 \equiv w_2(P_{L_f})$ and again by suitably choosing f, the statement follows. \Box

References

- Y. BAR-HILLEL, M. PERLES and S. SHAMIR, On formal properties of simple phrase structure grammars, Zeitschr. Phonetik, Sprachwiss. Kommunikationsforsch., 14 (1961), 143–172.
- [2] L. BOASSON and S. HORVÁTH, On languages satisfying Ogden's lemma, vol. 12, R. A. I. R. O. Informatique théorique, 1978, pp. 201–202.
- [3] N. CHOMSKY, Context-free grammars and pusdown storage, M. I. T. Res. Lab. Electron. Quart. Prog. Rept. 65 (1962).
- [4] N. CHOMSKY, Formal properties of grammars, Handbook of Math. Psychology 2 (1963), 328–418.
- [5] S. GINSBURG and S. A. GREIBACH, Deterministic context-free languages, Inform. and Control 9 (1966), 620–648.
- [6] N. A. HARRISON, Introduction to Formal Language Theory, Addison-Wesley Publishing Company, Reading, Mass, 1978.
- [7] J. E. HOPCROFT and J. D. ULLMAN, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, Reading, Mass., 1979.
- [8] S. HORVÁTH, The family of languages satisfying Bar-Hillel's Lemma, R. A. I. R. O. Informatique théorique 12 (1978), 193–199.
- [9] S. HORVÁTH, A comparison of iteration conditions on formal languages, *Colloquia Math. Soc. János Bolyai* 42 Proc. Conf. Algebra, Combinatorics and Logic in Computer Science, Győr (Hungary), (1983), 453–463.
- [10] M. ITO, M. KATSURA, H. J. SHYR and S. S. YU, Automata accepting primitive words, *Semigroup Forum* 37 (1988), 45–52.
- [11] M. ITO and M. KATSURA, Context-free languages consisting of non-primitive words, Int. Journ. of Comp. Math. 40 (1991), 157–167.
- [12] S. Y. KURODA, Classes of languages and linear-bounded automata, Inform. and Control 7 (1964), 207–223.
- [13] M. LOTHAIRE, Combinatorics on Words, Addison-Wesley, Reading, Mass. 1983, and Cambridge Univ. Press, 1984.
- [14] R. C. LYNDON and M. P. SCHÜTZENBERGER, On the equation $a^M = b^N c^P$ in a free group, vol. 9, *Michigan Math. Journ*, 1962, pp. 289–298.
- [15] A. SALOMAA, Theory of Automata, Pergamon Press, New York, 1969.
- [16] A. SALOMAA, Formal Languages, Academic Press, New York, London, 1973.

- [17] H. J. SHYR, Disjunctive languages on a free monoid, Inform. and Control 34 (1977), 123–129.
- [18] H. J. SHYR, Thierrin, G., Disjunctive languages and codes, LNCS 56 (Proc. FCT' 77, ed.: M. Karpinski), Springer-Verlag, 1977, pp. 171–176.
- [19] H. J. SHYR, Free Monoids and Languages, Lect. Notes, Dept. Math., Soochow Univ., *Taipei, Taiwan*, 1979.
- [20] A. THUE, Über unendliche Zeichenreihen, Norske Videnskabers Selskabs Skrifter Mat.-Nat. Kl. (Kristiania), 7 (1906), 1–22.
- [21] A. THUE, Über die gegenseitige Lage gleicher Theile gewisser Zeichenreihen, Norske Videnskabers Selskabs Skrifter Mat.-Nat. Kl. (Kristiania) 1 (1912), 1–67.

PÁL DÖMÖSI L. KOSSUTH UNIVERSITY H–DEBRECEN

SÁNDOR HORVÁTH L. EÖTVÖS UNIVERSITY H-BUDAPEST

MASAMI ITO SANGYO UNIVERSITY KYOTO, JAPAN

(Received December 8, 1992)