Formal languages and primitive words ${ }^{1}$

By PÁL DÖMÖSI ${ }^{2}$ (Debrecen), SÁNDOR HORVÁTH ${ }^{2}$ (Budapest)
and MASAMI ITO (Kyoto)

Dedicated to Professor Lajos Tamássy on his 70th birthday

Abstract

The mathematical theory of formal languages has a very important role in theoretical computer science. In this paper we study various formal language problems related to the class of all primitive words over a fixed alphabet. Some results and problems are presented.

1. Introduction

The interest in combinatorial properties of words over a finite alphabet dates back to at least as far as ThuE's 1906 and 1912 papers (see [20] and [21]). There exist a number of sistematical studies on combinatorics of words (see, for example, [6], [13], [19]). The concept of primitive words is defined and the unique existence of primitive roots is proved in [14]. Disjunctive languages are introduced in [17]. Disjunctive languages and primitive words are intensivity studied in [18] and [19]. Primitive words are considered with respect to the Chomsky-hierarchy in [10] and [11]. Classical works on formal languages and automata with respect to the Chomsky-hierarchy are, for example, [3], [4], [6], [7], [15] and [16]. In this paper we overview some results and problems on formal languages and primitive words.

[^0]
2. Preliminaries

In this part we provide some notions and notations on formal languages. (For notions and notations not defined here see, for example, [6], [7], [15], [16], [19].) The elements of an alphabet X are called letters (X is supposed to be finite and nonempty). A word over an alphabet X is a finite string consisting of letters of X. The string consisting of zero letters is called the empty word, written λ. The length of a word w, in symbols $|w|$, means the number of letters in w when each letter is counted as many times as it occurs. By definition, $|\lambda|=0$. At the same time, for any set H, $|H|$ denotes the cardinality of H. If u and v are words over an alphabet X, then their catenation $u v$ is also a word over X. Catenation is an associative operation and the empty word λ is the identity with respect to catenation: $w \lambda=\lambda w=w$ for any word w. For a word w and natural number n, the notation w^{n} means the word obtained by catenating n copies of the word w. w^{0} equals the empty word $\lambda . w^{m}$ is called the m-th power of w for any nonnegative integer m. A word p is primitive iff it is nonempty and not of the form w^{n} for any word w and $n \geq 2$. Throughout this paper, the set of all primitive words over X is denoted by Q. Let X^{*} be the set of all words over X, moreover, let $X^{+}=X^{*}-\{\lambda\} . X^{*}$ and X^{+}are a free monoid and a free semigroup, respectively, generated by X under catenation. Every subset L of X^{*} is called a (formal) language over $X . L$ is said to be dense iff $X^{*} u X^{*} \cap L \neq \emptyset$ for any $u \in X^{*}$. (For $u \in X^{*}$ we use the shorthand u instead of $\{u\}$.) Obviously, a dense language is an infinite language. It can easily be seen that Q is a dense language, whenever $|X| \geq 2$. Throughout this paper, \subseteq and \subset denote (set-theoretic) inclusion and proper inclusion, respectively, and N stands for the set $\{0,1,2, \ldots\}$.

Let $L \subseteq X^{*}$. The congruence relation P_{L} on X^{*}, called the principial congruence determined by L, is defined as $u \equiv v\left(P_{L}\right)$ if and only if xuy \in $L \Leftrightarrow x v y \in L$ for any $x, y \in X^{*}$. A language $L \subseteq X^{*}$ is said to be regular iff P_{L} has finite index, i.e., the number of the equivalence classes of P_{L} is finite. In opposition to regular languages, a language $L \subseteq X^{*}$ is disjunctive iff every congruence class of P_{L} consists of a single element. It is clear that every disjunctive language is a dense language.

3. Chomsky classification of grammars

A generative (Chomsky-type) grammar [4] is an ordered quadruple $G=\left(V_{N}, V_{T}, S, P\right)$ where V_{N} and V_{T} are disjoint alphabets, $S \in V_{N}$, and P is a finite set of ordered pairs (u, v) such that v is a word over the alphabet $V=V_{N} \cup V_{T}$ and u is a word over V containing at least one letter of V_{N}. The elements of V_{N} are called nonterminals and those of V_{T} terminals. S is called the start symbol. Elements (u, v) of P are called productions and are written $u \rightarrow v$. A word u over V derives directly a word v, in symbols, $u \Rightarrow v$, iff there are words $u_{1}, u_{2}, u_{3}, v_{1}$ such that
$u=u_{2} u_{1} u_{3}, v=u_{2} v_{1} u_{3}$, and $u_{1} \rightarrow v_{1}$ belongs to P. w derives z, or in symbols, $w \Rightarrow * z(w$ really derives z, or in symbols, $w \Rightarrow+z)$ iff there is a finite sequence of words

$$
w_{0}, w_{1}, \ldots, w_{k}, \quad k \geq 0 \quad(k>0)
$$

over X where $w_{0}=w, w_{k}=z$ and $w_{i} \Rightarrow w_{i+1}$ for $0 \leq i \leq k-1$. In other words, $\Rightarrow *(\Rightarrow+)$ is the reflexive transitive closure (the transitive closure) of the binary relation \Rightarrow. The (formal) language $L(G)$ generated by G is defined by

$$
L(G)=\left\{w \mid w \in V_{T}^{*}, S \Rightarrow+w\right\} .
$$

G is regular (or G is of the type 3) iff each production is of one of the two forms $U \rightarrow v V$ or $U \rightarrow v$ where $U, V \in V_{N}$ and $v \in V_{T}^{*}$ (and then $P_{L(G)}$ has finite index).
G is context-free (or G is of type 2) iff each production is of the form $X \rightarrow u$ where $X \in V_{N}$ and $u \in\left(V_{N} \cup V_{T}\right)^{*} . G$ is context-sensitive (or G is of type 1) iff each production is of the form $q_{1} X q_{2} \rightarrow q_{1} u q_{2}$, where $q_{1}, q_{2} \in\left(V_{N} \cup V_{T}\right)^{*}, X \in V_{N}$, and $u \in\left(V_{N} \cup V_{T}\right)^{+}$, with the possible exception of the production $S \rightarrow \lambda$ whose occurrence in P implies, however, that S does not occur on the right side of any production in P. Finally, G is phrase-structure (or G is of type 0) if P has no restriction.

If there exists a generative grammar G of type $i(=0,1,2,3)$ such that $L=L(G)$ holds for a language $L \subseteq X^{*}$ then we also say that L is of type i. $\mathcal{L}_{i}(i=0,1,2,3)$ denotes the class of type i languages. It is well-known that they form the Chomsky-hierarchy with $\emptyset \neq \mathcal{L}_{3} \subset \mathcal{L}_{2} \subset \mathcal{L}_{1} \subset \mathcal{L}_{0}$. It is well-known too that to each language class \mathcal{L}_{i} there corresponds a class $\mathcal{A}_{i}(i=0,1,2,3)$ of abstract nondeterministic discrete automata in the sense that for any $L \subseteq X^{*}, L \in \mathcal{L}_{i}$ holds iff there is an $A \in \mathcal{A}_{i}$ "accepting", from among all words of X^{*}, exactly those belonging to L. In the latter case we also say that A accepts L. Nondeterminism means here that A always freely chooses its "next move" from a finite number of actions possible at that stage of its operation. By definition, A accepts an (input) word w iff there is a finite sequence of consecutive possible moves of A during the "processing" of w, leading to an accepting or final state of A. Deterministic automata are special cases of nondeterministic automata, in which during the processing of any (input) word, at any stage at most one next move is possible. A language is called a deterministic language iff it is accepted by a deterministic automaton. For any type i, let $\operatorname{det} \mathcal{L}_{i}$ denote the class of deterministic languages of type i. It is known that $\operatorname{det} \mathcal{L}_{3}=\mathcal{L}_{3}, \operatorname{det} \mathcal{L}_{2} \subset \mathcal{L}_{2}$, and $\operatorname{det} \mathcal{L}_{0}=\mathcal{L}_{0}$, but it is a famous open question, the so-called "lba problem", whether $\operatorname{det} \mathcal{L}_{1}=\mathcal{L}_{1}$ or $\operatorname{det} \mathcal{L}_{1} \subset \mathcal{L}_{1}$. Here "lba" is a shorthand for "linear bounded automaton", as the elements of \mathcal{A}_{1} are termed. (For a detailed discussion of these notions and results, see, e.g., [6], [7] or [12].)

4. Some results and problems related to primitive words

In this section we suppose $|X| \geq 2$, and we consider only words, languages and language classes over X. (The results and problems discussed in this part are trivial or even untrue if X is a singleton.) We first study where Q is in the Chomsky-hierarchy.

A typical example of a disjunctive language is Q. Thus Q is not regular. To prove that Q is not deterministic context-free we use wellknown results.

The following Theorem I, a classical result on the class of context-free languages, is widely known as "Bar-Hillel's lemma", or more precisely, "Bar-Hillel, Perles and Shamir's lemma" [1]. Here we formulate this lemma in its "full", "modern" form (i.e. $m=0$ may stand too in $u v^{m} w x^{m} y$). Moreover, we note that the second author of the present paper showed in [8] that there exist properly context-sensitive, recursive, recursively enumerable, and non-recursively-enumerable languages that do satisfy this lemma. (For further combinatorial properties of context-free languages see, e.g., [2] and [9].)

Theorem I (Bar-Hillel's lemma, [1]). For each context-free language L there exists a positive integer n with the following property: each word z in $L,|z|>n$, is of the form uvwxy, where $|v w x| \leq n,|v x|>0$, and $u v^{m} w x^{m} y$ is in L for all $m \geq 0$.

We also use the following
Theorem II (for a proof, see [5] or [7]). L is deterministic context-free iff $X^{*}-L$ is deterministic context-free, i.e., $L \in \operatorname{det} \mathcal{L}_{2} i f f X^{*}-L \in \operatorname{det} \mathcal{L}_{2}$.

Now we are ready to show the following
Proposition 1. Q is not deterministic context-free, i.e., $Q \notin \operatorname{det} \mathcal{L}_{2}$.
Proof. By Theorem II it is enough to prove that $X^{*}-Q$ does not satisfy the conditions of Bar-Hillel's lemma (Theorem I). Suppose the contrary and let $a, b \in X, a \neq b, n \geq 1$ (with n having the property described in Theorem I) such that $\left(a^{n+1} b^{n+1}\right)^{2}$ is of the form uvwxy with $|v w x| \leq n,|v x|>0, u v^{m} w x^{m} y \in X^{*}-Q, m \geq 0$. Then for $m=0$ we have

$$
u w y \in\left\{a^{i} b^{j} a^{s} b^{t} \mid i, j, s, t \geq 1,(i, j) \neq(s, t)\right\} \subseteq Q
$$

contradicting $u w y \in X^{*}-Q$.
It can easily be seen that Q is accepted by a deterministic linear bounded automaton. Thus we have the following

Proposition 2. $Q \in \operatorname{det} \mathcal{L}_{1}-\operatorname{det} \mathcal{L}_{2}$.
Conjecture. Q is not context-free, i.e. $Q \notin \mathcal{L}_{2}$.

Problem (Ito and Katsura [11]). Does L disjunctive imply $L \cap Q$ disjunctive?

We give a negative answer for the case $L \in \operatorname{det} \mathcal{L}_{1}-\mathcal{L}_{2}$ in
Proposition 3. There is a disjunctive language $L \in \operatorname{det} \mathcal{L}_{1}-\mathcal{L}_{2}$ such that $L \cap Q$ is dense but not disjunctive (and $L \cap Q \in \mathcal{L}_{2}$).

Proof sketch. Let $L=L^{\prime} \cup Q^{(2)}$ where

$$
L^{\prime}=\left\{w b a^{|w|} \mid w \in X^{*}\right\}, \quad Q^{(2)}=\left\{q^{2} \mid q \in Q\right\}
$$

Similarly to the case of Q, it is easy to see that L too can be accepted by a deterministic linear bounded automaton, so $L \in \operatorname{det} \mathcal{L}_{1}$. On the other hand, $L \notin \mathcal{L}_{2}$ can be shown exactly as $X^{*}-Q \notin \mathcal{L}_{2}$ was shown in the proof of Proposition 1 above. Further, it can easily be seen that $L^{\prime} \subseteq Q$ (and $L^{\prime} \in \mathcal{L}_{2}$). So $L \cap Q=L^{\prime} \in \mathcal{L}_{2}$ (since $Q \cap Q^{(2)}=\emptyset$).

For any $w \in X^{*}$ we have $w b a^{|w|} \in L^{\prime} \quad(a, b \in X, a \neq b)$. Thus L^{\prime} is dense. On the other hand, $a b \equiv b b\left(P_{L^{\prime}}\right)(a, b \in X, a \neq b)$. Therefore, L^{\prime} is not disjunctive. Finally, by [19] we have that for the disjunctivity of L it is enough to check the case $\left|w_{1}\right|=\left|w_{2}\right|, w_{1} \neq w_{2} \quad\left(w_{1}, w_{2} \in X^{*}\right)$. Indeed, we obtain $w_{1} b a^{\left|w_{1}\right|} w_{1} b a^{\left|w_{1}\right|} \in Q^{(2)} \subseteq L$ and $w_{2} b a^{\left|w_{1}\right|} w_{1} b a^{\left|w_{1}\right|} \notin L$.

We note that the above problem is still open for $L \in \mathcal{L}_{2}$. We conclude this paper with proving three further propositions.

Proposition 4. There is a disjunctive language $L \in \mathcal{L}_{2}$ such that $L-Q^{(1)} \neq \emptyset, L \cap Q \neq \emptyset$ (where $Q^{(1)}=Q \cup \lambda$ as usual).

Proof. Let $L=\left\{x y z\left|y \in X, x, z \in X^{+},|x|=|z|, x \neq z\right\}\right.$. It is easy to see that $L \in \mathcal{L}_{2}$. Furthermore, $(a b b)^{3}=a b b a b b a b b \in L-Q^{(1)}(x=$ $a b b a, y=b, z=b a b b,|x|=|z|, x \neq z)$. On the other hand we have for any pair $w_{1}, w_{2} \in X^{*}$, with $w_{1} \neq w_{2},\left|w_{1}\right|=\left|w_{2}\right|$, that

$$
w_{1} a^{2\left|w_{1}\right|+1} b w_{1} a^{2\left|w_{1}\right|+1} \notin L
$$

and

$$
w_{2} a^{2\left|w_{1}\right|+1} b w_{1} a^{2\left|w_{1}\right|+1} \in L \cap Q
$$

so by [19] L is disjunctive. It is clear that even both $L-Q^{(1)}$ and $L \cap Q$ are infinite.

Proposition 5. There are infinitely many dense languages in $\mathcal{L}_{1}-\mathcal{L}_{2}$ and $\mathcal{L}_{0}-\mathcal{L}_{1}$, and continuum-many outside \mathcal{L}_{0}.

Proof. Concerning dense languages outside \mathcal{L}_{0}, the statement follows from:

1. there are continuum-many disjuctive languages (see [19]),
2. there are only denumerably many type 0 languages, and
3. disjunctivity implies density (this simply follows from the definitions).

Concerning the existence of infinitely many dense languages in $\mathcal{L}_{1}-\mathcal{L}_{2}$ and $\mathcal{L}_{0}-\mathcal{L}_{1}$, let $f: N \rightarrow N$ be a function and $L_{f}=\left\{a^{f(|w|)} b w b a^{f(|w|)} \mid w \in\right.$ $\left.X^{*}\right\}$. By suitably choosing f, L_{f} will be in $\mathcal{L}_{1}-\mathcal{L}_{2}$ or $\mathcal{L}_{0}-\mathcal{L}_{1}$, respectively.

Remark. From the above construction we can see that dense languages can in fact be arbitrarily "thin" in the "statistical sense".

Proposition 6. There are infinitely many nondisjunctive languages in $\mathcal{L}_{1}-\mathcal{L}_{2}$ and $\mathcal{L}_{0}-\mathcal{L}_{1}$, and continuum-many outside \mathcal{L}_{0}.

Proof. Let again $f: N \rightarrow N$ be a function and

$$
L_{f}=\left\{a^{f(n)} b^{f(n)} a^{f(n)} \mid n \in N\right\} .
$$

Clearly $\left(w_{1}, w_{2} \in L_{f}-\{\lambda\}, w_{1} \neq w_{2}\right) \Rightarrow w_{1} \equiv w_{2}\left(P_{L_{f}}\right)$ and again by suitably choosing f, the statement follows.

References

[1] Y. Bar-Hillel, M. Perles and S. Shamir, On formal properties of simple phrase structure grammars, Zeitschr. Phonetik, Sprachwiss. Kommunikationsforsch., 14 (1961), 143-172.
[2] L. Boasson and S. Horváth, On languages satisfying Ogden's lemma, vol. 12, R. A. I. R. O. Informatique théorique, 1978, pp. 201-202.
[3] N. Chomsky, Context-free grammars and pusdown storage, M. I. T. Res. Lab. Electron. Quart. Prog. Rept. 65 (1962).
[4] N. Chomsky, Formal properties of grammars, Handbook of Math. Psychology 2 (1963), 328-418.
[5] S. Ginsburg and S. A. Greibach, Deterministic context-free languages, Inform. and Control 9 (1966), 620-648.
[6] N. A. Harrison, Introduction to Formal Language Theory, Addison-Wesley Publishing Company, Reading, Mass, 1978.
[7] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, Reading, Mass., 1979.
[8] S. Horváth, The family of languages satisfying Bar-Hillel's Lemma, R. A. I. R. O. Informatique théorique 12 (1978), 193-199.
[9] S. Horváth, A comparison of iteration conditions on formal languages, Colloquia Math. Soc. János Bolyai 42 Proc. Conf. Algebra, Combinatorics and Logic in Computer Science, Győr (Hungary), (1983), 453-463.
[10] M. Ito, M. Katsura, H. J. Shyr and S. S. Yu, Automata accepting primitive words, Semigroup Forum 37 (1988), 45-52.
[11] M. Ito and M. Katsura, Context-free languages consisting of non-primitive words, Int. Journ. of Comp. Math. 40 (1991), 157-167.
[12] S. Y. Kuroda, Classes of languages and linear-bounded automata, Inform. and Control 7 (1964), 207-223.
[13] M. Lothaire, Combinatorics on Words, Addison-Wesley, Reading, Mass. 1983, and Cambridge Univ. Press, 1984.
[14] R. C. Lyndon and M. P. Schützenberger, On the equation $a^{M}=b^{N} c^{P}$ in a free group, vol. 9, Michigan Math. Journ, 1962, pp. 289-298.
[15] A. Saloman, Theory of Automata, Pergamon Press, New York, 1969.
[16] A. Salomaa, Formal Languages, Academic Press, New York, London, 1973.
[17] H. J. SHYR, Disjunctive languages on a free monoid, Inform. and Control 34 (1977), 123-129.
[18] H. J. Shyr, Thierrin, G., Disjunctive languages and codes, LNCS 56 (Proc. FCT' 77, ed.: M. Karpinski), Springer-Verlag, 1977, pp. 171-176.
[19] H. J. Shyr, Free Monoids and Languages, Lect. Notes, Dept. Math., Soochow Univ., Taipei, Taiwan, 1979.
[20] A. Thue, Über unendliche Zeichenreihen, Norske Videnskabers Selskabs Skrifter Mat.-Nat. Kl. (Kristiania), 7 (1906), 1-22.
[21] A. Thue, Über die gegenseitige Lage gleicher Theile gewisser Zeichenreihen, Norske Videnskabers Selskabs Skrifter Mat.-Nat. Kl. (Kristiania) 1 (1912), 1-67.

```
PÁL DÖMÖSI
L. KOSSUTH UNIVERSITY
H-DEBRECEN
SÁNDOR HORVÁTH
L. EÖTVÖS UNIVERSITY
H-BUDAPEST
MASAMI ITO
SANGYO UNIVERSITY
KYOTO, JAPAN
```

(Received December 8, 1992)

[^0]: ${ }^{1}$ This paper was presented at the Conference "Sesiunea Anuală de Comunicări Sţiinţifice Universitatea Oradea", Oradea, Roumania, 6-8 June, 1991.
 ${ }^{2}$ The work of the first and second authors was supported in part by the Hungarian National Science Foundation "OTKA", Grants Nos. 1654/91, 1655/91 and 4295/92, and Nos. $334 / 88$ and 4295/92, respectively.

