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Quasi-normed monoids and quasi-metrics

By S. ROMAGUERA (Valencia), E. A. SÁNCHEZ-PÉREZ (Valencia)
and O. VALERO (Valencia)

Abstract. We present a method to generate quasi-metrics from certain
classes of subadditive functions defined on monoids. Several properties of these
quasi-metrics are discussed. In particular, bicompletion is explored. Some illus-
trative examples are given.

1. Introduction and preliminaries

Let (X, +) be a semigroup. A function f : X → R is said to be
subadditive if for each x, y ∈ X, f(x + y) ≤ f(x) + f(y).

A monoid is a semigroup (X, +) with neutral (or identity) element e.
A submonoid of a monoid (X, +) is a subsemigroup of X that contains

the neutral element e.
A prenorm on a monoid (X,+) is a nonnegative subadditive function

p on X such that p(e) = 0.
A quasi-norm on (X, +) is a prenorm p on X such that x = e if and

only if −x ∈ X and p(x) = p(−x) = 0.
A monoid (X,+) is called left cancellative if for all x, y, z ∈ X, z+x =

z+y implies x = y, and it is called right cancellative if x+z = y+z implies
x = y. (X, +) is said to be cancellative if it is both left cancellative and
right cancellative.
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The main purpose of this paper is to show that it is possible to generate
in a natural way (extended) quasi-metrics from quasi-norms on cancellative
monoids. Several properties of these quasi-metrics, including bicompletion,
are discussed. We observe that the classical Sorgenfrey quasi-metric on R+

is an example of this kind of structure. Our construction is also applied to
the domain of words and the space of complexity functions, two interesting
instances of spaces which appear in some fields of Theoretical Computer
Science.

In the sequel, the letters R+, ω and N will denote the set of nonnegative
real numbers, the set of nonnegative integer numbers and the set of positive
integer numbers, respectively.

Our main reference for quasi-pseudo-metric spaces is [3].
Let us recall that a quasi-pseudo-metric on a set X is a nonnegative

real-valued function d defined on X ×X such that for all x, y, z ∈ X: (i)
d(x, x) = 0, and (ii) d(x, z) ≤ d(x, y) + d(y, z).

In our context by a quasi-metric we mean a quasi-pseudo-metric d on
X such that d(x, y) = d(y, x) = 0 if and only if x = y.

A quasi-(pseudo-)metric space is a pair (X, d) such that X is a (non-
empty) set and d is a quasi-(pseudo-)metric on X.

Each quasi-pseudo-metric d on a set X induces a topology T (d) on X
which has as a base the family of open d-balls {Bd(x, r) : x ∈ X, r > 0},
where Bd(x, r) = {y ∈ X : d(x, y) < r} for all x ∈ X and r > 0.

If d is a quasi-(pseudo-)metric on a set X, then the function ds defined
on X ×X by ds(x, y) = max{d(x, y), d(y, x)} is a (pseudo-)metric on X.

A quasi-metric d on a set X is said to be bicomplete if ds is a complete
metric on X.

2. Generating quasi-metrics on monoids

Following [5], we say that a quasi-pseudo-metric d on a monoid (X, +)
is left subinvariant provided that for each x, y, z ∈ X, d(z + x, z + y) ≤
d(x, y) and it is right subinvariant provided that d(x + z, y + z) ≤ d(x, y).
If d is both left and right subinvariant, d is said to be subinvariant.

It is well known and easy to see that d is subinvariant if and only if
for each a, b, x, y ∈ X, d(a + b, x + y) ≤ d(a, x) + d(b, y). Furthermore if d
is a subinvariant quasi-pseudo-metric on a monoid (X, +), then (X, T (d))
is a topological monoid. (Let us recall that a topological monoid is a triple
(X, +, T ) such that (X, +) is a monoid and T is a topology on X for which
the operation + is continuous.)
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A quasi-pseudo-metric d on a monoid (X, +) is left invariant provided
that d(z + x, z + y) = d(x, y) for all x, y, z ∈ X and it is right invariant
provided that d(x + z, y + z) = d(x, y). d is said to be invariant if it is
both left invariant and right invariant.

Let (X, +) be a monoid. For each x∈X define x+X = {x+ y : y ∈X}.
Proposition 1. Let p be a prenorm on a monoid (X, +). Then the

real-valued function dp defined on X ×X by
dp(x, y) = inf{p(a) : y = x + a} ∧ 1 if x ∈ X and y ∈ x + X,
dp(x, y) = 1 if x ∈ X and y /∈ x + X

is a left subinvariant quasi-pseudo-metric on X.
Furthermore for each x ∈ X and each ε ∈ (0, 1), Bdp(x, ε) = x + {y ∈

X : p(y) < ε}, and the left translations are T (dp)-open.

Proof. Since p(e) = 0, it follows that for each x ∈ X,

inf{p(a) : x = x + a} = 0.

Thus dp(x, x) = 0 for all x ∈ X.
Next we show that for all x, y, z ∈ X, dp(x, z) ≤ dp(x, y) + dp(y, z).
We only consider the case that y ∈ x + X and z ∈ y + X, with

dp(x, y) = inf{p(a) : y = x + a} and dp(y, z) = inf{p(a) : z = y + a}, since
the triangle inequality is obviously satisfied otherwise.

Choose an arbitrary ε ∈ (0, 1). There exist a, b ∈ X such that y =
x + a, z = y + b, p(a) < dp(x, y) + ε and p(b) < dp(y, z) + ε. Since
z = x + a + b, z ∈ x + X, and thus

dp(x, z) ≤ p(a + b) ≤ p(a) + p(b) < dp(x, y) + dp(y, z) + 2ε.

Consequently dp(x, z) ≤ dp(x, y) + dp(y, z), for all x, y, z ∈ X, and
hence dp is a quasi-pseudo-metric on X.

Now we show that for all x, y, z ∈ X, dp(z + x, z + y) ≤ dp(x, y).
We only consider the case that dp(x, y) = inf{p(a) : y = x + a}.

Choose an arbitrary ε ∈ (0, 1). There exists a ∈ X such that y = x + a
and p(a) < dp(x, y) + ε. Hence z + y = z + x + a and thus

dp(z + x, z + y) ≤ p(a) < dp(x, y) + ε.

So dp(z + x, z + y) ≤ dp(x, y). Therefore dp is left subinvariant.
Now note that for each x ∈ X, dp(e, x) = p(x)∧1, so for each ε ∈ (0, 1),

we have Bdp(e, ε) = {x ∈ X : p(x) < ε}. It immediately follows that for
each x ∈ X and each ε ∈ (0, 1),

Bdp(x, ε) = x + Bdp(e, ε),
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and thus the left translations with respect to + are T (dp)-open. ¤
Corollary 1. Let p be a prenorm on a left cancellative monoid (X, +).

Then the real-valued function dp defined on X ×X by
dp(x, y) = p(a) ∧ 1 if x ∈ X and y ∈ x + X with y = x + a,
dp(x, y) = 1 if x ∈ X and y /∈ x + X

is a left invariant quasi-pseudo-metric on X.
Furthermore for each x ∈ X and each ε ∈ (0, 1), Bdp(x, ε) = x + {y ∈

X : p(y) < ε}, and the left translations are T (dp)-open.

Proof. We only show that given x, y, z ∈ X one has dp(z+x, z+y) =
dp(x, y). Indeed, suppose dp(x, y) = p(a) ∧ 1 for some a ∈ X. Then
y = x + a, so z + y = z + x + a, and hence dp(z + x, z + y) = p(a) ∧ 1.
Otherwise y /∈ x+X, and it immediately follows that z +y /∈ z +x+X, so
dp(z + x, z + y) = dp(x, y) = 1. We conclude that dp is left invariant. ¤

Remark 1. Let p be a prenorm on a monoid (X, +). If dp is a quasi-
metric, then p is a quasi-norm on X.

Proof. Let x ∈ X be such that −x ∈ X and p(x) = p(−x) = 0. Then
dp(e, x) = 0 because x = x + e and p(x) = 0. Furthermore dp(x, e) = 0
because e = x − x and p(−x) = 0. Since dp is a quasi-metric, it follows
that x = e. We conclude that p is a quasi-norm on X. ¤

Example 1. On R+, endowed with the usual addition, define a quasi-
norm p by p(x) = 0 for all x ∈ R+. Then the quasi-metric dp, is exactly the
Alexandroff quasi-metric on R+, i.e. dp(x, y) = 0 if x ≤ y and dp(x, y) = 1
otherwise.

Example 2. Let p : R+ → R+ be defined by p(x) = x for all x ∈ R+.
Clearly p is a quasi-norm on R+ and dp(x, y) = min{y − x, 1} if x ≤ y

and dp(x, y) = 1 if x > y. So dp is the Sorgenfrey quasi-metric on R+ and
hence the topology generated by dp is exactly the Sorgenfrey topology on
R+.

The following result will be useful later on.

Proposition 2. Let p be a prenorm on a monoid (X, +). If (xn)n∈N
is a sequence in X that converges to a point x ∈ X in (X, (dp)s), then
(p(xn))n∈N converges to p(x) with respect to the Euclidean metric.

Proof. Since (xn)n∈N converges to x in (X, (dp)s), for each ε ∈ (0, 1)
there is n0 ∈ N such that (dp)s(x, xn) < ε for all n ≥ n0. Hence there
exist two sequences (an)n∈N and (bn)n∈N in X such that x = xn + an,
xn = x + bn, p(an) < ε and p(bn) < ε for all n ≥ n0. Then p(xn) −
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p(x) = p(x + bn)− p(x) ≤ p(x) + p(bn)− p(x) = p(bn) < ε, and, similarly,
p(x) − p(xn) ≤ p(an) < ε for all n ≥ n0. Therefore |p(xn) − p(x)| < ε for
all n ≥ n0. It follows that (p(xn))n∈N converges to p(x) with respect to
the Euclidean metric. ¤

The following is an example of a quasi-norm on a monoid (X, +) such
that (X, +, T (dp)) is not a topological monoid.

Example 3. Let X = ω ∪ {∞}. Define x + y = x for all x, y ∈ X with
x 6= 0 and 0 + x = x for all x ∈ X.

Set p : X → R+ given by p(0) = 0, p(n) = 1/n for all n ∈ N and
p(∞) = 1. It is easily seen that p is a quasi-norm on X. By Proposition 1,
dp(0, n) = 1/n for all n ∈ N, and dp(x, y) = 1 for all other x, y ∈ X with
x 6= y. Therefore n → 0 with respect to T (dp) but n+∞9 0+∞ because
n +∞ = n for all n ∈ N, 0 +∞ = ∞ and {∞} is T (dp)-isolated.

The preceding example suggests the question of obtaining conditions
under which the quasi-pseudo-metric dp constructed in Proposition 1 is
subinvariant and thus (X, +, T (dp)) is a topological monoid.

Next we give a reasonable and easy solution to this question.

Remark 2. Let p be a prenorm on an Abelian monoid (X, +). Then
the quasi-pseudo-metric dp constructed in Proposition 1 is subinvariant.
Hence (X, +, T (dp)) is a topological monoid.

Proof. By Proposition 1, dp is left subinvariant and hence it is also
right subinvariant since the monoid X is Abelian. Therefore dp is subin-
variant. ¤

Proposition 3. Let p be a quasi-norm on a left cancellative monoid
(X, +). Then dp is a quasi-metric on X.

Proof. Let x, y ∈ X be such that dp(x, y) = dp(y, x) = 0. Then there
exist a, b ∈ X such that x = y + a, y = x + b and p(a) = p(b) = 0. Since
X is left cancellative and x = x + a + b, we have a + b = 0. Consequently
b = −a and thus p(a) = p(−a) = 0. Since p is a quasi-norm on X, a = 0,
so x = y. The proof is complete. ¤

Remark 3. Note that if p is a quasi-norm on a group (X,+), then the
quasi-metric dp is defined by

dp(x, y) = p(y − x) ∧ 1

for all x, y ∈ X.
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Since some examples of spaces which appear in a natural way by mod-
elling certain processes in Theoretical Computer Science can be considered
as Abelian monoids endowed with subinvariant quasi-metrics (see Exam-
ples 4 and 5 below), and, on the other hand, the problem of bicompletion
has a satisfactory solution in the setting of quasi-metric spaces ([12]), we
will focus our attention to quasi-norms which induce quasi-metrics. Thus,
in the light of Remark 2 and Proposition 3, we propose the following no-
tion.

Definition 1. A quasi-normed monoid is a pair (X, p) such that X is
a cancellative Abelian monoid and p is a quasi-norm on X.

At the end of this section we observe that a slight modification of the
construction given in Proposition 1 permits us to obtain, as a particular
case, the classical (quasi-)metric induced by a (quasi-)norm on a group
(see Remark 4 below). To this end we need the use of extended quasi-
pseudo-metrics (they satisfy the usual axioms for a quasi-pseudo-metric,
except that we allow d(x, y) = +∞).

Proposition 4. Let p be a prenorm on a monoid (X, +). Then the
function ep defined on X ×X by

ep(x, y) = inf{p(a) : y = x + a} if x ∈ X and y ∈ x + X,
ep(x, y) = +∞ if x ∈ X and y /∈ x + X

is a left subinvariant extended quasi-pseudo-metric on X.
Furthermore for each x ∈ X and each ε ∈ (0, 1), Bep(x, ε) = x + {y ∈

X : p(y) < ε}, and the left translations are T (ep)-open.

Remark 4. Note that if p is a (quasi-)norm on a group (X, +), then
the extended (quasi-)pseudo-metric ep of Proposition 4, is the classical
(quasi-)metric on X induced by p, i.e.

ep(x, y) = p(y − x),

for all x, y ∈ X.

3. The bicompletion of a quasi-normed monoid

Let us recall that a homomorphism from a monoid (X, +) to a monoid
(Y,⊕) is a mapping f : X → Y such that f(x + y) = f(x)⊕ f(y).

In the following we shall denote by + the operation in both the
monoids X and Y if no confusion arises.
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Definition 2. An isometry from a quasi-normed monoid (X, p) to a
quasi-normed monoid (Y, q) is a homomorphism f : X −→ Y such that
q(f(x)) = p(x) for all x ∈ X.

Contrary to the quasi-metric case there are isometries on quasi-normed
monoids which are not injective mappings (see Example 5 below).

Definition 3. Two quasi-normed monoids (X, p) and (Y, q) are said to
be isometric if there is a bijective isometry f : X → Y .

Proposition 5. If (X, p) and (Y, q) are isometric quasi-normed mon-
oids by an (bijective) isometry f , then the quasi-metric spaces (X, dp) and
(Y, dq) are isometric by f .

Proof. Let x, y ∈ X. If f(y) /∈ f(x) + Y , then dq(f(x), f(y)) =
dp(x, y) = 1. Otherwise, we have dq(f(x), f(y)) = q(z) ∧ 1, where f(y) =
f(x)+z. Since f is a bijection, there is a unique az ∈ X such that f(az) =
z. Hence f(y) = f(x + az), so y = x + az. Therefore dq(f(x), f(y)) =
q(f(az)) ∧ 1 = p(az) ∧ 1 = dp(x, y). ¤

Definition 4. A quasi-normed monoid (X, p) is called bicomplete if dp

is a bicomplete quasi-metric on X.

Observe that the spaces of Examples 1 and 2 are bicomplete quasi-
normed monoids.

By a subspace of a quasi-normed monoid (X, p) we mean a submonoid
Y of X endowed with the restriction of p to Y .

Definition 5. Let (X, p) be a quasi-normed monoid. We say that a bi-
complete quasi-normed monoid (Y, q) is a bicompletion of (X, p) if (X, p) is
isometric to a subspace of (Y, q) that is dense in the metric space (Y, (dq)s).

We shall prove that each quasi-normed monoid (X, p) has a bicomple-
tion (X̃, p̃) such that any bicompletion of (X, p) is isometric to (X̃, p̃).

Let (X, dp) be the quasi-metric space induced by (X, p). Denote by X̂
the set of all Cauchy sequences in the metric space (X, (dp)s). Note that

if x := (xn)n∈N ∈ X̂, then for each ε ∈ (0, 1) there exists n0 ∈ N such that
(dp)s(xn, xm) < ε for all m,n ≥ n0, so xm ∈ xn + X for all n,m ≥ n0.

Define a relation R on X̂ as follows: For each x := (xn)n∈N and
y := (yn)n∈N in X̂ put xRy ⇐⇒ limn→∞(dp)s(xn, yn) = 0. Then R is in

fact an equivalence relation on X̂.
Denote by X̃ the quotient X̂/R. Thus X̃ = {[x] : x ∈ X̂}, where

[x] = {y ∈ X̂ : xRy} for all x ∈ X̂.
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For each x := (xn)n∈N and y := (yn)n∈N in X̂ put [x] + [y] = [x + y]
where x + y = (xn + yn)n∈N. It is easy to see that these operations are
well-defined. Then we have the following result.

Lemma 1. Let (X, p) be a quasi-normed monoid. Then (X̃, +) is a
cancellative Abelian monoid.

Proof. Since (X, +) is a cancellative Abelian monoid we have im-
mediately that (X̃, +) is a cancellative Abelian semigroup with neutral
element [0] ∈ X̃. ¤

Lemma 2. Let (X, p) be a quasi-normed monoid and x := (xn)n∈N ∈
X̂. Then:

(1) limn→∞ p(xn) exists and is finite.

(2) limn→∞ p(xn) = limn→∞ p(yn) for all y ∈ [x].

Proof. (1) Given x := (xn)n∈N ∈ X̂, then for each ε ∈ (0, 1) there
is n0 ∈ N such that (dp)s(xn, xm) < ε for all m,n ≥ n0. Hence, for
each n,m ≥ n0 there exist anm, bnm ∈ X such that xm = xn + anm,
xn = xm + bnm, p(anm) < ε and p(bnm) < ε. Therefore p(xn) − p(xm) =
p(xm+bnm)−p(xm) ≤ p(xm)+p(bnm)−p(xm) = p(bnm) < ε, and, similarly,
p(xm)− p(xn) ≤ p(anm) < ε.

Thus |p(xn)− p(xm)| < ε for all m,n ≥ n0, so (p(xn))n∈N is a Cauchy
sequence of real numbers which is convergent with respect to the Euclidean
metric, of course.

(2) Let x := (xn)n∈N, y := (yn)n∈N be two elements of X̂ such that y ∈
[x]. We may asume that for each n ∈ N, yn = xn+an with p(an) → 0. Then
p(yn) = p(xn + an) ≤ p(xn) + p(an). So limn→∞ p(yn) ≤ limn→∞ p(xn).
Similarly we show that limn→∞ p(xn) ≤ limn→∞ p(yn). ¤

In the light of the preceding lemma we may define a function p̃ : X̃ →
R+ given by p̃([x]) = limn→∞ p(xn) for all x ∈ X̂.

In Lemma 5 below we shall show that (X̃, p̃) is a bicomplete quasi-
normed monoid.

Lemma 3. Let X and Y be two Abelian monoids. If A is a submonoid
of X and f : A → Y is a homomorphism, then f(A) is a submonoid of Y .

Lemma 4. Let (X, p) be a quasi-normed monoid and let x := (xn)n∈N
and a := (an)n∈N be two elements of X̂. Then for each y ∈ [x] + [a],
limn→∞ dp(xn, yn) = p̃([a]) ∧ 1, where y := (yn)n∈N.
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Proof. Let y ∈ [x] + [a]. Then limn→∞(dp)s(yn, xn + an) = 0. Hence
there exist two sequences (bn)n∈N and (cn)n∈N in X and an n0 ∈ N such
that xn +an = yn + bn and yn = xn +an + cn for all n ≥ n0, and p(bn) → 0
and p(cn) → 0.

Since X is cancellative, we deduce that bn = −cn for all n ≥ n0. So

p(an) ≤ p(an + cn) + p(−cn) ≤ p(an) + p(cn) + p(−cn)

for all n ≥ n0. Consequently limn→∞ p(an) = limn→∞ p(an + cn).
Finally, since dp(xn, yn) = p(an + cn) ∧ 1 for all n ≥ n0, we obtain

lim
n→∞ dp(xn, yn) = ( lim

n→∞ p(an + cn))∧ 1= ( lim
n→∞ p(an))∧ 1= p̃([a])∧1. ¤

Lemma 5. Let (X, p) be a quasi-normed monoid. Then the following
statements hold:

(1) (X̃, p̃) is a bicomplete quasi-normed monoid.

(2) (X, p) is isometric to a subspace of (X̃, p̃) that is dense in the

metric space (X̃, (dep)s).

Proof. (1) The cancellative Abelian monoid condition of (X̃, p̃) fol-
lows from Lemma 1.

Let x := (xn)n∈N be an element of X̂ such that −[x] ∈ X̃ and p̃([x]) =
p̃(−[x]) = 0. Then limn→∞ p(xn) = 0 = limn→∞ p(−xn).

Since dp(0, xn) = p(xn) and dp(xn, 0) = p(−xn) eventually, it follows
that limn→∞(dp)s(0, xn) = 0. Thus [x] = [0].

Now let x := (xn)n∈N, y := (yn)n∈N be two elements of X̂ . In order
to show the triangle inequality we consider p(xn + yn) ≤ p(xn) + p(yn),
so limn→∞ p(xn + yn) ≤ limn→∞ p(xn) + limn→∞ p(yn). Therefore p̃([x] +
[y]) ≤ p̃([x]) + p̃([y]).

Hence p̃ is a quasi-norm on X̃. By Proposition 3, dep is a quasi-metric
on X.

It is well known ([1], [12]) that the bicompletion of the quasi-metric
space (X, dp) is a quasi-metric space (Xb, (dp)b), where Xb = {[x] : x

is a Cauchy sequence in the metric space (X, (dp)s)}, (dp)b([x], [y]) =
limn→∞ dp(xn, yn) for all [x], [y] ∈ Xb, and for each Cauchy sequence
x := (xn)n∈N in (X, (dp)s), [x] = {y := (yn) : y is a Cauchy sequence
in (X, (dp)s) and limn→∞(dp)s(xn, yn) = 0}.
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It is clear that Xb = X̃.
Next we prove that dep = (dp)b on X̃ × X̃.

Indeed, let x := (xn)n∈N and y := (yn)n∈N be two elements of X̂. We
shall distinguish two cases.

Case 1. [y] ∈ [x] + X̃. Then there is a := (an)n∈N ∈ X̂ such that
[y] = [x] + [a] and thus dep([x], [y])) = p̃([a]) ∧ 1. From Lemma 4 it follows
that dep([x], [y])) = (dp)b([x], [y]).

Case 2. [y] /∈ [x] + X̃. Then dep([x], [y]) = 1. Suppose that
(dp)b([x], [y]) < 1. Therefore, there exist a sequence (an)n∈N in X and an
n0 ∈ N such that yn = xn + an for all n ≥ n0.

We shall show that (an)n∈N is a Cauchy sequence in (X, (dp)s): Let
ε ∈ (0, 1). Then there is nε ≥ n0 such that (dp)s(xn, xm) < ε/2 and
(dp)s(yn, ym) < ε/2 for all n,m ≥ nε. So for each n, m ≥ nε there exist
two elements tnm and tmn of X such that xm = xn + tnm, xn = xm + tmn,
p(tnm) < ε/2 and p(tmn) < ε/2. Since X is cancellative, tmn = −tnm.
Similarly, there exists snm ∈ X such that ym = yn + snm, yn = ym − snm,
p(snm) < ε/2 and p(−snm) < ε/2. Therefore

xn + tnm + am = xm + am = ym = xn + an + snm,

and, hence, am = an + snm − tnm. Then

dp(an, am) = p(snm − tnm) ∧ 1 ≤ (p(snm) + p(−tnm)) ∧ 1 < ε.

Similarly, we obtain that dp(am, an) < ε, so (an)n∈N is a Cauchy se-
quence in (X, (dp)s), and thus [y] = [x] + [a], where a := (an)n∈N, which
contradicts our assumption. We conclude that (dp)b([x], [y]) = 1.

Therefore dep = (dp)b and thus dep is a bicomplete quasi-metric on X̃.

We have shown that (X̃, p̃) is a bicomplete quasi-normed monoid.
(2) For each x ∈ X denote by x̂ the constant sequence x, x, . . . , x, . . . .

Since (Xb, (dp)b) is the bicompletion of (X, dp), i(X) is dense in (X̃, (dep)s)

where i denotes the one-to-one mapping from X to X̃ given by i(x) =
[x̂] for all x ∈ X. Note that [x̂] consists of allxsequences in X which
converge to x in the metric space (X, (dp)s). It is routine to check i is a

homomorphism, so by Lemma 3, i(X) is a (cancellative) submonoid of X̃.
Since p̃(i(x)) = p̃([x̂]) = p(x) for all x ∈ X, we deduce that (X, p) and
(i(X), p̃|i(X)) are isometric quasi-normed monoids. The proof is complete.

¤
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Lemma 6. Let (X, p) be a quasi-normed monoid, let (Y, q) a bicom-
plete quasi-normed monoid and let f be a one-to-one isometry from a sub-
monoid A of X to Y such that A is dense in (X, (dp)s). Then f extends
uniquely to a one-to-one isometry from (X, p) to (Y, q).

Proof. For each x ∈ X\A there exists a sequence (xn)n∈N in A such
that limn→∞(dp)s(x, xn) = 0. Since the sequence (xn)n∈N (associated with
x ∈ X\A), is a Cauchy sequence in the metric space (X, (dp)s), for each
ε ∈ (0, 1) there exists n0 ∈ N such that (dp)s(xn, xm) < ε for all m,n ≥ n0.
By Proposition 5, (dq)s(f(xn), f(xm)) < ε for all m,n ≥ n0. Therefore
(f(xn))n∈N is a Cauchy sequence in the metric space (Y, (dq)s), so it con-
verges to a point x∗ ∈ Y with respect to the metric (dq)s.

Define f∗ : X → Y by f∗(x) = f(x) for all x ∈ A and f∗(x) = x∗ for
all x ∈ X\A.

Observe that the definition of f∗ is independent of the choice of se-
quences (xn)n∈N. Indeed if (xn)n∈N and (yn)n∈N are sequences in A that
converge to a point x ∈ X\A with respect to the metric (dp)s, and
denote by x∗ and y∗ the limit points in (Y, (dq)s) of (f(xn))n∈N and
(f(yn))n∈N respectively, we deduce that limn→∞(dq)s(f(xn), f(yn)) = 0,
since limn→∞(dp)s(xn, yn) = 0. Therefore x∗ = y∗.

Next we show that f∗ is an isometry on (X, p). Let x ∈ A, then
q(f∗(x)) = q(f(x)) = p(x). Now let x ∈ X\A and let (xn)n∈N be a
sequence in X such that limn→∞(dp)s(x, xn) = 0. Thus
limn→∞(dq)s(f∗(x), f(xn)) = 0, so by Proposition 2, limn→∞ q(f(xn)) =
q(f∗(x)). Hence for each ε ∈ (0, 1), q(f∗(x)) ≤ q(f(xn)) + ε = p(xn) + ε

eventually. Therefore, for each ε ∈ (0, 1), q(f∗(x)) ≤ p(x) + 2ε because
limn→∞ p(xn) = p(x) by Proposition 2. Similarly we show that for each
ε ∈ (0, 1), p(x) ≤ q(f∗(x)) + 2ε. Consequently q(f∗(x)) = p(x) for all
x ∈ X.

Moreover f∗ is a homomorphism on X. Let x, y ∈ X. We only
consider the case that x, y ∈ X\A (recall that f is a homomorphism on A).
Let (xn)n∈N and (yn)n∈N be sequences in A that converge to x and y

respectively in the metric space (X, (dp)s). Since (X, +) is Abelian, (xn +
yn)n∈N converges to x + y with respect to (dp)s, so by definition of f∗,
(f(xn + yn))n∈N converges to f∗(x + y) with respect to (dq)s. Since f

is a homomorphism on A, the sequence (f(xn) + f(yn))n∈N converges to
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f∗(x + y) with respect to (dq)s. On the other hand, by definition of f∗,
(f(xn))n∈N converges to f∗(x) and (f(yn))n∈N converges to f∗(y) with
respect to (dq)s. So (f(xn) + f(yn))n∈N converges to f∗(x) + f∗(y) with
respect to the metric (dq)s. Therefore f∗(x + y) = f∗(x) + f∗(y).

Furthermore f∗, is injective on X. Indeed, let x, y ∈ X \ A such that
f∗(x) = f∗(y). Then we have that limn→∞(dq)s(f(xn), f(yn)) = 0, where
(xn)n∈N and (yn)n∈N are sequences in A such that limn→∞(dp)s(x, xn) =
limn→∞(dp)s(y, yn) = 0. Since f is one-to-one, it follows from Lemma 3
and Proposition 5 that limn→∞(dp)s(xn, yn) = 0. So, by the triangle
inequality (dp)s(x, y) ≤ limn→∞(dp)s(x, xn) + limn→∞(dp)s(xn, yn)+
limn→∞(dp)s(yn, y)=0.

Hence x = y. So f∗ is injective on X. We conclude that f∗ is a
one-to-one isometry from (X, p) to (Y, q).

Finally, suppose that f̃ : X → Y is another one-to-one isometry which
is an extension of f to X.

Let x ∈ X\A and let (xn)n∈N be a sequence in X that converges to x

with respect to (dp)s.
Then limn→∞(dq)s(f∗(x), f∗(xn)) = limn→∞(dq)s(f̃(x), f̃(xn)) = 0.

Since f∗ (xn) = f̃ (xn) = f(xn) for all n ∈ N, it follows that f∗(x) = f̃(x).
So f∗ is unique. ¤

Lemma 7. Any bicompletion of a quasi-normed monoid (X, p) is iso-

metric to (X̃, p̃).

Proof. Let (Y, q) be a bicompletion of (X, p). Let f be the one-
to-one isometry from (X, p) to (X̃, p̃) obtained in Lemma 5. Since X is
dense in the metric space (Y, (dq)s), it follows from the preceding lemma
that f has a unique one-to-one isometry extension f∗ to (Y, q). It re-
mains to show that f∗ maps Y onto X̃. Indeed, let x be an arbitrary
point of X̃. Since f(X) is dense in (X̃, (dep)s), there is a sequence (xn)n∈N
in X such that limn→∞(dep)s(x, f(xn)) = 0. Thus (f(xn))n∈N is a Cauchy

sequence in (X̃, (dep)s). Since f∗ is an isometry, (xn)n∈N is a Cauchy se-
quence in (Y, (dq)s). Let y ∈ Y be such that limn→∞(dq)s(y, xn) = 0.
Then limn→∞(dep)s(f∗(y), f∗(xn)) = 0, and so f∗(y) = x. This completes
the proof. ¤

From the above lemmas we immediately deduce the following.
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Theorem 1. Each quasi-normed monoid (X, p) has a unique bicom-
pletion (up to bijective isometry).

4. Further examples

Example 4. Let Σ be a nonempty alphabet and let ΣF be the set of
all finite sequences (“words”) over Σ. The elements of Σ are also called
letters.

Denote by v the prefix order on ΣF , i.e. x v y ⇔ x is a prefix of y.
The space (ΣF ,v) appears in a natural way by modelling the streams

of information in Kahn’s model of parallel computation ([4], [15], [8]).
Now, for each x ∈ ΣF denote by `(x) the length of x.
Now suppose that there exists an operation + on Σ for which (Σ, +)

is an Abelian monoid with neutral element e.
Denote by e the infinite sequence such that e(k) = e for all k ∈ N.
Now let `(x) be the length of each x ∈ ΣF∪{e} (in particular `(e) = ω),

and define an operation ⊕ on ΣF ∪ {e} as follows:
For each x, y ∈ ΣF ∪{e}, let x⊕y be the element of ΣF ∪{e} of length

`(x ⊕ y) = min{`(x), `(y)} such that for each k ≤ `(x ⊕ y), (x ⊕ y)(k) =
x(k) + y(k).

Then (ΣF ∪ {e},⊕) is an Abelian monoid with neutral element e as it
is shown in [11].

Let p : ΣF ∪ {e} → R+ be defined by p(x) = 2−`(x). It is easy to see
that p is a quasi-norm on ΣF ∪ {e} for which dp is a quasi-metric.

Example 5. Motivated by the applications to the analysis of complex-
ity of programs and algorithms given in [14], the first author and M.
Schellekens have introduced and studied the so-called dual complexity
space ([10]), which consists of the pair (C∗, dC∗), where

C∗ =
{

f ∈ (R+)ω :
∞∑

n=0

2−nf(n) < +∞
}

,

and dC∗ is the quasi-metric on C∗ given by

dC∗(f, g) =
∞∑

n=0

2−n[(g(n)− f(n)) ∨ 0].

Several properties of dC∗ are discussed in [10]. In particular observe
that the topology induced by dC∗ , is not T1.



66 S. Romaguera, E. A. Sánchez-Pérez and O. Valero

On the other hand, (C∗, +) is clearly a cancellative Abelian monoid
with neutral element f0 given by f0(n) = 0 for all n ∈ ω, where + is the
usual pointwise addition.

Let w : C∗ → R+ be defined by w(f) =
∑∞

n=0 2−nf(n). It is routine
to see that w is a quasi-norm on C∗. Then the induced quasi-metric dw

on C∗ is given by dw(f, g) = (
∑∞

n=0 2−n(g(n) − f(n))) ∧ 1 if f ≤ g, and
dw(f, g) = 1 otherwise.

Some interesting properties of the quasi-metric dw will be obtained in
Propositions 6 and 7 below. In particular, it follows from Proposition 6
that dw induces a Hausdorff topology on C∗.

Next we show that it is possible to construct a noninjective isometry
for quasi-normed monoids (see the comment following Definition 2).

Indeed, let X = {f ∈ C∗ : f(0) > 0} ∪ {f0}. It is routine to see that
X is a submonoid of C∗.

Define q : X → R+ by q(f) = f(0). Clearly q is a quasi-norm on X,
so (X, q) is a quasi-normed monoid.

Let F : X → C∗ be defined by F (f)(0) = f(0), and F (f)(n) = 0
for all f ∈ X and n ∈ N. Obviously F is a homomorphism from (X, +)
to (C∗, +). Moreover w(F (f)) =

∑∞
n=0 2−nF (f(n)) = f(0) = q(f) for all

f ∈ X. So F is an isometry from (X, q) to (C∗, w).
However, if f, g ∈ X satisfy f(0) = g(0) and f(1) 6= g(1), we obtain

F (f) = F (g), and thus F is not injective.

Balanced quasi-metric spaces were introduced by D. Doitchinov

([2]) in order to obtain a satisfactory theory of quasi-metric completion
that, contrarily to bicompleteness, preserves (complete) regularity of quasi-
metric spaces.

Let us recall that a quasi-metric space (X, d) is called balanced if
given r, s > 0, (xk)k∈N, (yk)k∈N sequences in X such that d(ym, xk) → 0
as m, k →∞, and points x, y ∈ X such that d(x, xk) ≤ r and d(yk, y) ≤ s

for all k ∈ N, then d(x, y) ≤ r + s.
It is well known that each balanced quasi-metric space is Hausdorff

and completely regular ([2]).
The Sorgenfrey quasi-metric space is a paradigmatic example of a

balanced quasi-metric space.

Proposition 6. The quasi-metric space (C∗, dw) is balanced.
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Proof. Let r, s > 0, (fk)k∈N, (gk)k∈N be sequences in C∗ such that
dw(gm, fk) → 0 as m, k → ∞, and f, g ∈ C∗ such that dw(f, fk) ≤ r and
dw(gk, g) ≤ s for all k ∈ N. We may assume without loss of generality that
r + s < 1. Thus f ≤ fk and gk ≤ g for all k ∈ N. Moreover gm ≤ fk

eventually.
We first note that f ≤ g. Indeed, let n0 ∈ N. For an arbitrary ε > 0

there is k ∈ N such that
∑∞

n=0 2−n(fk(n) − gk(n)) < ε. Thus fk(n0) −
gk(n0) < 2n0ε. Hence f(n0) ≤ fk(n0) < 2n0ε + gk(n0) ≤ 2n0ε + g(n0). We
deduce that f(n0) ≤ g(n0) for all n0 ∈ N, i.e. f ≤ g.

Finally, choose k ∈ N such that gk ≤ fk. Then

dw(f, g) =
∞∑

n=0

2−n(g(n)− f(n))

≤
∞∑

n=0

2−n(g(n)− gk(n)) +
∞∑

n=0

2−n(fk(n)− f(n))

= dw(gk, g) + dw(f, fk) ≤ s + r.

We conclude that (C∗, dw) is a balanced quasi-metric space. ¤

Since (dw)s is the discrete metric on C∗, (C∗, dw) is a bicomplete quasi-
metric space. We finish the paper by showing that this space is also right
K -sequentially complete in the sense of [9].

Let us recall that a sequence (xn)n∈N in a quasi-metric space (X, d)
is right K -Cauchy provided that for each ε > 0 there is n0 ∈ N such
that d(xn, xm) < ε for all n ≥ m ≥ n0. (X, d) is said to be right K -
sequentially complete if every right K-Cauchy sequence is convergent with
respect to T (d).

Right K-sequential completeness is an appropriate notion of quasi-
metric completeness in the study of function spaces and hyperspaces ([6],
[7], [13]).

Proposition 7. The quasi-metric space (C∗,dw) is right K-sequentially

complete.

Proof. Let (fk)k∈N be a right K-Cauchy sequence in (C∗, dw). Then,
there is k0 ∈ N such that dw(fm, fk) < 1 for m ≥ k ≥ k0. Thus, for each
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k ≥ k0 there is hk ∈ C∗ with fk = fk+1 + hk. Hence fk+1 ≤ fk for all
k ≥ k0.

Define a function f : ω → [0,∞) by

f(n) = inf
k≥k0

fk(n) for all n ∈ ω.

We want to show that f ∈ C∗ and that (fk)k∈N converges to f in
(C∗, dw). Indeed, let ε > 0. Since fk0 ∈ C∗ there is nε ∈ ω such that∑∞

n=nε+1 2−nfk0(n) <ε/3. So
∑∞

n=nε+1 2−nf(n) <ε/3, and, hence, f ∈C∗.
Furthermore, since fk ≤ fk0 for all k ≥ k0, it follows that∑∞

n=nε+1 2−nfk(n) < ε/3 for all k ≥ k0. By definition of f and the fact
that fk+1 ≤ fk for all k ≥ k0, there is k1 ≥ k0 such that for each k ≥ k1,
2−n(fk(n)− f(n)) < ε/3, n = 0, 1, . . . , nε. Hence for k ≥ k1,

∞∑

n=0

2−n(fk(n)− f(n)) ≤
nε∑

n=0

2−n(fk(n)− f(n)) +
∞∑

n=nε+1

2−nfk(n)

<
ε

3

( ∞∑

n=0

2−n
)

+
ε

3
= ε.

We have shown that (fk)k∈N converges to f in (C∗, dw). Consequently
(C∗, dw) is right K-sequentially complete. ¤
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