
Publ. Math. Debrecen
62/1-2 (2003), 71–81

On p-nilpotency and complemented minimal subgroups
of finite groups

By YANG GAOCAI (Shanxi)

Abstract. Let G be a finite group. A subgroup H of G is said to be comple-
mented in G if there exists a subgroup K of G such that G = HK and H∩K = 1.
In this paper, it is showed that a finite group G is p-nilpotent provided p is the
smallest prime number dividing the order of G and every minimal subgroup of the
p-focal subgroup of G is complemented in NG(P ), where P is a Sylow p-subgroup
of G. As some applications, some interesting results related with complemented
minimal subgroups of focal subgroups are obtained.

1. Introduction

Recall that a subgoup H of a finite group G is complemented in G if
there exists a subgroup K of G such that G = HK and H∩K = 1. We also
call the above subgroup K of G a complement of H in G. Complemented
subgroups of a finite group plays an important role in the structure theory
of finite groups, for instance, P. Hall [8] proved in 1937 that a finite
group G is supersolvable with elementary abelian Sylow subgroups if and
only if every subgroup of G is complemented in G. Also, it is known that
a finite group G is solvable if and only if every Sylow subgroup of G is
complemented [9]. New criteria for the solvability of finite groups were
obtained by Z. Arad and M. B. Ward in 1982. In particular, they have
shown that a group is solvable if and only if every Sylow 2-subgroup and
every Sylow 3-subgroup are complemented [1].
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In 1960 Yu. M. Gorchakov studied torsion groups in which all min-
imal subgroups are complemented; in particular, a class of finite groups
of such type is exactly the class of finite supersolvable groups with ele-
mentary abelian subgroups (see [16]). In a recent paper, A. Ballester-

Bolinches and Xiuyun Guo [4] also investigated the class of finite groups
for which every minimal subgroup is complemented. On the other hand,
there has been much interest in the past in investigating the influence of
minimal subgroups on the structure of finite groups (see, [2], [5], [7], [12],
[15]).

Let G be a finite group. Let G′ be the derived group of G and P a
Sylow p-subgroup of G for a prime number p. Then the subgroup P ∩G′

is called the focal subgroup of P with respect to G.
In this paper, we shall continue the investigation on the influence of

the existence of complements of minimal subgroups on the structure of
finite groups. In particular, we devote ourselves to the minimal subgroups
of the focal subgroups. Some interesting results are obtained.

Throughout this paper, all groups considered are finite groups. For
notations and terminologies not given in this paper, the reader is referred
to the text of D. J. S. Robinson [13].

2. Preliminaries

We first cite the following lemma as it will be useful later on. we also
notice that a minimal subgroup of a group is a subgroup of prime order.

Lemma 2.1 ([4], Lemma 1). Let G be a group and N a normal

subgroup of G. Then the following statements hold.

(1) If H ≤ K ≤ G and H is complemented in G, then H is comple-

mented in K.

(2) If N is contained in H and H is complemented in G, then H/N is

complemented in G/N .

(3) Let π be a set of primes. If N is a π′-subgroup and A is a π-

subgroup of G, then A is complemented in G if and only if AN/N is

complemented in G/N .

The following lemmas are crucial in proving our main results.
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Lemma 2.2. Let H be a subgroup of a group G. If every minimal

subgroup of H is complemented in G, then Φ(H) = 1.

Proof. If Φ(H) 6= 1, then there exists a minimal subgroup 〈a〉 of H

such that 〈a〉 ≤ Φ(H). Since 〈a〉 is complemented in G, by definition,
there exists a subgroup K of G such that G = 〈a〉K and K∩〈a〉 = 1. This
leads to H = 〈a〉(H ∩K). Also since 〈a〉 ≤ Φ(H), we have H = H ∩K.
This implies that H ≤ K, which contradicts to K ∩ 〈a〉 = 1. Hence
Φ(H) = 1. ¤

Lemma 2.3. Let G be a group and p the smallest prime number

dividing the order of G. If every minimal subgroup of G with order p is

complemented in G, then G is p-nilpotent.

Proof. Let 〈a〉 be a subgroup of order p in G. By our hypothesis,
there is a subgroup K of G such that G = 〈a〉K and 〈a〉 ∩K = 1. Since
[G : K] = p and p is the smallest prime number dividing the order of G,
we know that K is a normal subgroup of G. Observe that every subgroup
of K with order p must be a minimal subgroup of G. Then, by Lemma 2.1
(1), every subgroup of K with order p has a complement in K. Using
induction, we deduce that K has a normal p-complement T . It is clear
that T is a Hall p′-subgroup of G and T is normal in G as well. Hence, G

is p-nilpotent. The proof is completed. ¤

Note 2.4. The assumption that p is the smallest prime number dividing
the order of G in Lemma 2.3 can not be removed. In fact, if we let
G = PSL(2, 7) with p = 7. Then it can be easily seen that G has subgroups
with order 24 and therefore every subgroup of G with order 7 must have
a complement in G. However G is not a 7-nilpotent group.

Lemma 2.3 can be strengthened by the following corollary.

Corollary 2.5. Let G be a group and p be the smallest prime number

dividing the order of G. If every minimal subgroup of P is complemented

in NG(P ), then G is p-nilpotent, where P is a Sylow p-subgroup of G.

Proof. By Lemma 2.3, we know that NG(P ) is p-nilpotent. This
means that there exists a subgroup C of NG(P ) such that NG(P ) = P×C.
It follows that NG(P ) = CG(P ) since P is an elementary abelian group
by Lemma 2.2. Hence, applying the well known Burnside Theorem [13,
Theorem 10.1.8], we know that G is p-nilpotent. ¤
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Note 2.6. Same as Note 2.4, we point out here that the assumption
that p is the smallest prime number dividing the order of G in Corollary 2.5
can not be removed as well. In fact, if we let G = A5, the alternating
group of degree 5, then it is easy to see that NG(P ) is a subgroup of G

with order 10 for every Sylow 5-subgroup P of G. Hence every minimal
subgroup of order 5 in P has a complement in NG(P ) for Sylow 5-subgroup
P of G. However, G = A5 is simple, this leads to a contradiction.

We call a class of groups F is a formation provided that the following
conditions are satisfed:

(1) F contains all homomorphic images of a group G in F ,

(2) if G/M and G/N are in F , then G/(M ∩ N) is also in F , where
M and N are normal subgroups of G.

Now, we let P be the set of all prime numbers. By a formation func-
tion f , we mean a function f defined on P such that f(p), possibly empty,
is a formation for any prime p. A principal factor H/K of a group G is
called f -central in G if G/CG(H/K) ∈ f(p) for all prime numbers p divid-
ing |H/K|. A formation F is said to be a local formation if there exists
a formation function f such that F is the class of all groups G for which
every principal factor of G is f -central in G. If F is a local formation
defined by a formation function f , then we write F = LF (f) and call f a
local definition of F .

Among all possible local definitions for a local formation F , there
exists exactly one of them, denoted it by F , such that F is both integrated
(i.e. F (p) ⊆ F for all p ∈ P ) and full (i.e. NpF (p) = F (p) for all p ∈ P ).

A formation F is called saturated if G/Φ(G) ∈ F implies that G

belongs to F . It is well known that a formation F is saturated if and only
if F is a local formation [6].

Lemma 2.7 ([6], Proposition IV. 3.11). Let F1 = LF (F1) and F2 =
LF (F2), where each Fi is both an integrated and full formation function

of Fi (i = 1, 2). Then the following statements are equivalent:

(1) F1 ⊆ F2,

(2) F1(p) ⊆ F2(p) for all p ∈ P .
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3. Main results

In this section, we concentrate on the structure of a finite group un-
der the assumption that some minimal subgroups of focal subgroups are
complemented.

First we prove the the following result about p-nilpotency.

Theorem 3.1. Let G be a group and p the smallest prime number

dividing the order of G. If every minimal subgroup of the focal subgroup

P ∩ G′ is complemented in NG(P ), then G is p-nilpotent, where P is a

Sylow p-subgroup of G.

Proof. Assume that the theorem is not true and let G be a coun-
terexample of the smallest order. Then we prove the theorem through the
following steps.

Step (i) we first claim that Op′(G) = 1.
Suppose that Op′(G) 6= 1. Then we let G = G/Op′(G) and P =

(POp′(G))/ Op′(G). It is easy to see that NG(P )=(NG(P )Op′(G))/Op′(G)
and (G)′ = (G′Op′(G))/Op′(G), and therefore P ∩ (G)′ = (P ∩G′)Op′(G)/
Op′(G). It is also clear that for any minimal subgroup A of P ∩ (G)′, there
exists a minimal subgroup A of (P ∩G′) such that A = (AOp′(G))/Op′(G).
However, by our hypothesis, A is complemented in NG(P ). Hence, there
exists a subgroup K of NG(P ) such that NG(P ) = AK and A∩K = 1. It is
clear that (NG(P )Op′(G))/Op′(G)=(AOp′(G)/Op′(G))(KOp′(G)/Op′(G)).
If A ∩ (KOp′(G) 6= 1, then A ≤ KOp′(G) and therefore NG(P )Op′(G) =
KOp′(G). But since |P | | |NG(P )Op′(G)| and |P | - |KOp′(G)|, we obtain
a contradiction. Hence A∩K = 1 and so the hypothesis of the theorem is
true for G. The minimality of G implies that G is p-nilpotent and therefore
G is p-nilpotent, a contradiction. Thus our claim is established.

Step (ii) We next prove that NG(P ) is p-nilpotent.
In fact, if NG(P ) = G, then P / G. By applying the well known

Schur–Zassenhaus Theorem, there exists a Hall p′-subgroup K of G such
that G = PK. For any prime q ∈ π(K) and Q ∈ Sylq(K), it is easy to
know that the group G1 = PQ satisfies the hypothesis of our theorem.
Hence, if G1 < G, then by the minimality of G, we know that G1 is p-
nilpotent. Consequently, K is a normal p-complement of G, which is a
contradiction. This shows that K is a q-group for some prime q. Now,
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since G is solvable, this implies that G′ < G. Let T/G′ be a Sylow q-
subgroup of G/G′. Then P ∩ G′ is a Sylow p-subgroup of T and every
minimal subgroup of P ∩ G′ is complemented in T by Lemma 2.1 (1). If
P ∩G′ = 1, then T is a normal p-complement of G. On the other hand, if
P ∩G′ 6= 1, then by Lemma 2.3, T has a normal p-complement N . Since
T/G′ / G/G′, it is easy to know that N is a normal p-complement of G,
a contradiction. Thus, we conclude that NG(P ) < G. As NG(P ) satisfies
the hypothesis of theorem. The minimality of G implies that NG(P ) is
p-nilpotent and thereby step (ii) is true.

Step (iii) We now claim that P ∩ G′ ≤ Z(NG(P )), where Z(NG(P ))
is the center of NG(P ).

In fact, by the hypothesis of theorem and Lemma 2.2, we know that
P ∩G′ is an elementary abelian group. If P ∩G′ = 1, then there is nothing
to be proved. Now, since P∩G′/P , we assume that N1 is a minimal normal
subgroup of P and N1 ≤ P ∩G′. By the properties of nilpotent groups, we
have that N1 ≤ Z(P ) and |N1| = p. Also by our hypothesis and Lemma 2.1
(1), there is a subgroup K of P such that P = N1K and N1 ∩ K = 1.
Noticing that (P ∩ G′) ∩K is still a normal subgroup of P , therefore, by
using similar arguments, we can prove that P ∩G′ = N1 ×N2 × · · · ×Ns

and Ni ≤ Z(P ). This shows that P ∩ G′ ≤ Z(P ). By step(ii), NG(P ) is
p-nilpotent, and therefore P ∩G′ ≤ Z(NG(P )). This establishes our claim.

Step (iv) Our final step is to prove our theorem.
In fact, since G is not p-nilpotent, G has a subgroup H such that

H is a minimal non-p-nilpotent group (that is, H is not p-nipotent but
every proper subgroup of H is p-nilpotent). By a result of Itô [13, Theo-
rem 10.3.3], we know that H is a minimal non-nilpotent group. According
to a result due to Schmidt [13, Theorem 9.1.9 and Exercises 9.1.11], H

has a normal Sylow p-subgroup Hp such that H = HpHq for a Sylow q-
subgroup Hq in H(q 6= p). Moreover, Hp = [Hp,Hq]. Hence, it follows
that Hp ≤ H ′ ≤ G′. On the other hand, without loss of generality, we may
assume that Hp is contained in P . Hence Hp ≤ P ∩G′.

Let A = NG(Hp). Since Hp ≤ P ∩G′ and P ∩G′ ≤ Z(NG(P )) (Step
(iii)), we have Hp is centralized by NG(P ). In particular, P ≤ CG(Hp). As
CG(Hp) / NG(Hp) = A and P ∈ Sylp(CG(Hp)), we have, by the Frattini
argument,

A = NG(Hp) = CG(Hp)NA(P ).
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Since Hp ≤ Z(NG(P )) and NA(P ) ≤ NG(P ), we have NA(P ) ≤ CG(Hp).
It follows that NG(Hp) = CG(Hp) and therefore H = Hp ×Hq, which is a
contradiction. This proves the theorem. ¤

Remark 3.2. By our Note 2.6, we notice that the requirement that p

is the smallest prime dividing the order of G in Theorem 3.1 can not be
removed.

Corollary 3.3. Let G be a group. If every minimal subgroup of P∩G′

is complemented in NG(P ) for every Sylow subgroup P of G, then G has

a Sylow tower of supersolvable type.

As an application of Theorem 3.1, we prove the following

Theorem 3.4. Let F be a saturated formation containing U , the

class of supersolvable groups. Let H be a normal subgroup of a group G

such that G/H ∈ F . If for every Sylow subgroup P of H, every minimal

subgroup of P ∩G′ is complemented in NG(P ), then G is in F .

Proof. Since U and F are saturated formations, we can let Fi (i =
1, 2) be the full and integrated formation function such that U = LF (F1)
and F = LF (F2), respectively. If the theorem is false, then we can let
G be a minimal counterexample. Then by Lemma 2.1 and Corollary 3.3,
the normal subgroup H of G has a Sylow tower of supersolvable type. Let
p be the largest prime number in π(H) and P ∈ Sylp(H). Then P must

be a normal subgroup of G. Now let G = G/P and H = H/P . Clearly,
G/H ' G/H ∈ F . Observe that NG(Q) = NG(Q)P/P for every Sylow q-
subgroup Q = QP/P of H, where Q ∈ Sylq(H)(q 6= p), and (G)′ = G′P/P ,

we know that, for every element x of order q in Q∩ (G)′, x = xP for some
element x ∈ Q ∩ G′. Thus, by our hypothesis, there exists a subgroup
K of NG(Q) such that NG(Q) = 〈x〉K and 〈x〉 ∩K = 1. It is clear that
NG(Q) = 〈x〉K. If 〈x〉∩KP 6= 1, then 〈x〉 ≤ KP and therefore NG(Q)P =
KP . It follows that |NG(Q)| |P |/|NG(Q) ∩ P | = |K| |P |/|K ∩ P |. But
|Q| | (|NG(Q)| |P |/|NG(Q) ∩ P |) and |Q| - (|K| |P |/|K ∩ P |), which is a
contradiction. Hence 〈x〉 ∩ KP = 1, and so 〈x〉 ∩ K = 1. Now we have
proved that G/P satifies the hypothesis of the theorem. Thereby, by the
minimality of G, we have G/P ∈ F .

Since G/G′ is abelian and U is contained in F , we have G/G′ ∈ F . It
follows that G/(G′ ∩ P ) ∈ F and, by our hypothesis, we know that every
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minimal subgroup of G′ ∩P is complemented in G since P is normal in G.
By Lemma 2.2, G′ ∩ P is an elementary abelian subgroup. Now, let N

be a minimal normal subgroup of G such that N ≤ G′ ∩ P . Then, it can
be easily proved that N is a cyclic group of order p since every minimal
subgroup of N is complemented in G. We now denote with bars the images
in G = G/N . Then, G has a normal subgroup G′ ∩ P such that G/G′ ∩ P

belongs to F . Obviously, (G)′ ∩ G′ ∩ P = (G′ ∩ P )/N and G′ ∩ P / G.
We now proceed to prove that every minimal subgroup of (G′ ∩ P )/N is
complemented in G. For this purpose, we let 〈x〉 be a minimal subgroup of
G′ ∩ P . Since G′ ∩ P is an elementary abelian group, we know that there
is an element x ∈ G′ ∩ P with order p such that 〈x〉 = 〈x〉N/N . Since
〈x〉 is minimal in G and so by the hypothesis, there exists a subgroup
K of G such that G = 〈x〉K and 〈x〉 ∩ K = 1. If N ≤ K, then it is
clear that G = 〈x〉K and 〈x〉 ∩ K = 1. If N � K, then G = NK and
N ∩K = 1. It follows that |(〈x〉N) ∩K| = p. Denote (〈x〉N) ∩K = A.
Then A is a minimal subgroup of G′ ∩ P and A ≤ K. By Lemma 2.1
(1), there is a subgroup K1 of K such that K = AK1 and A ∩ K1 = 1.
It is clear that AN = 〈x〉N and therefore G = 〈x〉K1. We now claim
that 〈x〉 ∩ K1 = 1. For if not, then we have |(〈x〉N) ∩ K1| ≥ p. This
implies that |N | |K| = |G| = |〈x〉NK1| ≤ (|〈x〉N | |K1|)/p = (|N | |K|)/p,
a contradiction. Hence, G satisfies the hypothesis of the theorem. By
minimality of G, we have that G = G/N ∈ F .

Now, since N is a cyclic group of order p, Aut(N) is a cyclic group
of order p − 1. Also, since G/CG(N) ≤ Aut(N), by Lemma 2.7, we have
G/CG(N) ∈ F1(p) ⊆ F2(p) and therefore G ∈ F , a contradiction. The
proof of the theorem is now completed. ¤

Remark 3.5. Let F be the class of groups G with G′ nilpotent (or U ,
the class of supersolvable groups). It is easy to see that F is a saturated
formation containing the class U . Thus, by Theorem 3.4, we can see that
G ∈ F if G/H ∈ F and all minimal subgroups of P ∩G′ are comlemented
in NG(P ) for every Sylow subgroup P of H.

Remark 3.6. We remark here that Theorem 3.4 is not true if the satu-
rated formations F does not contain U (the class of supersolvable groups).
For example, if we let F be the saturated formation of all niplotent groups,
then the symmetric group of degree three is a counterexample.
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If G is assumed to be a solvable group, then the number of comple-
mented minimal subgroups in Theorem 3.4 can be further reduced. In
fact, we have the following theorem.

Theorem 3.7. Let F be a saturated formation containing U , the class

of supersolvable groups. Let H be a normal subgroup of a solvable group

G such that G/H ∈ F . If every minimal subgroup of the Fitting subgroup

F (G′ ∩H) of G′ ∩H has a complement in G, then G belongs to F .

Remark 3.8. Since F (G′ ∩H) = G′ ∩ F (H) = (G′ ∩ P1)× (G′ ∩ P2)×
· · · × (G′ ∩ Pk), we know that every minimal subgroup of F (G′ ∩ H) in
Theorem 3.7 is still a minimal subgroup of some focal subgroup G′ ∩ Pi,
where Pi is the Sylow pi-subgroup of F (H) for some prime pi.

Proof of Theorem 3.7. Assume that the theorem is false and let G

be a counterexample of the smallest order. Since G/G′ is abelian, we have
that G/G′ ∈ F and so G/(H ∩G′) ∈ F . Hence, we can prove our theorem
by replacing G′ ∩H by H and assume that H ≤ G′.

We first prove that Φ(G) = 1. If Φ(G) 6= 1, then there is a prime
number q dividing the order of Φ(G) and Q ∈ Sylq(Φ(G)). Since Q is a
characteristic subgroup of Φ(G) and Φ(G)/G, we know that Q is a normal
subgroup of G. Observe that (G/Q)′ = G′Q/Q, so we still have HQ/Q ≤
(G/Q)′. Clearly, (G/Q)/(HQ/Q) ' G/HQ ∈ F . By a result [10, Satz 3.5,
P270], F (HQ/Q) = F (HQ)/Q and therefore by [3, Lemma 3.1], we have
F (HQ) = F (H)Q. It follows that F (HQ/Q) = F (H)Q/Q. Thus, for
any minimal subgroup A of F (HQ/Q), we can find a minimal subgroup
A ≤ F (H) such that A = AQ/Q. By the hypothesis of the theorem,
there exists a subgroup K of G such that G = AK and A ∩K = 1. The
minimality of A implies that K has a prime index in G and so K is a
maximal subgroup of G. It follows that Q ≤ K and therefore (K/Q) ∩
(AQ/Q) = 1. It is clear that G/Q = (AQ/Q)K/Q. Thus, we have shown
that G/Q satisfies the hypothesis of the theorem. The minimality of G

implies that G/Q ∈ F . Hence G ∈ F since Q ≤ Φ(G) and F is a saturated
formation, a contradiction. Thus Φ(G) = 1.

Next, by applying a result of Deyu Li and Xiuyun Guo in [11,
Lemma 2.3], we deduce that

F (G) = M1 ×M2 × · · · ×Ms ×N1 ×N2 × · · · ×Nt
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where Mi and Nj (i = 1, 2, . . . , s, j = 1, 2, . . . , t) are minimal normal
subgroups of G, Mi ∩H = 1 and F (H) = N1 × · · · ×Nt.

Now let Fi(i = 1, 2) be the full and integrated formation functions such
that U = LF (F1) and F = LF (F2), respectively. Then for any minimal
normal subgroup N of G, we have that N ≤ F (G). If N ∩H = 1, we can
assume that N = Mi. Since Mi ' MiH/H and G/H ∈ F , we know that
(G/H)/CG/H(MiH/H) ∈ F2(p) if |Mi| = pα. By [14, Appendix B: The-
orem 2 and Theorem 3], we have G/CG(Mi) ' (G/H)/CG/H(MiH/H).
Hence G/CG(Mi) ∈ F2(p). If N ≤ H, then N ≤ F (H) and without
loss of generality, we may assume that N = Nj . Let A be a minmal
subgroup of Nj . Then, by our hypothesis, there exists a subgroup K

of G such that G = AK and A ∩ K = 1. As Nj = A(Nj ∩ K) and
Nj ∩K / K, we have that Nj ∩K is a normal subgroup of G since Nj is
abelian. Thus, the minmality of Nj implies that Nj ∩K = 1 and therefore
Nj = A is a cyclic group of order prime. Since G/CG(Nj) is isomor-
phic to a subgroup of Aut(Nj) and Aut(Nj) itself is a cyclic group, we
have G/CG(Nj) ∈ F1(p), where p = |Nj |. Now, by Lemma 2.7, we have
G/CG(Nj) ∈ F2(p). Hence, for every minimal normal subgroup N of G, if
|N | = pα, we have G/CG(N) ∈ F2(p) and thereby G ∈ F by Lemma 5.1.13
in [14]. The proof of the theorem is now completed. ¤

Remark 3.9. A subgroup H of a finite group G is said to be c-sup-
plemented in G if there exists a subgroup K of G such that G = HK

and H ∩K ≤ HG = coreG(H). According to the referee’s suggestion, we
may give the following example. Let G = S4 and P a Sylow 2-subgroup
of G. It is clear that NG(P ) = P and every minimal subgroup of P ∩ G′

is c-supplemented in NG(P ) = P . But G is not 2-nilpotent. Also if Q

is a Sylow 3-subgroup of G, then it is easy to know that every minimal
subgroup of Q ∩ G′ is c-supplemented in NG(Q). But G is not a Sylow
tower group. Hence our results (Theorem 3.1 and Theorem 3.4) are not
true if we replace complementation by c-supplementation.
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