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Completely generalized multivalued strongly
quasivariational inequalities

By Z. LIU (Liaoning), S. M. KANG (Chinju) and
J. S. UME (Changwon)

Abstract. In this paper, we introduce and study two new classes of qua-
sivariational inequalities and construct some iterative algorithms by using the
projection technique. We establish the existence of solutions for these classes of
quasivariational inequalities involving relaxed Lipschitz, relaxed monotone and
generalized pseudocontractive mappings. Under suitable conditions, the conver-
gence analyses of the iterative algorithms are also studied. Our results are the
extension and improvements of the earlier and recent results in this field.

1. Introduction

Variational inequality theory is a very powerful tool of the current
mathematical technology. Up to now it has been extended and gener-
alized to study a wide class of problems arising in mechanics, physics,
optimization and control, nonlinear programming, economics and trans-
portation equilibrium and engineering sciences etc. For details we refer to
[1]–[3] and [6]–[16]. Quasivariational inequalities are the extended form of
variational inequalities in which the constrained set depends upon the so-
lutions. Recently, Yao [16] and Verma [11]–[15] studied the solvability of
some classes of variational inequalities involving relaxed Lipschitz, relaxed
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monotone and generalized pseudocontractive mappings. Bai–Tang–Liu

[1] extended the results due to Yao [16] and Verma [11]–[15] from the
variational inequalities to the completely generalized strongly nonlinear
implicit quasivariational inequalities. On the other hand, Guo–Yao [2],
Lee–Lee–Huang [3], Noor [6]–[8], Siddiqi–Ansari [10] and others in-
troduced and studied some classes of variational inequalities and quasivari-
ational inequalities dealing with strongly monotone mappings, respectively.
Inspired and motivated by the results in [1]–[4] and [6]–[16], in this paper,
we introduce and study two new classes of quasivariational inequalities and
construct some iterative algorithms by using the projection technique. We
establish the existence of solutions for these quasivariational inequalities
involving relaxed Lipschitz, relaxed monotone and generalized pseudocon-
tractive mappings. Under suitable conditions, the convergence analyses of
the iterative algorithms are also studied. Our results extend, improve and
unify recent results due to Bai–Tang–Liu [1], Guo–Yao [2], Lee–Lee–

Huang [3], Noor [6]–[8], Siddiqi–Ansari [10], Verma [11]–[15], Yao

[16] and others.

2. Preliminaries

In what follows, we assume that H is a real Hilbert space endowed
with norm ‖·‖ and inner product 〈·, ·〉, and I denotes the identity mapping
on H. Let 2H , CB(H) and CC(H) denote the families of all nonempty
subsets, nonempty bounded closed subsets and nonempty closed convex
subsets of H, respectively. Let PK be the projection of H onto K, where
K is a subset of H. Given f ∈ H, g, h : H → H, A,B,C, D : H → 2H ,
K : H → CC(H) and N : H × H × H → H, we consider the following
problem:

Find u ∈ H, x ∈ Au, y ∈ Bu, z ∈ Cu, w ∈ Du such that gu ∈ K(w)
and

〈hgu, v − gu〉 ≥ 〈N(x, y, z)− f, v − gu〉 for all v ∈ K(w), (2.1)

which is called the completely generalized multivalued strongly quasivaria-
tional inequality.
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Special cases

If h = I, then problem (2.1) is equivalent to finding u ∈ H, x ∈ Au,
y ∈ Bu, z ∈ Cu, w ∈ Du such that gu ∈ K(w) and

〈gu, v − gu〉 ≥ 〈N(x, y, z)− f, v − gu〉 for all v ∈ K(w), (2.2)

which is known as the completely generalized multivalued quasivariational
inequality.

If C = I and N(x, y, z) = by − ρ(ax − f) for all x, y, z ∈ H, where
ρ > 0 is a constant and a, b : H → H are mappings, then problem (2.1)
collapses to finding u ∈ H, x ∈ Au, y ∈ Bu, w ∈ Du such that gu ∈ K(w)
and

〈hgu, v − gu〉 ≥ 〈by − ρ(ax− f), v − gu〉 for all v ∈ K(w), (2.3)

which is called the generalized set-valued strongly nonlinear implicit qua-
sivariational inequality introduced by Lee–Lee–Huang [3].

If A = B = C = D = I, f = 0 and N(x, y, z) = hx − ρ(by + cz) for
all x, y, z ∈ H, where ρ > 0 is a constant and b, c : H → H are mappings,
then problem (2.1) is equivalent to finding u ∈ K such that gu ∈ K(u)
and

〈hgu, v − gu〉 ≥ 〈hu, v − gu〉 − ρ〈(b + c)u, v − gu〉

for all v ∈ K(u),
(2.4)

which is called the nonlinear variational inequality introduced and studied
by Verma [15].

If A = I, f = 0 and N(x, y, z) = hgx − N(y, z) for all x, y, z ∈ H,
where N : H ×H is a nonlinear mapping, then problem (2.1) is equivalent
to fining u ∈ H, y ∈ Bu, z ∈ Cu such that gu ∈ K(u) and

〈N(y, z), v − gu〉 ≥ 0 for all v ∈ K(u), (2.5)

which is called the generalized multivalued quasi-variational inequality and
introduced and studied by Noor [7].

If h = C = I, f = 0 and N(x, y, z) = ax − by for all x, y ∈ H, where
a, b : H → H are mappings, then problem (2.1) reduces to finding u ∈ H,
x ∈ Au, y ∈ Bu, w ∈ Du such that gu ∈ K(w) and

〈gu, v − gu〉 ≥ 〈ax− by, v − gu〉 for all v ∈ K(w), (2.6)
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which is known as the completely generalized strongly nonlinear implicit
quasivariational inequality and introduced by Bai–Tang–Liu [1].

For suitable and appropriate choice of the mappings g, h, A, B, C,
D, K, N and the element f , one can obtain various classes of variational
inequalities or quasivariatioal inequalities in [2], [8]–[14] as special cases of
problem (2.1).

Problem 2.1 has potential applications in mechanics, physics, differen-
tial equations, pure and applied sciences. Furthermore, there exist prob-
lems arising in structural analysis, which can be studied by the completely
generalized multivalued strongly quasivariational inequality (2.1) only.

Example 2.1. For simplicity, we consider a elastoplasticity problem,
which is mainly due to Panagiotopoulos–Stavroulakis [9]. It is as-
sumed that a general hyperelastic material law holds for the elastic behav-
ior of the elastoplastic material under consideration. Moreover, a noncon-
vex yield function σ → F (σ) is introduced for the plasticity. For the basic
definitions and concepts, see [9]. Let us assume the decomposition

E = Ee + Ep, (2.7)

where Ee denotes the elastic, and Ep the plastic deformation of the three-
dimensional elastoplastic body. We write the complementary virtual work
expression for the body in the form

〈Ee, τ − σ〉+ 〈Ep, τ − σ〉 = 〈f, τ − σ〉 for all τ ∈ Z. (2.8)

Here we have assumed that the body on a part ΓU of its boundary has
given displacements, that is, µi = Ui on ΓU , and that on the rest of its
boundary ΓF = Γ−ΓU , the boundary tractions are given, that is, Si = Fi

on ΓF , where

〈E, σ〉 =
∫

Ω
εijσijdΩ, 〈f, σ〉 =

∫

ΓU

UiSidΓ,

Z = {τ : τij ,j + fi = 0 on Ω, i, j = 1, 2, 3,

Ti = Fi on ΓF , i = 1, 2, 3}

(2.9)

is the set of statically admissible stresses and Ω is the structure of the
body. Let us assume that the material of the structure Ω is hyperelastic
such that

〈Ee, τ − σ〉 ≤ 〈W ′
m(σ), τ − σ〉 for all τ ∈ R6, (2.10)
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where Wm is the superpotential which produces the constitutive law of
the hyperelastic material and is assumed to be quasidifferentiable, that is,
there exist convex and compact subsets ∂′Wm and ∂

′
Wm such that

〈W ′
m(σ), τ − σ〉 = max

W e
1∈∂′Wm

〈W e
1 , τ − σ〉+ min

W e
2∈∂

′
Wm

〈W e
2 , τ − σ〉. (2.11)

We also introduce the generally nonconvex yield function P ⊂ Z, which is
defined by means of the general quasidifferentiable function F (σ), that is,

P = {σ ∈ Z : F (σ) ≤ 0}. (2.12)

Here Wm is a generally nonconvex and nonsmooth, but quasidifferentiable
function for the case of plasticity with convex yield surface and hyperelas-
ticity. Combining (2.7)–(2.12), we can obtain the following problem: find

σ ∈ P (σ) such that W e
1 ∈ ∂′Wm(σ), W e

2 ∈ ∂
′
Wm(σ) and

〈N(W e
1 ,W e

2 ), τ − σ〉 ≥ 〈f, τ − σ〉 for all τ ∈ P (σ),

which is exactly problem (2.1) with C = h, D = g = I, N(x, y, z) =
hz − N(x, y) + 2f , u = σ, K(u) = P (σ), W e

1 ∈ ∂′Wm(σ) = Au and

W e
2 ∈ ∂

′
Wm(σ) = Bu.

Definition 2.1. A mapping h : H → H is said to be strongly monotone
and Lipschitz continuous, if there exist constants r, s > 0 such that

〈hu− hv, u− v〉 ≥ r‖u− v‖2 and ‖hu− hv‖ ≤ s‖u− v‖

for all u, v ∈ H, respectively.

Definition 2.2. A multivalued mapping A : H → CB(H) is said to be
H-Lipschitz continuous, if there exists a constant r > 0 such that

H(Au,Av) ≤ r‖u− v‖ for all u, v ∈ H,

where H(·, ·) denote the Hausdorff metric on CB(H).

Definition 2.3. A multivalued mapping A : H → 2H is said to be
(i) relaxed Lipschitz with respect to the first argument of N : H ×H ×

H → H, if there exists a constant r > 0 such that

〈N(x, a, b)−N(y, a, b), u− v〉 ≤ −r‖u− v‖2
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for all a, b, u, v ∈ H, x ∈ Au and y ∈ Av;
(ii) generalized pseudocontractive with respect to the second argument

of N : H ×H ×H → H, if there exists a constant r > 0 such that

〈N(a, x, b)−N(a, y, b), u− v〉 ≤ r‖u− v‖2

for all a, b, u, v ∈ H, x ∈ Au and y ∈ Av;
(iii) relaxed monotone with respect to the third argument of N : H ×

H ×H → H, if there exists a constant r > 0 such that

〈N(a, b, x)−N(a, b, y), u− v〉 ≥ −r‖u− v‖2

for all a, b, u, v ∈ H, x ∈ Au and y ∈ Av.

Definition 2.4. A mapping N : H×H×H → H is said to be Lipschitz
continuous with respect to the first argument if there exists a constant t > 0
such that

‖N(x, a, b)−N(y, a, b)‖ ≤ t‖x− y‖ for all x, y, a, b ∈ H.

In a similar way, we can define the Lipschitz continuity of the mapping
N(·, ·, ·) with respect to the second or third argument.

3. Main results

Lemma 3.1 ([4]). Let K be a closed convex set in H. Then, given

z ∈ H, u = PKz if and only if u ∈ K satisfies

〈u− z, v − u〉 ≥ 0 for all v ∈ K.

Furthermore, the projection operator PK is nonexpensive, that is,

‖PKu− PKv‖ ≤ ‖u− v‖ for all u, v ∈ H.

It follows from (2.1), (2.2) and Lemma 3.1 that

Lemma 3.2. The completely generalized multivalued strongly quasi-

variational inequality (2.1) has a solution u ∈ H, x ∈ Au, y ∈ Bu, z ∈ Cu,

w ∈ Du with gu ∈ K(w) if and only if there exist u ∈ H, x ∈ Au, y ∈ Bu,

z ∈ Cu, w ∈ Du such that

gu = PK(w)[gu− ρ(hgu−N(x, y, z) + f)],

where ρ > 0 is a constant.
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Lemma 3.3. The completely generalized multivalued quasivariational

inequality (2.2) has a solution u ∈ H, x ∈ Au, y ∈ Bu, z ∈ Cu, w ∈ Du

with gu ∈ K(w) if and only if there exist u ∈ H, x ∈ Au, y ∈ Bu, z ∈ Cu,

w ∈ Du such that

gu = PK(w)[(1− ρ)gu + ρN(x, y, z)− ρf ],

where ρ > 0 is a constant.

Remark 3.1. Lemmas 3.2 and 3.3 extend Lemma 3.3 in [1], Proposi-
tion 3.1 in [2], Lemma 3.1 in [8], Lemma 3.2 in [11], [12], Theorem 2.1 in
[14] and Lemma 2.2 in [15].

Based on Lemmas 3.2, 3.3 and Nadler’s result [5], we are now in a
position to propose the following algorithms for the completely generalized
multivalued strongly quasivariational inequality (2.1) and the completely
generalized multivalued quasivariational inequality (2.2).

Algorithm 3.1. Let A,B, C, D : H → CB(H), K : H → CC(H) and

g, h : H → H. Given u0 ∈ H, x0 ∈ Au0, y0 ∈ Bu0, z0 ∈ Cu0, w0 ∈ Du0,

compute un+1 by the iterative scheme

gun+1 = PK(wn)[gun − ρ(hgun −N(xn, yn, zn) + f)], (3.1)

‖xn − xn+1‖ ≤ (1 + (n + 1)−1)H(Aun, Aun+1), xn ∈ Aun,

‖yn − yn+1‖ ≤ (1 + (n + 1)−1)H(Bun, Bun+1), yn ∈ Bun,

‖zn − zn+1‖ ≤ (1 + (n + 1)−1)H(Cun, Cun+1), zn ∈ Cun,

‖wn − wn+1‖ ≤ (1 + (n + 1)−1)H(Dun, Dun+1), wn ∈ Dun

(3.2)

for all n ≥ 0, where ρ > 0 is a constant.

Algorithm 3.2. Let A,B, C,D : H → CB(H), K : H → CC(H)
and g : H → H. Given u0 ∈ H, x0 ∈ Au0, y0 ∈ Bu0, z0 ∈ Cu0, w0 ∈ Du0,

compute un+1 by the iterative scheme

gun+1 = PK(wn)[(1− ρ)gun + ρN(xn, yn, zn)− ρf ] (3.3)

for all n ≥ 0, where ρ > 0 is a constant and {xn}n≥0, {yn}n≥0, {zn}n≥0,

{wn}n≥0 are defined in (3.2).
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Remark 3.2. Algorithms 3.1 and 3.2 include several known algorithms
of [1], [11], [12] as special cases.

Now we establish the existence of solutions of the completely gener-
alized multivalued strongly quasivariational inequality (2.1) and the com-
pletely generalized multivalued quasivariational inequality (2.2), and the
convergence of iterative sequences generated by Algorithms 3.1 and 3.2.

Theorem 3.1. Let g, h : H → H be Lipschitz continuous with con-

stants p, q, respectively, and g be strongly monotone with constant δ. Let

N : H × H × H → H be Lipschitz continuous with constants σ, η, ζ

with respect to the first, second and third arguments, respectively. Let

K : H → CC(H) be a multivalued mapping such that

‖PK(x)(z)− PK(y)(z)‖ ≤ µ‖x− y‖ for all x, y, z ∈ H, (3.4)

where µ > 0 is a constant. Suppose that A, B,C, D : H → CB(H) are

H-Lipschtiz continuous with H-Lipschitz constants α, β, γ, ξ, respectively,

and A is relaxed Lipschitz with constant τ with respect to the first argu-

ment of N , and B is generalized pseudocontractive with constant υ with

respect to the second argument of N . Let k =
√

1− 2δ + p2 + µξ and

j = qp + ζγ. If there exists a constant ρ > 0 satisfying

k + ρj < δ, (3.5)

and at least one of the following conditions

σα + ηβ > j, |τ − υ − (δ − k)j| >
√

(1− (δ − k)2)((σα + ηβ)2 − j2),
∣∣∣∣ρ−

τ − υ − (δ − k)j
(σα + ηβ)2 − j2

∣∣∣∣ (3.6)

<

√
(τ − υ − (δ − k)j)2 − (1− (δ − k)2)((σα + ηβ)2 − j)

(σα + ηβ)2 − j2
;

σα + ηβ = j, τ − υ < (δ − k)j, ρ >
1− (δ − k)2

2(τ − υ − (δ − k)j)
; (3.7)

σα + ηβ < j,
∣∣∣∣ρ−

(δ − k)j − τ + υ

j2 − (σα + ηβ)2

∣∣∣∣ (3.8)
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>

√
(1− (δ − k)2)(j2 − (σα + ηβ)2) + ((δ − k)j − τ + υ)2

j2 − (σα + ηβ)2
,

then for every f ∈ H, the completely generalized multivalued strongly

quasivariational inequality (2.1) has a solution u ∈ H, x ∈ Au, y ∈ Bu,

z ∈ Cu, w ∈ Du with hu ∈ K(w) and un → u, xn → x, yn → y, zn → z,

wn → w as n →∞, where {un}n≥0, {xn}n≥0, {yn}n≥0, {zn}n≥0, {wn}n≥0

are defined in Algorithm 3.1.

Proof. Since g is Lipschitz continuous and strongly monotone, it
follows that

‖un − un−1 − (gun − gun−1)‖ ≤
√

1− 2δ + p2‖un − un−1‖. (3.9)

Since A and B are H-Lipschitz continuous, relaxed Lipschitz and gener-
alized pseudocontractive with respect to the first and second arguments
of N , respectively, and N is Lipschitz continuous with respect to the first
and second arguments, by (3.2) we know that

‖un − un−1 + ρ[N(xn, yn, zn)−N(xn−1, yn−1, zn)]‖2

= ‖un − un−1‖2 + 2ρ〈N(xn, yn, zn)−N(xn−1, yn, zn), un − un−1〉
+ 2ρ〈N(xn−1, yn, zn)−N(xn−1, yn−1, zn), un − un−1〉

+ ρ2‖N(xn, yn, zn)−N(xn−1, yn, zn) + N(xn−1, yn, zn) (3.10)

−N(xn−1, yn−1, zn)‖2

≤ (1− 2ρ(τ − υ))‖un − un−1‖2 + ρ2(σ‖xn − xn−1‖+ η‖yn − yn−1‖)2

≤ (1− 2ρ(τ − υ) + ρ2(σα + ηβ)2(1 + n−1)2)‖un − un−1‖2

and
‖N(xn−1, yn−1, zn)−N(xn−1, yn−1, zn−1)‖

≤ ξ‖zn − zn−1‖ ≤ ξγ(1 + n−1)‖un − un−1‖.
(3.11)

It follows from (3.1), (3.4), (3.9)–(3.11), Lemma 3.2 and the strong mono-
tonicity of g that

‖un+1 − un‖ ≤ δ−1‖gun+1 − gun‖
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≤ δ−1(‖PK(wn)(gun − ρ(hgun −N(xn, yn, zn) + f))

− PK(wn)(gun−1 − ρ(hgun−1 −N(xn−1, yn−1, zn−1) + f))‖
+ ‖PK(wn)(gun−1 − ρ(hgun−1 −N(xn−1, yn−1, zn−1) + f))

− PK(wn−1)(gun−1 − ρ(hgun−1 −N(xn−1, yn−1, zn−1) + f))‖)

≤ δ−1(‖gun − gun−1 − ρ(hgun − hgun−1 −N(xn, yn, zn)

+ N(xn−1, yn−1, zn−1))‖+ µ‖wn − wn−1‖)

≤ δ−1(‖gun − gun−1 − (un − un−1)‖+ ρ‖hgun − hgun−1‖
+ ‖un − un−1 + ρ(N(xn, yn, zn)−N(xn−1, yn−1, zn))‖
+ ρ‖N(xn−1, yn−1, zn)−N(xn−1, yn−1, zn−1)‖

+ µ(1 + n−1)H(Dun, Dun−1))

≤ δ−1(
√

1− 2δ + p2

+ ρqp +
√

1− 2ρ(τ − v) + ρ2(σα + ηβ)2(1 + n−1)2

+ ρζγ(1 + n−1) + µξ(1 + n−1))‖un − un−1‖
= θn‖un − un−1‖, (3.12)

where

θn = δ−1(
√

1− 2δ + p2 + ρqp +
√

1− 2ρ(τ − v)+ ρ2(σα + ηβ)2(1+n−1)2

+ ρζγ(1 + n−1) + µξ(1 + n−1)) → θ

= δ−1(k + ρj +
√

1− 2ρ(τ − v) + ρ2(σα + ηβ)2)

as n →∞. It is clear that (3.5) yields that

θ < 1 ⇔
√

1− 2ρ(τ − υ) + ρ2(σα + ηβ)2 < δ − k − ρj (3.13)

⇔ ((σα + ηβ)2 − j2)ρ2 − 2ρ(τ − υ − (δ − k)j) < (δ − k)2 − 1.

It follows from (3.13) and one of (3.6), (3.7) and (3.8) that θ < 1. Thus
θn < 1 for n sufficiently large and (3.12) yields that {un}n≥0 is a Cauchy
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sequence in H. Let un → u ∈ H as n → ∞. Using (3.2) and the H-Lip-
schitz continuity of A, B, C, D, we have

‖xn − xn+1‖ ≤ (1 + (n + 1)−1)H(Aun, Aun+1)

≤ (1 + (n + 1)−1)α‖un − un+1‖,

‖yn − yn+1‖ ≤ (1 + (n + 1)−1)H(Bun, Bun+1)

≤ (1 + (n + 1)−1)β‖un − un+1‖,

‖zn − zn+1‖ ≤ (1 + (n + 1)−1)H(Cun, Cun+1)

≤ (1 + (n + 1)−1)γ‖un − un+1‖,

‖wn − wn+1‖ ≤ (1 + (n + 1)−1)H(Dun, Dun+1)

≤ (1 + (n + 1)−1)ξ‖un − un+1‖,

which mean that {xn}n≥0, {yn}n≥0, {zn}n≥0, {wn}n≥0 are Cauchy se-
quences in H. Let xn → x, yn → y, zn → z and wn → w as n → ∞.
Notice that

d(x,Au) = inf{‖x− t‖ : t ∈ Au} ≤ ‖x− xn‖+ d(xn, Au)

≤ ‖x− xn‖+ H(Aun, Au) ≤ ‖x− xn‖+ α‖un − u‖ → 0

as n → ∞. Hence x ∈ Au. Similarly, we have y ∈ Bu, z ∈ Cu and
w ∈ Du. Using Lemma 3.1, (3.1), and the Lipschitz continuity of h, g,
and the H-Lipschitz continuity of N with respect to the first, second and
third arguments, respectively, we get that

gu = PK(w)(gu− ρ(hgu−N(x, y, z) + f)). (3.14)

In view of (3.14 and Lemma 3.2, we obtain that the completely generalized
multivalued strongly quasivariational inequality (2.1) has a solution u ∈ H,
x ∈ Au, y ∈ Bu, z ∈ Cu, w ∈ Du with gu ∈ K(w). This completes the
proof. ¤

Theorem 3.2. Let g, N , K, A, B, C, D, k be as in Theorem 3.1 and

j = ζγ −
√

1− 2δ + p2 ≥ 0.
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Suppose that there exists a constant ρ ∈ (0, 1] satisfying (3.5) and one of

the following conditions:

1 + 2(τ − υ) + (σα + ηβ)2 > j2,

|1 + τ − υ − (δ − k)j|

>
√

(1− (δ − k)2)(1 + 2(τ − υ) + (σα + ηβ)2 − j2), (3.15)

∣∣∣∣ρ−
1 + τ − υ − (δ − k)j

1 + 2(τ − υ) + (σα + ηβ)2 − j2

∣∣∣∣

<

√
(1+τ−υ−(δ−k)j)2−(1−(δ−k)2)(1+2(τ−υ)+(σα+ηβ)2−j2)

1 + 2(τ − υ) + (σα + ηβ)2 − j2
;

1 + 2(τ − υ) + (σα + ηβ)2 = j2, 1 + τ − υ > (δ − k)j,

ρ >
1− (δ − k)2

2(1 + τ − υ − (δ − k)j)
;

(3.16)

1 + 2(τ − υ) + (σα + ηβ)2 < j2,
∣∣∣∣ρ−

(δ − k)j − 1− τ + υ

j2 − 1− 2(τ − υ)− (σα + ηβ)2

∣∣∣∣ (3.17)

<

√
((δ−k)j−1−τ+υ)2+(1−(δ−k)2)(j2−1−2(τ−υ)−(σα + ηβ)2)

j2 − 1− 2(τ − υ)− (σα + ηβ)2
.

Then for every f ∈ H, the completely generalized multivalued quasivari-

ational inequality (2.2) has a solution u ∈ H, x ∈ Au, y ∈ Bu, z ∈ Cu,

w ∈ Du with gu ∈ K(w) and un → u, xn → x, yn → y, zn → z, wn → w as

n →∞, where {un}n≥0, {xn}n≥0, {yn}n≥0, {zn}n≥0, {wn}n≥0 are defined

in Algorithm 3.2.

Proof. Since A and B are H-Lipschitz continuous, relaxed Lipschitz
and generalized pseudocontractive with respect to the first and second
arguments of N , respectively, and N is Lipschitz continuous with respect
to the first and second arguments, respectively, by (3.2) we infer that

‖(1− ρ)(un − un−1) + ρ[N(xn, yn, zn)−N(xn−1, yn−1, zn)]‖2 (3.18)
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= (1− ρ)2‖un − un−1‖2 + 2(1− ρ)ρ〈N(xn, yn, zn)

−N(xn−1, yn, zn), un − un−1〉+ 2(1− ρ)ρ〈N(xn−1, yn, zn)

−N(xn−1, yn−1, zn), un − un−1〉+ ρ2‖N(xn, yn, zn)

−N(xn−1, yn, zn) + N(xn−1, yn, zn)−N(xn−1, yn−1, zn)‖2

≤((1−ρ)2−2(1−ρ)ρ(τ−υ)+ρ2(σα+ηβ)2(1+n−1)2)‖un−un−1‖2.

In view of (3.2)–(3.4), (3.9), (3.11), (3.18), Lemma 3.1 and the strong
monotonicity of g, we conclude that

‖un+1 − un‖ ≤ δ−1‖gun+1 − gun‖

≤ δ−1(‖PK(wn)((1− ρ)gun + ρ(N(xn, yn, zn)− f))

− PK(wn)((1− ρ)gun−1 + ρ(N(xn−1, yn−1, zn−1)− f))‖
+ ‖PK(wn)((1− ρ)gun−1 + ρ(N(xn−1, yn−1, zn−1)− f))

− PK(wn−1)((1− ρ)gun−1 + ρ(N(xn−1, yn−1, zn−1)− f))‖)

≤ δ−1(‖(1− ρ)(gun − gun−1) + ρ(N(xn, yn, zn) (3.19)

−N(xn−1, yn−1, zn−1))‖+ µ‖wn − wn−1‖)

≤ δ−1((1− ρ)‖gun − gun−1 − (un − un−1)‖
+ ‖(1− ρ)(un − un−1) + ρ(N(xn, yn, zn)−N(xn−1, yn−1, zn))‖
+ ρ‖N(xn−1, yn−1, zn)−N(xn−1, yn−1, zn−1)‖

+ µ(1 + n−1)H(Dun, Dun−1)) = θn‖un − un−1‖,

where

θn = δ−1((1− ρ)
√

1− 2δ + p2

+
√

(1− ρ)2 − 2(1− ρ)ρ(τ − v) + ρ2(σα + ηβ)2(1 + n−1)2

+ ρζγ(1 + n−1) + µξ(1 + n−1)) → θ

= δ−1(k + ρj +
√

(1− ρ)2 − 2(1− ρ)ρ(τ − v) + ρ2(σα + ηβ)2)
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as → ∞. The remaining portion of the proof can be derived as in Theo-
rem 3.1. This completes the proof. ¤

Theorem 3.3. Let g, N , K, A, B, C, D, k be as in Theorem 3.1.

Suppose that C is relaxed monotone with constant ϕ with respect to

the third argument of N and j =
√

1 + 2ϕ + ζ2γ2 +
√

1 + 2υ + η2β2 −√
1− 2δ + p2 ≥ 0. If there exists a constant ρ ∈ (0, 1] satisfying (3.5) and

one of the following conditions:

1 + 2τ + σ2α2 > j2,

|1 + τ − (δ − k)j| >
√

(1− (δ − k)2)(1 + 2τ + σ2α2 − j2),
∣∣∣∣ρ−

1 + τ − (δ − k)j
1 + 2τ + σ2α2 − j2

∣∣∣∣ (3.20)

<

√
(1 + τ − (δ − k)j)2 − (1− (δ − k)2)(1 + 2τ + σ2α2 − j2)

1 + 2τ + σ2α2 − j2
;

1 + 2τ + σ2α2 = j2, 1 + τ > (δ − k)j,

ρ >
1− (δ − k)2

2(1 + τ − (δ − k)j)
;

(3.21)

1 + 2τ + σ2α2 < j2,
∣∣∣∣ρ−

(δ − k)j − 1− τ

j2 − 1− 2τ − σ2α2

∣∣∣∣ (3.22)

<

√
((δ − k)j − 1− τ)2 + (1− (δ − k)2)(j2 − 1− 2τ − σ2α2)

j2 − 1− 2τ − σ2α2
,

then for every f ∈ H, the completely generalized multivalued quasivari-

ational inequality (2.2) has a solution u ∈ H, x ∈ Au, y ∈ Bu, z ∈ Cu,

w ∈ Du with gu ∈ K(w) and un → u, xn → x, yn → y, zn → z, wn → w as

n →∞, where {un}n≥0, {xn}n≥0, {yn}n≥0, {zn}n≥0, {wn}n≥0 are defined

in Algorithm 3.2.

Proof. Because N is Lipschitz continuous with respect to the first,
second and third arguments, respectively, A,B and C are relaxed Lip-
schitz, generalized pseudocontractive and relaxed monotone with respect
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to the first, second and third arguments of N , respectively, we immediately
conclude that

‖(1− ρ)(un − un−1) + ρ[N(xn, yn, zn)−N(xn−1, yn, zn)]‖2

= (1−|, ρ)2‖un−un− 1‖2 +2(1− ρ)ρ〈N(xn, yn, zn)

−N(xn−1, yn, zn), un−un−1〉+ρ2‖N(xn, yn, zn)−N(xn−1, yn, zn)‖2

≤ ((1− ρ)2 − 2(1− ρ)ρτ + ρ2σ2α2(1 + n−1)2)‖un − un−1‖2, (3.23)

‖N(xn−1, yn, zn)−N(xn−1, yn−1, zn) + (un − un−1)‖2

= ‖un − un−1‖2 + 2〈N(xn−1, yn, zn)−N(xn−1, yn−1, zn), un − un−1〉

+ ‖N(xn−1, yn, zn)−N(xn−1, yn−1, zn)‖2

≤ (1 + 2υ + η2β2(1 + n−1)2)‖un − un−1‖2 (3.24)

and

‖N(xn−1, yn−1, zn)−N(xn−1, yn−1, zn−1)− (un − un−1)‖2

=‖un−un−1‖2−2〈N(xn−1, yn−1, zn)−N(xn−1, yn−1, zn−1), un−un−1〉

+ ‖N(xn−1, yn−1, zn)−N(xn−1, yn−1, zn−1)‖2

≤ (1 + 2ϕ + ζ2γ2(1 + n−1)2)‖un − un−1‖2. (3.25)

As in the proofs of Theorems 3.1 and 3.2, by (3.23)–(3.25) we have

‖un+1 − un‖ ≤ δ−1‖gun+1 − gun‖

≤ δ−1(‖(1− ρ)(gun − gun−1) + ρ(N(xn, yn, zn)

−N(xn−1, yn−1, zn−1))‖+ µ‖wn − wn−1‖)

≤ δ−1((1− ρ)‖gun − gun−1 − (un − un−1)‖
+ ‖(1− ρ)(un − un−1) + ρ(N(xn, yn, zn)−N(xn−1, yn, zn))‖
+ ρ‖N(xn−1, yn, zn)−N(xn−1, yn−1, zn) + un − un−1‖
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+ ρ‖N(xn−1, yn−1, zn)−N(xn−1, yn−1, zn−1)− (un − un−1)‖
+ µ(1 + n−1)H(Dun, Dun−1)) = θn‖un − un−1‖,

where

θn = δ−1((1− ρ)
√

1− 2δ + p2

+
√

(1− ρ)2 − 2(1− ρ)ρτ + ρ2σ2α2(1 + n−1)2

+ ρ
√

1 + 2υ + η2β2(1 + n−1)2 + ρ
√

1 + 2ϕ + ζ2γ2(1 + n−1)2) → θ

= δ−1(k + ρj +
√

(1− ρ)2 − 2(1− ρ)ρτ + ρ2σ2α2)

as n →∞. The rest of the proofis exactly the same as that of Theorem 3.1.
This completes the proof. ¤

Remark 3.3. We claim that δ− k ≤ 1 under the assumptions of one of
Theorem 3.1, Theorem 3.2 and Theorem 3.3. Otherwise δ− k > 1. Notice
that

δ − k > 1 ⇔ δ − 1 > k

⇔ δ2 − 2δ + 1 > k2 = 1− 2δ + p2 + 2µξ
√

1− 2δ + p2 + µ2ξ2,

which imply that δ > p. Since g is Lipschitz continuous with constant p

and strongly monotone with constant δ, it follows that

p‖x− y‖2 ≥ ‖gx− gy‖‖x− y‖ ≥ 〈gx− gy, x− y〉 ≥ δ‖x− y‖2

for all x, y ∈ H, which means that p > δ. This is a contradiction.

Remark 3.4. Theorems 3.1–3.3 extend, improve and unify Theo-
rems 3.1–3.3 in [1], Theorem 3.1 in [7], [10]–[12] and Theorem 3.6 in [16].

Remark 3.5. In many important applications, the set K(u) is of the
form

K(u) = m(u) + K,

where m : H → H is a mapping and K ∈ CC(H). Using (3.5), Noor [6]
established the following

PK(u)(z) = m(u) + PK(z −m(u)) for all z, u ∈ H. (3.26)
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Now we point out that (3.4) holds with µ = 2b if m is Lipschitz
continuous with constant b and (3.5) is fulfilled. In fact, by (3.26), the
Lipschitz continuity of m and the nonexpansitivity of PK , we know that

‖KK(x)(z)−KK(y)(z)‖ ≤ ‖m(x)−m(y)‖
+ ‖PK(z −m(x))− PK(z −m(y))‖

≤ 2‖m(x)−m(y)‖ ≤ 2b‖x− y‖

for all x, y, x ∈ H.
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