Stability of the Fischer–Muszély functional equation

By JACEK TABOR (Kraków)

Abstract. We show that the Fischer–Muszély functional equation

$$||f(xy)|| = ||f(x) + f(y)||$$

is Hyers–Ulam stable in the class of surjective functions.

Let (G, \cdot) be a semigroup and let X be a Banach space. We are going to deal with the stability of the Fischer–Muszély functional equation:

$$||f(xy)|| = ||f(x) + f(y)|| \quad \text{for } x, y \in G.$$
(1)

The investigation of this functional equation was motivated by the paper of M. HOSSZÚ [5], who studied the so called alternative equation: e(x)f(x+y) = f(x) + f(y).

If a function f satisfies equation (1) then we say that it is *norm-additive*.

One of the reasons why this equation is important is that it characterizes strictly convex spaces (see [3]) – every solution f of the Fischer– Muszély functional equation is additive iff the target space X is strictly convex.

One can show even more in Hilbert spaces [6]: every solution of the inequality $||f(xy)|| \ge ||f(x) + f(y)||$ is necessarily additive. If this is also the case in strictly convex spaces is an open problem.

Mathematics Subject Classification: 39B52.

Key words and phrases: Fischer-Muszély functional equation, stability.

Jacek Tabor

This functional equation is also connected to the isometry equation. As one can easily check, every odd isometry $f : X \to X$ satisfies it. Moreover, every continuous solution $f : \mathbb{R} \to X$ such that f(0) = 0 is proportional to an odd isometry (see [4]).

Let $f: G \to X$ be arbitrary and let $\varepsilon > 0$. If

$$\left| \|f(xy)\| - \|f(x) + f(y)\| \right| \le \varepsilon \quad \text{for } x, y \in G$$

then we say that f is ε -norm-additive. If f is ε -norm-additive with certain $\varepsilon > 0$, then we write that f is approximately norm-additive.

In the case when $X = \mathbb{R}$ and G is commutative, Fischer–Muszély equation is stable [1], even if we replace \mathbb{R} with a lattice and the norm with absolute value (see [2]).

As shows the following example, it is clearly not stable in general.

Example 1. In \mathbb{R}^2 we take the euclidean norm $||(x_1, x_2)|| := \sqrt{x_1^2 + x_2^2}$. Let $f : \mathbb{R} \to \mathbb{R}^2$ be defined by the formula

$$f(x) := (x, \operatorname{sgn}(x)\sqrt{|x|}) \text{ for } x \in \mathbb{R}.$$

To show that f is approximately norm-additive, we first verify that it is an approximate isometry. Clearly

$$||f(x) - f(y)|| \ge ||x - y|| \quad \text{for } x, y \in \mathbb{R}.$$

Let $x, y \in \mathbb{R}$ be of the same sign. Then

$$\|f(x) - f(y)\| = \left\| \left(x - y, \sqrt{|x|} - \sqrt{|y|}\right) \right\| = \sqrt{|x - y|^2 + \left(\sqrt{|x|} - \sqrt{|y|}\right)^2} \le \sqrt{(x - y)^2 + |x - y|} \le |x - y| + \frac{1}{2}.$$

If $x, y \in \mathbb{R}$ are of different sign then

$$\|f(x) - f(y)\| = \left\| \left(|x| + |y|, \sqrt{|x|} + \sqrt{|y|} \right) \right\|$$
$$= \sqrt{(|x| + |y|)^2 + (\sqrt{|x|} + \sqrt{|y|})^2}$$
$$\leq \sqrt{(|x| + |y|)^2 + 2(|x| + |y|)} \leq |x - y| + 1$$

This yields that f is an odd function which is an approximate isometry, and therefore it is approximately norm-additive. However, since every

206

norm-additive function is additive (see [4]), f can not be approximated by a norm-additive function.

We need the notion of near surjective functions. Let S be a set, let X be a Banach space, and let $\delta \geq 0$ be arbitrary. We say that a function $f: S \to X$ is δ -near surjective if

$$\forall x \in X \exists s \in S : ||x - f(s)|| \le \delta$$

Morever, a function is near surjective if it is δ -near surjective for some $\delta > 0$.

Clearly a given function is 0-near surjective function if and only if it is a surjection.

Let X, Y be Banach spaces. A function $f: X \to Y$ is said to be an ε -isometry if

$$\left| \left\| f(x) - f(y) \right\| - \left\| x - y \right\| \right| \le \varepsilon$$

for $x, y \in X$.

We will need the following result on the stability of approximate isometries (Theorem 3.5 from [9]) (for a weaker result of this type see [8]).

Theorem ŠV. Let X, Y be Banach spaces, and let $f : X \to Y$ be an ε -isometry which is near surjective and such that f(0) = 0.

Then there exists a unique linear isometry $U: X \to Y$ such that

$$\|f(x) - U(x)\| \le 2\varepsilon \quad \text{for } x \in X.$$
(2)

As we know (see Example 1) isometry equation is not stable under no assumptions – to obtain stability we need surjectivity. The same situation occurs when one considers the stability of the Fischer–Muszély functional equation.

Theorem 1. Let (G, \cdot) be a group with unit e, let X be a Banach space and let $f: G \to X$ be a surjection such that

$$\left| \left\| f(ab) \right\| - \left\| f(a) + f(b) \right\| \right| \le \varepsilon \quad \text{for } a, b \in G.$$
(3)

Then

$$||f(ab) - f(a) - f(b)|| \le 13\varepsilon \quad \text{for } a, b \in G,$$

Before proceeding to the proof we would like to mention that if G is abelian (or in general amenable) by the Hyers Theorem and Theorem 1 we obtain stability of the Fischer–Muszély functional equation in the class of surjective functions. Jacek Tabor

PROOF. For a metric space M and $a, b \in M$ we write $a \stackrel{r}{\approx} b$ to denote $d(a,b) \leq r$. Inserting a = b = e in (3) we obtain

$$f(e) \stackrel{1\varepsilon}{\approx} 0. \tag{4}$$

If we put in (3) $b = a^{-1}$ and apply (4) we get

$$f(a) \stackrel{2\varepsilon}{\approx} -f(a^{-1}) \quad \text{for } a \in G.$$
(5)

Making use of (3) and (5) we get

$$\|f(ab^{-1})\| \stackrel{\mathrm{l}\varepsilon}{\approx} \|f(a) + f(b^{-1})\| \stackrel{\mathrm{l}\varepsilon}{\approx} \|f(a) - f(b)\| \quad \text{for } a, b \in G,$$

which means that

$$\|f(ab^{-1})\| \stackrel{3\varepsilon}{\approx} \|f(a) - f(b)\| \quad \text{for } a, b \in G.$$
(6)

For arbitrary $a \in G$ we define the set-valued function $i_a : X \rightsquigarrow X$ by the formula

$$i_a(x) := \{ f(g_x a^{-1}) + f(a) : g_x \in f^{-1}(x) \}.$$

Since f is surjective i_a is a set-valued function with nonempty images. Let $x, y \in X$ and let $g_x \in f^{-1}(x), g_y \in f^{-1}(y)$. Then applying (6) repeatedly we get

$$\begin{aligned} \|f(g_x a^{-1}) + f(a) - f(g_y a^{-1}) - f(a)\| &= \|f(g_x a^{-1}) - f(g_y a^{-1})\| \\ \stackrel{3\varepsilon}{\approx} \|f(g_x a^{-1} (g_y a^{-1})^{-1})\| &= \|f(g_x a^{-1} a g_y^{-1})\| \\ &= \|f(g_x g_y^{-1})\| \stackrel{3\varepsilon}{\approx} \|f(g_x) - f(g_y)\| = \|x - y\|. \end{aligned}$$

This yields that

$$\|z_x - z_y\| \stackrel{6\varepsilon}{\approx} \|x - y\| \quad \text{for } x, y \in X, \ z_x \in i_a(x), \ z_y \in i_a(y).$$
(7)

This means that i_a is a 6ε -approximate isometry (or in other way its every selection is a 6ε -approximate isometry). Moreover, putting x = y in (7) we obtain that

$$||z_1 - z_2|| \le 6\varepsilon \quad \text{for } z_1, z_2 \in i_a(x).$$
(8)

208

Now we show that i_a is surjective. Let $y \in X$. Let $g \in f^{-1}(y-f(a))$ be arbitrarily chosen and let x = f(ga). Clearly $ga \in f^{-1}(x)$, and therefore by the definition of i_a we obtain that

$$y = (y - f(a)) + f(a) = f(g) + f(a) = f((ga)a^{-1}) + f(a) \in i_a(x).$$

Let s_a be an arbitrary selection of i_a . Then $||s_a(0)|| \in ||f(f^{-1}(0)a^{-1}) + f(a)|| \stackrel{\varepsilon}{\approx} 0$, and therefore

$$\|s_a(0)\| \le \varepsilon. \tag{9}$$

By (7) we obtain that s_a is a 6ε -approximate isometry. By the surjectivity of i_a and (8) we obtain that s_a is 6ε -nearsurjective.

Applying Theorem SV we obtain that there exists a linear isometry $I_{s_a}: X \to X$ such that

$$||s_a(x) - s_a(0) - I_{s_a}(x)|| \le 2 \cdot 6\varepsilon \quad \text{for } x \in X.$$

By (9) this yields that

$$\|s_a(x) - I_{s_a}(x)\| \le 13\varepsilon \quad \text{for } x \in X.$$
(10)

Let t_a be another selection of i_a . Then by the above inequality applied for s_a and t_a and (8) we obtain that

$$\|I_{s_a}(x) - I_{t_a}(x)\| \le 32\varepsilon \quad \text{for } x \in X,$$

which by the linearity of I_{s_a} and I_{t_a} implies that $I_{s_a} = I_{t_a}$ and therefore $I_a := I_{s_a}$ does not depend on the selection s_a of i_a . Now by the definition of i_a the equation (10) means that

$$||f(ba^{-1}) + f(a) - I_a(f(b))|| \le 13\varepsilon$$
 for $a, b \in G$. (11)

Exchanging in the above inequality the roles of a, b, adding up and applying (5) we get

$$\|f(a) + f(b) - I_a(f(b)) - I_b(f(a))\| \le \|f(ba^{-1}) + f(a) - I_a(f(b))\|$$
$$+ \|f(ab^{-1}) + f(b) - I_b(f(a))\| + \|f(ba^{-1}) + f(ab^{-1})\| \le 28\varepsilon \quad \text{for } a, b \in G.$$

Let us fix a in the above inequality. Then

$$||f(b) - I_a(f(b))|| \le 28\varepsilon + 2||f(a)|| \quad \text{for } b \in G.$$

Jacek Tabor

Since f is surjective this means that

$$||x - I_a(x)|| \le 28\varepsilon + 2||f(a)|| \quad \text{for } x \in X,$$

and therefore we obtain that $I_a(x) = x$ for all $x \in X$. Now (11) becomes

$$\|f(ba^{-1}) + f(a) - f(b)\| \le 13\varepsilon \quad \text{for } a, b \in G.$$

As a direct corollary we obtain the following result concerning surjective solutions to the Fischer–Muszély functional equation.

Corollary 1. Let (G, \cdot) be a group, X be Banach space, and $f: G \to X$ be surjection such that

$$||f(x) + f(y)|| = ||f(xy)||$$
 for $x, y \in G$.

Then f is additive.

At the end of the paper we would like to pose the problem if the assumption that G is a group (and not a semigroup) is essential in Theorem 1.

References

- B. BATKO and JACEK TABOR, Stability of an alternative Cauchy equation on a restricted domain, Aequationes Mathematicae 57 (1999), 221–232.
- [2] B. BATKO and JACEK TABOR, Stability of the Generalized Alternative Cauchy Equation, Abh, Math. Sem. Univ. Hamburg 69 (1999), 67–73.
- [3] R. GER, On a characterization of strictly convex spaces, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 127/3-4 (1993), 131–138.
- [4] R. GER and B. KOCLĘGA, Isometries and a generalized Cauchy equation, Aequationes Mathematicae 60/1-2 (2000), 72–79.
- [5] M. HOSSZÚ, On an alternative functional equation, Mat. Lapok 14 (1963), 98–102.
- [6] GY. MAKSA and P. VOLKMANN, Characterization of group homomorphisms having values in an inner product space, *Publ. Math. Debrecen* 56 (2000), 197–200.
- [7] P. SCHÖPF, Solutions of $||f(\xi + \eta)|| = ||f(\xi) + f(\eta)||$, Math. Pann. 8/1 (1997), 117–127.
- [8] JACEK TABOR, Stability of surjectivity, J. Approx. Theory 105 (2000), 166–175.

210

[9] P. ŠEMRL and J. VÄISÄLÄ, Nonsurjective nearisometries of Banach spaces, Reports of the Department of Mathematics, University of Helsinki, *preprint* 312, 2001.

JACEK TABOR INSTITUTE OF MATHEMATICS JAGIELLONIAN UNIVERSITY REYMONTA 4 ST. 30-059 KRAKÓW POLAND

E-mail: tabor@im.uj.edu.pl

(Received January 16, 2002; revised July 2, 2002)