Stability of the Fischer-Muszély functional equation

By JACEK TABOR (Kraków)

Abstract. We show that the Fischer-Muszély functional equation

$$
\|f(x y)\|=\|f(x)+f(y)\|
$$

is Hyers-Ulam stable in the class of surjective functions.

Let (G, \cdot) be a semigroup and let X be a Banach space. We are going to deal with the stability of the Fischer-Muszély functional equation:

$$
\begin{equation*}
\|f(x y)\|=\|f(x)+f(y)\| \quad \text { for } x, y \in G \tag{1}
\end{equation*}
$$

The investigation of this functional equation was motivated by the paper of M. Hosszú [5], who studied the so called alternative equation: $e(x) f(x+y)=f(x)+f(y)$.

If a function f satisfies equation (1) then we say that it is normadditive.

One of the reasons why this equation is important is that it characterizes strictly convex spaces (see [3]) - every solution f of the FischerMuszély functional equation is additive iff the target space X is strictly convex.

One can show even more in Hilbert spaces [6]: every solution of the inequality $\|f(x y)\| \geq\|f(x)+f(y)\|$ is necessarily additive. If this is also the case in strictly convex spaces is an open problem.

[^0]This functional equation is also connected to the isometry equation. As one can easily check, every odd isometry $f: X \rightarrow X$ satisfies it. Moreover, every continuous solution $f: \mathbb{R} \rightarrow X$ such that $f(0)=0$ is proportional to an odd isometry (see [4]).

Let $f: G \rightarrow X$ be arbitrary and let $\varepsilon>0$. If

$$
|\|f(x y)\|-\|f(x)+f(y)\|| \leq \varepsilon \quad \text { for } x, y \in G
$$

then we say that f is ε-norm-additive. If f is ε-norm-additive with certain $\varepsilon>0$, then we write that f is approximately norm-additive.

In the case when $X=\mathbb{R}$ and G is commutative, Fischer-Muszély equation is stable [1], even if we replace \mathbb{R} with a lattice and the norm with absolute value (see [2]).

As shows the following example, it is clearly not stable in general.
Example 1. In \mathbb{R}^{2} we take the euclidean norm $\left\|\left(x_{1}, x_{2}\right)\right\|:=\sqrt{x_{1}^{2}+x_{2}^{2}}$. Let $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be defined by the formula

$$
f(x):=(x, \operatorname{sgn}(x) \sqrt{|x|}) \quad \text { for } x \in \mathbb{R} .
$$

To show that f is approximately norm-additive, we first verify that it is an approximate isometry. Clearly

$$
\|f(x)-f(y)\| \geq\|x-y\| \quad \text { for } x, y \in \mathbb{R} .
$$

Let $x, y \in \mathbb{R}$ be of the same sign. Then

$$
\begin{aligned}
\|f(x)-f(y)\| & =\|(x-y, \sqrt{|x|}-\sqrt{|y|})\|=\sqrt{|x-y|^{2}+(\sqrt{|x|}-\sqrt{|y|})^{2}} \\
& \leq \sqrt{(x-y)^{2}+|x-y|} \leq|x-y|+\frac{1}{2} .
\end{aligned}
$$

If $x, y \in \mathbb{R}$ are of different sign then

$$
\begin{aligned}
\|f(x)-f(y)\| & =\|(|x|+|y|, \sqrt{|x|}+\sqrt{|y|})\| \\
& =\sqrt{(|x|+|y|)^{2}+(\sqrt{|x|}+\sqrt{|y|})^{2}} \\
& \leq \sqrt{(|x|+|y|)^{2}+2(|x|+|y|)} \leq|x-y|+1 .
\end{aligned}
$$

This yields that f is an odd function which is an approximate isometry, and therefore it is approximately norm-additive. However, since every
norm-additive function is additive (see [4]), f can not be approximated by a norm-additive function.

We need the notion of nearsurjective functions. Let S be a set, let X be a Banach space, and let $\delta \geq 0$ be arbitrary. We say that a function $f: S \rightarrow X$ is δ-nearsurjective if

$$
\forall x \in X \exists s \in S:\|x-f(s)\| \leq \delta .
$$

Morever, a function is nearsurjective if it is δ-nearsurjective for some $\delta>0$.
Clearly a given function is 0 -nearsurjective function if and only if it is a surjection.

Let X, Y be Banach spaces. A function $f: X \rightarrow Y$ is said to be an ε-isometry if

$$
|\|f(x)-f(y)\|-\|x-y\|| \leq \varepsilon
$$

for $x, y \in X$.
We will need the following result on the stability of approximate isometries (Theorem 3.5 from [9]) (for a weaker result of this type see [8]).

Theorem ŠV. Let X, Y be Banach spaces, and let $f: X \rightarrow Y$ be an ε-isometry which is nearsurjective and such that $f(0)=0$.

Then there exists a unique linear isometry $U: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-U(x)\| \leq 2 \varepsilon \quad \text { for } x \in X \tag{2}
\end{equation*}
$$

As we know (see Example 1) isometry equation is not stable under no assumptions - to obtain stability we need surjectivity. The same situation occurs when one considers the stability of the Fischer-Muszély functional equation.

Theorem 1. Let (G, \cdot) be a group with unit e, let X be a Banach space and let $f: G \rightarrow X$ be a surjection such that

$$
\begin{equation*}
|\|f(a b)\|-\|f(a)+f(b)\|| \leq \varepsilon \quad \text { for } a, b \in G . \tag{3}
\end{equation*}
$$

Then

$$
\|f(a b)-f(a)-f(b)\| \leq 13 \varepsilon \quad \text { for } a, b \in G
$$

Before proceeding to the proof we would like to mention that if G is abelian (or in general amenable) by the Hyers Theorem and Theorem 1 we obtain stability of the Fischer-Muszély functional equation in the class of surjective functions.

Proof. For a metric space M and $a, b \in M$ we write $a \stackrel{r}{\approx} b$ to denote $d(a, b) \leq r$. Inserting $a=b=e$ in (3) we obtain

$$
\begin{equation*}
f(e) \stackrel{1 \varepsilon}{\approx} 0 \tag{4}
\end{equation*}
$$

If we put in (3) $b=a^{-1}$ and apply (4) we get

$$
\begin{equation*}
f(a) \stackrel{2 \varepsilon}{\approx}-f\left(a^{-1}\right) \quad \text { for } a \in G \tag{5}
\end{equation*}
$$

Making use of (3) and (5) we get

$$
\left\|f\left(a b^{-1}\right)\right\| \stackrel{1 \varepsilon}{\approx}\left\|f(a)+f\left(b^{-1}\right)\right\| \stackrel{2 \varepsilon}{\approx}\|f(a)-f(b)\| \quad \text { for } a, b \in G
$$

which means that

$$
\begin{equation*}
\left\|f\left(a b^{-1}\right)\right\| \stackrel{3 \varepsilon}{\approx}\|f(a)-f(b)\| \quad \text { for } a, b \in G \tag{6}
\end{equation*}
$$

For arbitrary $a \in G$ we define the set-valued function $i_{a}: X \leadsto X$ by the formula

$$
i_{a}(x):=\left\{f\left(g_{x} a^{-1}\right)+f(a): g_{x} \in f^{-1}(x)\right\} .
$$

Since f is surjective i_{a} is a set-valued function with nonempty images.
Let $x, y \in X$ and let $g_{x} \in f^{-1}(x), g_{y} \in f^{-1}(y)$. Then applying (6) repeatedly we get

$$
\begin{aligned}
& \left\|f\left(g_{x} a^{-1}\right)+f(a)-f\left(g_{y} a^{-1}\right)-f(a)\right\|=\left\|f\left(g_{x} a^{-1}\right)-f\left(g_{y} a^{-1}\right)\right\| \\
& \quad \stackrel{3 \varepsilon}{\approx}\left\|f\left(g_{x} a^{-1}\left(g_{y} a^{-1}\right)^{-1}\right)\right\|=\left\|f\left(g_{x} a^{-1} a g_{y}^{-1}\right)\right\| \\
& \quad=\left\|f\left(g_{x} g_{y}^{-1}\right)\right\| \stackrel{3 \varepsilon}{\approx}\left\|f\left(g_{x}\right)-f\left(g_{y}\right)\right\|=\|x-y\|
\end{aligned}
$$

This yields that

$$
\begin{equation*}
\left\|z_{x}-z_{y}\right\| \stackrel{6 \varepsilon}{\approx}\|x-y\| \quad \text { for } x, y \in X, z_{x} \in i_{a}(x), z_{y} \in i_{a}(y) \tag{7}
\end{equation*}
$$

This means that i_{a} is a 6ε-approximate isometry (or in other way its every selection is a 6ε-approximate isometry). Moreover, putting $x=y$ in (7) we obtain that

$$
\begin{equation*}
\left\|z_{1}-z_{2}\right\| \leq 6 \varepsilon \quad \text { for } z_{1}, z_{2} \in i_{a}(x) \tag{8}
\end{equation*}
$$

Now we show that i_{a} is surjective. Let $y \in X$. Let $g \in f^{-1}(y-f(a))$ be arbitrarily chosen and let $x=f(g a)$. Clearly $g a \in f^{-1}(x)$, and therefore by the definition of i_{a} we obtain that

$$
y=(y-f(a))+f(a)=f(g)+f(a)=f\left((g a) a^{-1}\right)+f(a) \in i_{a}(x) .
$$

Let s_{a} be an arbitrary selection of i_{a}. Then $\left\|s_{a}(0)\right\| \in \| f\left(f^{-1}(0) a^{-1}\right)+$ $f(a) \| \stackrel{\varepsilon}{\approx} 0$, and therefore

$$
\begin{equation*}
\left\|s_{a}(0)\right\| \leq \varepsilon \tag{9}
\end{equation*}
$$

By (7) we obtain that s_{a} is a 6ε-approximate isometry. By the surjectivity of i_{a} and (8) we obtain that s_{a} is 6ε-nearsurjective.

Applying Theorem ŠV we obtain that there exists a linear isometry $I_{s_{a}}: X \rightarrow X$ such that

$$
\left\|s_{a}(x)-s_{a}(0)-I_{s_{a}}(x)\right\| \leq 2 \cdot 6 \varepsilon \quad \text { for } x \in X .
$$

By (9) this yields that

$$
\begin{equation*}
\left\|s_{a}(x)-I_{s_{a}}(x)\right\| \leq 13 \varepsilon \quad \text { for } x \in X \tag{10}
\end{equation*}
$$

Let t_{a} be another selection of i_{a}. Then by the above inequality applied for s_{a} and t_{a} and (8) we obtain that

$$
\left\|I_{s_{a}}(x)-I_{t_{a}}(x)\right\| \leq 32 \varepsilon \quad \text { for } x \in X
$$

which by the linearity of $I_{s_{a}}$ and $I_{t_{a}}$ implies that $I_{s_{a}}=I_{t_{a}}$ and therefore $I_{a}:=I_{s_{a}}$ does not depend on the selection s_{a} of i_{a}. Now by the definition of i_{a} the equation (10) means that

$$
\begin{equation*}
\left\|f\left(b a^{-1}\right)+f(a)-I_{a}(f(b))\right\| \leq 13 \varepsilon \quad \text { for } a, b \in G . \tag{11}
\end{equation*}
$$

Exchanging in the above inequality the roles of a, b, adding up and applying (5) we get

$$
\begin{gathered}
\left\|f(a)+f(b)-I_{a}(f(b))-I_{b}(f(a))\right\| \leq\left\|f\left(b a^{-1}\right)+f(a)-I_{a}(f(b))\right\| \\
+\left\|f\left(a b^{-1}\right)+f(b)-I_{b}(f(a))\right\|+\left\|f\left(b a^{-1}\right)+f\left(a b^{-1}\right)\right\| \leq 28 \varepsilon \quad \text { for } a, b \in G .
\end{gathered}
$$

Let us fix a in the above inequality. Then

$$
\left\|f(b)-I_{a}(f(b))\right\| \leq 28 \varepsilon+2\|f(a)\| \quad \text { for } b \in G
$$

Since f is surjective this means that

$$
\left\|x-I_{a}(x)\right\| \leq 28 \varepsilon+2\|f(a)\| \quad \text { for } x \in X
$$

and therefore we obtain that $I_{a}(x)=x$ for all $x \in X$. Now (11) becomes

$$
\left\|f\left(b a^{-1}\right)+f(a)-f(b)\right\| \leq 13 \varepsilon \quad \text { for } a, b \in G .
$$

As a direct corollary we obtain the following result concerning surjective solutions to the Fischer-Muszély functional equation.

Corollary 1. Let (G, \cdot) be a group, X be Banach space, and $f: G \rightarrow X$ be surjection such that

$$
\|f(x)+f(y)\|=\|f(x y)\| \quad \text { for } x, y \in G .
$$

Then f is additive.
At the end of the paper we would like to pose the problem if the assumption that G is a group (and not a semigroup) is essential in Theorem 1.

References

[1] B. Batko and Jacek TABOR, Stability of an alternative Cauchy equation on a restricted domain, Aequationes Mathematicae 57 (1999), 221-232.
[2] B. Batko and Jacek Tabor, Stability of the Generalized Alternative Cauchy Equation, Abh, Math. Sem. Univ. Hamburg 69 (1999), 67-73.
[3] R. GER, On a characterization of strictly convex spaces, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 127/3-4 (1993), 131-138.
[4] R. Ger and B. Koclȩga, Isometries and a generalized Cauchy equation, Aequationes Mathematicae 60/1-2 (2000), 72-79.
[5] M. Hosszú, On an alternative functional equation, Mat. Lapok 14 (1963), 98-102.
[6] Gy. Maksa and P. Volkmann, Characterization of group homomorphisms having values in an inner product space, Publ. Math. Debrecen 56 (2000), 197-200.
[7] P. SCHÖPF, Solutions of $\|f(\xi+\eta)\|=\|f(\xi)+f(\eta)\|$, Math. Pann. 8/1 (1997), 117-127.
[8] Jacek Tabor, Stability of surjectivity, J. Approx. Theory 105 (2000), 166-175.
[9] P. Šemrl and J. VÄisälä, Nonsurjective nearisometries of Banach spaces, Reports of the Department of Mathematics, University of Helsinki, preprint 312, 2001.

```
JACEK TABOR
INSTITUTE OF MATHEMATICS
JAGIELLONIAN UNIVERSITY
REYMONTA 4 ST.
30-059 KRAKÓW
POLAND
E-mail: tabor@im.uj.edu.pl
```

(Received January 16, 2002; revised July 2, 2002)

[^0]: Mathematics Subject Classification: 39B52.
 Key words and phrases: Fischer-Muszély functional equation, stability.

