Publ. Math. Debrecen 62/1-2 (2003), 227–235

Multiple positive solutions for boundary value problems on a measure chain

By CHEN-HUANG HONG (Chung-Li), HUEI-LIN HONG (Chung-Li) and CHEH-CHIH YEH (Kueishan Taoyuan)

Abstract. Under some suitable conditions on a positive function f(t, u), we get the boundary value problem of the form:

$$\begin{cases} (E) & u^{\Delta\Delta}(t) + f(t, u(\sigma(t)) = 0, \quad 0 < t < 1, \\ \\ (BC) & \begin{cases} \alpha u(0) - \beta u^{\Delta}(0) = 0, \\ \gamma u(\sigma(1)) + \delta u^{\Delta}(\sigma(1)) = 0, \end{cases} \end{cases}$$
(BVP)

has at least three positive solutions by using a fixed point theorem of Legget and Williams.

1. Introduction

In this paper, we consider the existence of three positive solutions of the following boundary value problem on measure chain of the form:

$$\begin{cases} (E) & u^{\Delta\Delta}(t) + f(t, u(\sigma(t)) = 0, \quad 0 < t < 1, \\ (BC) & \begin{cases} \alpha u(0) - \beta u^{\Delta}(0) = 0, \\ \gamma u(\sigma(1)) + \delta u^{\Delta}(\sigma(1)) = 0, \end{cases} \end{aligned}$$
(BVP)

Mathematics Subject Classification: 34A15.

Key words and phrases: three positive solutions, measure chain, concave function, Green's function, cone, fixed point.

where α , β , γ , δ are nonnegative real numbers and $f \in C([0, \sigma(1)] \times \Re)$. Here $\Re = (-\infty, \infty)$.

There has recently been increasing interest in studying the existence of solutions for the following continuous-discrete boundary value problems

$$\begin{cases} (E_1) & u''(t) + \lambda f(t, u((t))) = 0, \quad 0 < t < 1, \\ (BC_1) & \begin{cases} \alpha u(0) - \beta u'(0) = 0, \\ \gamma u(1) + \delta u'(1) = 0, \end{cases} \tag{BVP}_A \end{cases}$$

and

$$\begin{cases} (E_2) & \Delta^2 u(i) + \lambda f(i, u(i) = 0, \quad 0 < i < T, \\ (BC_2) & \begin{cases} \alpha u(0) - \beta \Delta u(0) = 0, \\ \gamma u(T+1)) + \delta \Delta u(T+1) = 0 \end{cases}$$
(BVP_B)

in the last twenty-five years, see, for example, AGARWAL and WONG [1], [2], ERBE and WONG [6], HENDERSON and THOMPSON [8], LIAN, WONG and YEH [14]. In 1990, S. HILGER [9] introduced the theory of measure chain. Recently, some authors, see for example, CHYAN and HENDERSON [3], ERBE and PETERSON [4], [5], HONG and YEH [10], LIAN, CHOU, LIU and WONG [13], dealt with the existence of one or two positive solutions for the boundary value problem (BVP) on a measure chains.

In this paper, we study the existence of three solutions for the nonlinear boundary value problem (BVP) by using a fixed point theorem of LEGGETT and WILLIAMS [12]. We will state this result and give some definitions concerning measure chains and useful lemmas in Section 2.

2. Definitions and lemmas

In this section, we provide some background material from measure chain and the theory of cones in Banach spaces. We also state a fixed point theorem due to LEGGETT and WILLIAMS [12] for multiple fixed points of a cone preserving operator.

First, we give definitions of a measure chain and a cone, see [7], [9], [11].

Definition 2.1. A measure chain \mathcal{T} is a closed subset of the set \Re of all real numbers. We assume throughout this paper that \mathcal{T} has the topology that it inherits from the standard topology on \Re . For $t < \sup \mathcal{T}$, define the forward jump operator $\sigma : \mathcal{T} \to \mathcal{T}$ by

$$\sigma(t) := \inf\{\tau \in \mathcal{T} : \tau > t\}$$

and for $t > \inf \mathcal{T}$ define the backward jump operator $\rho : \mathcal{T} \to \mathcal{T}$ by

$$\rho(t) := \sup\{\tau \in \mathcal{T} : \tau < t\}$$

for all $t \in \mathcal{T}$.

If $\sigma(t) > t, t \in \mathcal{T}$, we say t is right-scattered. If $\rho(t) < t, t \in \mathcal{T}$, we say t is left-scattered. If $\sigma(t) = t, t \in \mathcal{T}$ we say t is right-dense. If $\rho(t) = t, t \in \mathcal{T}$, we say t is left-dense.

Definition 2.2. If $r, s \in \mathcal{T} \cup \{+\infty, -\infty\}, r < s$, then an open interval (r, s) in \mathcal{T} is defined by

$$(r,s) := \{t \in \mathcal{T} : r < t < s\}$$

Other types of intervals are defined similarly.

Throughout this paper we make the assumption that [a, b] as $[a, b] \cap \mathcal{T}$ if $a, b \in \Re$, $a \leq b$.

Definition 2.3. Assume that $x : \mathcal{T} \to \Re$ and fix $t \in \mathcal{T}$ (if $t = \sup \mathcal{T}$, we assume t is not left-scattered). Then x is called differentiable at $t \in \mathcal{T}$ if there exists a $\theta \in \Re$ such that for any given $\epsilon > 0$, there is an open neighborhood U of t such that

$$|x(\sigma(t)) - x(s) - \theta|\sigma(t) - s| | \le \epsilon |\sigma(t) - s| \quad \text{for all } s \in U.$$

In this case, θ is called the Δ -derivative of x at $t \in \mathcal{T}$ and denote it by $\theta = x^{\Delta}(t)$. It can be shown that if $x : \mathcal{T} \to \Re$ is continuous at $t \in \mathcal{T}$, then

$$x^{\Delta}(t) = \frac{x(\sigma(t)) - x(t)}{\sigma(t) - t}$$
 if t is right-scattered

and

$$x^{\Delta}(t) = \lim_{s \to t} \frac{x(t) - x(s)}{t - s}$$
 if t is right-dense.

Definition 2.4. Let P be a cone on a Banach space E. A map $\psi \in C(P; [0, \infty))$ is said to be a nonnegative continuous concave functional in P if

$$\psi(\lambda x + (1 - \lambda)y) \ge \lambda \psi(x) + (1 - \lambda)\psi(y)$$

for all $x, y \in P$ and $0 \leq \lambda \leq 1$.

Definition 2.5. Let P be a cone on a Banach space E, r > 0, 0 < a < band ψ a nonnegative continuous concave functional on P. Define two cones P_r and $P(\psi, a, b)$ by

$$P_r := \{ y \in P : \|y\| < r \}$$

and

230

$$P(\psi, a, b) := \{ y \in P : a \le \psi(y), |y| \le b \},\$$

respectively.

In order to abbreviate our discussion, throughout this paper, we suppose that the following assumptions hold:

 (C_1) G(t,s) is the Green's function of the differential equation

$$-u^{\Delta\Delta}(t) = 0, \quad t \in (0,1)$$

subject to the boundary condition (BC).

- $(C_2) f \in C([0, \sigma(1)] \times [0, \infty); [0, \infty)).$
- $(C_3) \ \rho := \gamma \beta + \alpha \delta + \alpha \gamma \sigma(1) > 0.$
- $(C_4) \ \xi := \min\left\{t \in T : t \ge \frac{\sigma(1)}{4}\right\} \text{ and } \omega := \max\left\{t \in T : t \le \frac{3\sigma(1)}{4}\right\}$ both exist and satisfy

$$\frac{\sigma(1)}{4} \le \xi < \omega \le \frac{3\sigma(1)}{4}.$$

 $(C_5) M = \min\{M_1, M_2\}, \text{ where }$

$$M_1 := \min\left\{\frac{\gamma\sigma(1) + 4\delta}{4(\gamma\sigma(1) + \delta)}, \frac{\alpha\sigma(1) + 4\beta}{4(\alpha\sigma(1) + \beta)}\right\} \in (0, 1)$$

and

$$M_2 = \min_{s \in [0,\sigma(1)]} \frac{G(\sigma(\omega), s)}{G(\sigma(s), s)}.$$

Multiple positive solutions for boundary value problems...

(C₆)
$$D_1 := \left(\int_0^{\sigma(1)} G(\sigma(s), s) \Delta s\right)^{-1}$$
 and $D_2 := \left(\int_0^{\sigma(1)} G(\theta, s) \Delta s\right)^{-1}$,
here $\theta \in [\xi, \omega]$.

In order to prove our main result, we need the following two useful lemmas. The first is due to ERBE and PETERSON [5] and the second due to LEGGETT and WILLIAMS [12].

Lemma 2.5 (ERBE and PETERSON [5]). Suppose that G(t,s) is defined as in (C_2) . Then G(t,s) can be written as

$$G(t,s) = \begin{cases} \frac{1}{\rho} (\beta + \alpha t) \left[\delta + \gamma(\sigma(1) - \sigma(s)) \right], & 0 \le t \le s \le \sigma(1), \\ \frac{1}{\rho} (\beta + \alpha \sigma(s)) \left[\delta + \gamma(\sigma(1) - t) \right], & 0 \le \sigma(s) \le t \le \sigma(1). \end{cases}$$

and satisfies

(i)
$$\frac{G(t,s)}{G(\sigma(s),s)} \leq 1$$
 for $t \in [0,\sigma(1)]$ and $s \in [0,1];$
(ii) $\frac{G(t,s)}{G(\sigma(s),s)} \geq M$ for $t \in [\xi,\sigma(\omega)]$ and $s \in [0,1],$

where M is defined as in condition (C_3) .

Lemma 2.6 (LEGGETT and WILLIAMS [12]). Suppose there exist $0 < a < b < d \le c$ such that

 $(A_1) \{ u \in P(\psi, a, b) : \psi(u) > b \} \text{ is nonempty and } \psi(\Phi u) > b$ for $u \in P(\psi, b, d),$

 $(A_2) \|\Phi u\| < a \text{ for } \|u\| \le a,$

(A₃) $\psi(\Phi u) > b$ for $u \in P(\psi, b, c)$ with $\|\Phi u\| > d$,

where $\Phi : \overline{P_c} \to \overline{P_c}$ be a completely continuous and ψ be a nonnegative continuous concave functional on P such that $\psi(u) \leq ||u||$ for all $y \in \overline{P_c}$. Then Φ has at least three fixed points u_1 , u_2 and u_3 satisfying

$$||u_1|| < a, b < \psi(u_2)$$
 and $||u_3|| > a$ with $\psi(u_3) < b$.

3. Main results

The set $E = C([0, \sigma(1)], \Re)$ is a Banach space with the supremum norm $||u|| = \sup_{0 \le t \le \sigma(1)} |u(t)|$, where $u \in E$. Let $u, v \in E$, then the ordering $u \le v$ means $u(t) \le v(t)$ for all $t \in [0, \sigma(1)]$. Define

$$P = \{ u \in E : u(t) \ge 0, \ t \in [0, \sigma(1)] \}.$$

Clearly, P is a cone of E. Finally, define a function $\psi: P \to [0, \infty)$ by

$$\psi(u) = \min_{t \in [\xi, \sigma(\omega)]} u(t), \quad u \in P.$$
(1)

Then ψ is a nonnegative continuous concave functional and

$$\psi(u) \le \|u\|.$$

Clearly, $u \in E$ is a solution of (BVP) if and only if

$$u(t) = \int_0^{\sigma(1)} G(t,s)f(s,u(\sigma(s)))\Delta s, \quad t \in [0,\sigma(1)].$$

Now, we can state and prove our main result.

Theorem 3.1. Let $a, b, c \in \Re$ with 0 < a < b < Mc, where M is defined as in (C_4) . Suppose f satisfies

(i)
$$f(t, u) < D_1 a$$
 for $(t, u) \in [0, \sigma(1)] \times [0, a]$,

(ii) $f(t,u) \ge \frac{D_2}{M}b$ for $(t,u) \in [\xi,\omega] \times [b, \frac{b}{M}],$

(iii) $f(t, u) \le D_1 c$ for $(t, u) \in [0, \sigma(1)] \times [0, c]$.

Then the boundary value problem (BVP) has at least three solutions u_1 , u_2 and u_3 satisfying

 $||u_1|| < a, \ b < \psi(u_2)$ and $||u_3|| > a$ with $\psi(u_3) < b,$

where ψ is defined as in (1).

PROOF. It is clear that (BVP) has a solution u = u(t) if, and only if, u(t) is a solution of the operator equation

$$\Phi u(t) := \int_0^{\sigma(1)} G(t,s) f(s,u(\sigma(s))) \Delta s = u(t).$$

233

We note that for $u \in P$, $\psi(u) \leq ||u||$. Now choose $u \in \overline{P_c}$, that is $||u|| \leq c$. Then $f(t, u) \leq D_1 c$ for $t \in [0, \sigma(1)]$ by condition (iii). It follows from (i) of Lemma 2.5 that

$$\Phi u(t) = \int_0^{\sigma(1)} G(t,s) f(s, u(\sigma(s))) \Delta s \le \int_0^{\sigma(1)} G(\sigma(s),s) f(s, u(\sigma(s))) \Delta s$$
$$\le \int_0^{\sigma(1)} G(\sigma(s),s) D_1 c \Delta s = c, \qquad t \in (0,1).$$

Thus, $\|\Phi u\| \leq c$ for $u \in \overline{P_c}$. Hence, $\Phi(\overline{P_c}) \subseteq \overline{P_c}$. And Φ satisfies the condition (A_2) of Lemma 2.B. That is, if $u \in \overline{P_a}$, then $f(t, u) < D_1 a$ for $t \in [0, \sigma(1)]$ by condition (i). Thus, $\Phi(\overline{P_a}) \subseteq P_a$.

To fulfill property (A_1) of Lemma 2.6, we note that $x(t) = \frac{b}{M} \in P(\psi, b, \frac{b}{M})$ for $t \in [0, \sigma(1)]$. Then

$$\psi(x) = \psi\left(\frac{b}{M}\right) = \frac{b}{M} > b$$
 and $\left\{u \in P\left(\psi, b, \frac{b}{M}\right) : \psi(u) > b\right\}$ is nonempty.

In addition, if $u \in P(\psi, b, \frac{b}{M})$, then

$$\psi(u) = \min_{t \in [\xi, \sigma(\omega)]} u(t) \ge b$$

and hence

$$b \le u(\sigma(t)) \le \frac{b}{M}$$
, for $t \in [\xi, \omega]$.

Thus, for any $u \in P(\psi, b, \frac{b}{M})$, it follows from condition (ii) that

$$f(t, u) \ge \frac{D_2}{M} b$$
 for $t \in [\xi, \sigma(\omega)],$

and it follows from (ii) of Lemma 2.5 that

$$\psi(\Phi u) = \min_{t \in [\xi, \sigma(\omega)]} \Phi u(t) = \min_{t \in [\xi, \sigma(\omega)]} \int_0^{\sigma(1)} G(t, s) f(s, u(\sigma(s))) \Delta s$$
$$\geq M \int_0^{\sigma(1)} G(\sigma(s), s) f(s, u(\sigma(s))) \Delta s > M \int_0^{\sigma(1)} G(\theta, s) \frac{D_2}{M} b \Delta s = b.$$

Hence, condition (A_1) of Lemma 2.6 is satisfied. We finally claim that (A_3) of Lemma 2.6 is also satisfied. Clearly, it is enough to show that $\psi(\Phi u) > b$

if $u \in P(\psi, b, c)$ and $\|\Phi u\| > \frac{b}{M}$. In fact, if we choose $u \in P(\psi, b, c)$ satisfying $\|\Phi u\| > \frac{b}{M}$, then

$$\begin{split} \psi(\Phi u) &= \min_{t \in [\xi, \sigma(\omega)]} \int_0^{\sigma(1)} G(t, s) f(s, u(\sigma(s))) \Delta s \\ &\geq M \int_0^{\sigma(1)} G(\sigma(s), s) f(s, u(\sigma(s))) \Delta s \\ &\geq M \int_0^{\sigma(1)} G(t, s) f(s, u(\sigma(s))) \Delta s = M \Phi u(t) \quad \text{for } t \in [0, \sigma(1)]. \end{split}$$

Thus,

$$\psi(\Phi u) \ge M \|\Phi u\| > b_{2}$$

and (A_3) of Lemma 2.6 is satisfied. Hence, an application of Lemma 2.6 completes the proof.

References

- R. P. AGARWAL and F. H. WONG, An application of topological transervality with respect to non-positive higher order difference equations, *Applied Mathematics and Computation* 99 (1999), 167–178.
- [2] R. P. AGARWAL and F. H. WONG, Existence of positive solutions for non-positive higher order BVPs, Computational and Applied Mathematics 88 (1998), 3–14.
- [3] C. J. CHYAN and J. HENDERSON, Eigenvalue problems for nonlinear differential equations on a measure chain, J. Math. Anal. Appl. 245 (2000), 547–559.
- [4] L. ERBE and A. PETERSON, Positive solutions for a nonlinear differential equation on a measure chain, *Math. Comput. Modelling* 32(5–6) (2000), 571–585.
- [5] L. ERBE and A. PETERSON, Green's functions and comparison theorems for differential equations on measure chains, *Dynamics of Continuous Discrete and Impulsive Systems* 6 (1999), 121–137.
- [6] L. H. ERBE and H. WANG, On the existence of positive solutions of ordinary differential equaions, Proc. Amer. Math. Soc. 120 (1994), 743–748.
- [7] D. GUO and V. LAKSHMIKANTHAM, Nonlinear Problems in Abstract Cones, Academic Press, Poston, 1988.
- [8] J. HENDERSON and H. B. THOMPSON, Multiple symmetric positive solutions for a second order boundary value problem, *Proc. Amer. Math. Soc.* **128** (2000), 2373–2379.
- S. HILGER, Analysis on measure chains A unified approach to continuous and discrete calculus, *Results Math.* 18 (1990), 18–56.

235

- [10] C. H. HONG and C. C YEH, Postive solutions for eigenvalue problems on a measure chain (to appear in Nonliear Analysis T. M. & A).
- [11] V. LAKSHMIKANTHAM, S. SIVASUNDARAM and B. KAYMAKCALAN, Dynamic Systems on a Measure Chain, *Kluwer Academic Boston*, 1996.
- [12] R. LEGGETT and L. WILLIAMS, Multiple positive fixed points of nonlinear operators on oredred Banach spaces, *Indiana University Mathematics Journal* 28 (1979), 673–688.
- [13] W. C. LIAN, C. C. CHOU, C. T. LIU and F. H. WONG, Existence of solutions of nonlinear BVPs of second order differential equations on measure chains (to appear in Math. & Comp. Modelling).
- [14] W. C. LIAN, F. H. WONG and C. C. YEH, On the existence of positive solutions of nonlinear second-order differential equations, *Proc. Amer. Math. Soc.* **124** (1996), 1117–1126.

CHEN-HUANG HONG DEPARTMENT OF MATHEMATICS NATIONAL CENTRAL UNIVERSITY CHUNG-LI, 320 TAIWAN REPUBLIC OF CHINA

E-mail: hongch@math.ncu.edu.tw

HUEI-LIN HONG DEPARTMENT OF INFORMATION MANAGEMENT LUNGHWA UNIVERSITY OF SCIENCE AND TECHNOLOGY KUEISHAN TAOYUAN, 333 TAIWAN REPUBLIC OF CHINA

E-mail: hong@mail.lhu.edu.tw

CHEH-CHIH YEH DEPARTMENT OF INFORMATION MANAGEMENT LUNGHWA UNIVERSITY OF SCIENCE AND TECHNOLOGY KUEISHAN TAOYUAN, 33306 TAIWAN REPUBLIC OF CHINA

E-mail: ccyeh@mail.lhu.edu.tw

(Received February 5, 2002; revised May 7, 2002)