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Metrizable linear connections in vector bundles

By MIHAI ANASTASIEI (Iaşi)

Dedicated to Professor Dr. Lajos Tamássy
at his 80th anniversary

Abstract. A linear connection ∇ in a vector bundle is said to be metrizable
if the vector bundle admits a Riemannian metric h with the property ∇h = 0.
Sufficient conditions for the linear connection ∇ to be metrizable are provided.

Introduction

The problem of the metrizability of a linear connection was treated by
many authors in various contexts (see the paper [7] by L. Tamassy and
the references therein). When a linear connection ∇ in a vector bundle
ξ = (E, p, M) is metrizable, its parallel translations are isometries with
respect to any Riemannian metric h in ξ with ∇h = 0. Using a local
chart around a point x in M , the holonomy group φ(x) may be identifed
with a subgroup of GL(m,R), where m is the dimension of fibre. With
this identification, a necessary condition for ∇ to be metrizable is that
the holonomy group be contained in the orthogonal group O(m). We
prove two versions of the converse of this fact (Theorems 3.1 and 3.2).
Then we are dealing with the same problem when the vector bundle ξ

is endowed with a Finsler function. The linear connection ∇ induces a
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nonlinear connection on E and a linear connection D in the vertical vector
bundle over E. The Finsler function F defines a Riemannian metric g in
the vertical vector bundle over E. We show that if g is covariant constant
on horizontal directions, then ∇ is metrizable (Theorem 4.2). When the
tangent bundle of a manifold M is endowed with a Finsler function F one
says that (M, F ) is a Finsler manifold. In this case our result is to be
compared with the one due to Z. Szabó ([6]), regarding the metrizability
of the Berwald connection.

If the cotangent bundle of a manifold M is endowed with a Finsler
function K, then the pair (M,K) is called a Cartan space. This notion
was introduced and studied by R. Miron in [3]. In this case Theorem 4.1
is to be compared with our previous results on the metrizability of the
Berwald–Cartan connection [1].

The first two sections of the paper are devoted to some preliminaries
from the theory of vector bundles and linear connections in vector bundles.

1. Vector bundles

Let ξ = (E, p, M) be a vector bundle of rank m. Here E and M are
smooth i.e. C∞ manifolds with dimM = n, dimE = n+m, and p : E → M

is a smooth submersion. The fibres Ex = p−1(x), x ∈ M are linear spaces
of dimension m which are isomorphic with the type fibre Rm.

Let {(Uα, ψα)}α∈A be an atlas on M . A vector bundle atlas is
{(Uα, ϕα,Rm)}α∈A with the bijections ϕα : p−1(Uα) → Uα × Rm in the
form ϕα = (p(u), ϕα,p(u)(u)), where ϕα,p(u) : Ep(u) → Rm is a bijec-
tion. The given atlas on M and a vector bundle atlas provide an atlas
(p−1(Uα), φα)α∈A on E. Here φα : p−1(Uα) → ϕα(Uα) × Rm is the bi-
jection given by φα(u) = (ψα(p(u)), ϕα,p(u)(u)). For x ∈ M , we put
ψα(x) = (xi) ∈ Rm and we take (xi, ya) as local coordinates on E. If
(Uβ, ψβ) is such that x ∈ Uα ∩ Uβ 6= ∅ and ψβ(x) = (x̃i), then ψβ ◦ ψ−1

α

has the form

x̃i = x̃i(x1, . . . , xn), rank
(

∂x̃i

∂xj

)
= n. (1.1)
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Let (ea) be the canonical basis of Rm. Then ϕ−1
α,x(ea) = εa(x) is a basis of

Ex and u ∈ Ex takes the form u = yaεa(x). We put ỹa = Ma
b (x)yb with

rank(Ma
b (x)) = m. Then φβ ◦ φ−1

α has the form

x̃i = x̃i(x1, . . . , xn), rank
(

∂x̃i

∂xj

)
= n

ỹa = Ma
b (x)yb, rank(Ma

b (x)) = m.

(1.2)

The indices i, j, k, . . . , a, b, c, . . . . will take the values 1, 2, . . . , n and
1, 2, . . . ,m, respectively. The Einstein convention on summation will be
used.

We denote by F(M),F(E) the ring of real functions on M and E

respectively, and by X (M), resp. Γ(E), X (E) the module of sections of
the tangent bundle of M , resp. of the bundle ξ and of the tangent bundle
of E. On Uα, the vector fields

(
∂k := ∂

∂xk

)
provide a local basis for X (Uα).

The sections εa : Uα → p−1(Uα) given by εa(x) = ϕ−1
α,x(ea) will be taken as

canonical basis for Γ(p−1(Uα)) and a section A : Uα → p−1(Uα) will take
the form A(x) = Aa(x)εa(x).

Let ξ∗ = (E∗, p∗,M) be the dual of the vector bundle ξ. We take as
local basis of Γ(E∗) on Uα the sections θa: Uα→ p∗−1(Uα), x→ θa(x)∈E∗

x

such that θa(εb(x)) = δa
b .

Next, we may consider the tensor bundle of type (r, s), T r
s (E) :=

E⊗ · · ·⊗︸ ︷︷ ︸
r

E ⊗ E∗⊗ · · ·⊗︸ ︷︷ ︸
s

E∗ over M and its sections. For g ∈ Γ(E∗ ⊗ E∗)

we have the local representation g = gab(x)θa⊗θb. As E∗⊗E∗ ∼= L2(E,R),
we may regard g as a smooth mapping x → g(x) : Ex×Ex → R with g(x)
a bilinear mapping given by g(x)(sa, sb) = gab(x).

If the mapping g(x) is symmetric i.e. gab = gba and positive-definite
i.e. gab(x)ζaζb > 0 for every 0 6= (ζa) ∈ Rm, one says that g defines a
Riemannian metric in the vector bundle ξ.

The sets of sections Γ(T r
s (E)) are F(M)-modules for any natural num-

bers r, s. On the sum
⊕

r,s Γ(T r
s (E)) a tensor product can be defined and

one gets a tensor algebra T (E). For the vector bundle (TM, τ, M) this
reduces to the tensor algebra of the manifold M .
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2. Linear connections in a vector bundle

Definition 2.1. A linear connection in the vector bundle ξ = (E, p,M)
is a mapping ∇ : X (M)× Γ(E) → Γ(E), (X,A) → ∇XA which is F(M)-
linear in the first argument, additive in the second and

∇X(fA) = X(f)A + f∇XA, f ∈ F(M). (2.1)

For X = Xk(x)∂k and A = Aa(x)εa(x), we get

∇XA = Xk(∂kA
a + Γa

bk(x)Ab)εa(x), (2.2)

where the local coefficients Γa
bk(x) are defined by

∇∂k
εb = Γa

bkεa. (2.3)

If Γ̃c
dj are the local coefficients of ∇ on Uβ such that Uα ∩Uβ 6= ∅, then we

have

Γ̃c
dj(x̃(x)) = M c

a(x)(M−1)b
d

∂xk

∂x̃j
Γa

bk(x)− ∂M c
b

∂xk

∂xk

∂x̃j
(M−1)b

d. (2.4)

A section A of ξ is called parallel if ∇XA = 0 for every X ∈ X (M).
The linear connection ∇ induces operators of covariant derivative ∇k

in the tensor algebra T (E) taking ∇kf = ∂kf , ∇kβa = ∂kβa − Γc
akβc and

requiring that ∇k to satisfy the Newton–Leibniz rule with respect to the
tensor product and to commute with all contractions.

Let c : [0, 1] → M be a curve on M and A : t → A(t) := A(c(t)) a
section of ξ along the curve c. Then ∇ċ(t)A =: ∇A

dt is called the covariant
derivative of A along c.

On Uα ∩ c[0, 1] if we put c(t) = (xi(t)), we get

∇A

dt
=

(
dAa

dt
+ Γa

bk(x(t))Ab dxk

dt

)
εa. (2.5)

The section t → A(t) is said to be parallel on c if ∇A
dt = 0. This means

that the functions (Aa(t)) have to be solutions of the following system of
ordinary linear differential equations:

dAa

dt
+ Γa

bk(x)Ab dxk

dt
= 0. (2.6)
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For given initial conditions Aa(0) = (ua) ∈ Ec(0) the system (2.6) ad-
mits a unique solution that can be prolonged beyond Uα providing a
parallel section A along c. If we associate to (ua) = Aa(0) the element
(va) = Aa(1) ∈ Ec(1) we get a linear isomorphism Pc : Ec(0) → Ec(1),
called the parallel translation of Ec(0) to Ec(1) along c. The parallel trans-
lations can be defined along any curve or segment of curve providing linear
isomorphisms between fibres in various points of curves on M . In partic-
ular, if one considers the loops with origin in x ∈ M , the corresponding
parallel translations as linear isomorphisms Ex → Ex can be composed
and a group φ(x) called the holonomy group in x ∈ M is obtained.

When M is connected, the holonomy groups φ(x), x ∈ M are isomor-
phic and one speaks about the holonomy group φ associated to or defined
by ∇.

The covariant derivative along c can be recovered from parallel trans-
lations according to the following known

Lemma 2.1. Let A be a section of ξ along a curve on M , c : t → c(t),
t ∈ R, starting from x = c(0). Then

(∇ċ(0)A)(x) = lim
t→0

1
t
(Pc(A(t))−A(0)), (2.7)

where Pc : Ec(t) → Ex is the parallel translation along c.

3. A sufficient condition for ∇ to be metrizable

Let ∇ be a linear connection in the vector bundle ξ = (E, p,M).
Assume that the manifold M is connected. One says that ∇ is metrizable
if there exists a Riemannian metric g in ξ such that ∇g = 0. When ∇
is metrizable, then all parallel translations Pc : (Ex, gx) → (Ey, gy) for
any points x, y and for any curve c joining them in M are isometries. In
particular, the holonomy group φ(x) is a subgroup of the orthogonal group
of (Ex, gx). These facts follow from
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Lemma 3.1. Let g be any Riemannian metric in the vector bundle ξ

and c : t → c(t), t ∈ R, a curve in M with c(0) = x. Then

(∇ċ(0)g
)
(A,B) = lim

t→0

1
t
(gc(t)(PcA,PcB)− gx(A,B)), (3.1)

where A,B ∈ Ex and Pc : Ex → Ec(t) is the parallel translation along c.

Proof. Let Ã, B̃ be sections of ξ which are parallel on c, such that
Ã(0) = A, B̃(0) = B. Then PcA = Ã(t) and Pc(B) = B̃(t). By the Taylor
theorem and using the condition that Ã and B̃ are parallel sections on c,
in the natural basis (εa) we get (PcA)a = Ãa(t) = Aa + d eA

dt (τ)t = Aa −
Γa

ck(x(τ))Ãc(τ)dxk

dt t and a similar formula for (PcB)b, a, b = 1, 2, . . . , m.
Then, using again the Taylor theorem, omitting the terms which contain
t2, we may write:

gab(t)(PcA)a(PcB)b − gab(x)AaBb =
(

gab(x) +
dgab

dt
(θ)t

)
(PcA)a(PcB)b

−gab(x)AaBb =
(

dgab

dt
− gacΓc

bk

dxk

dt
− gcbΓc

ak

dxk

dt

)
AaBbt, (3.2)

where the terms in the last paranthesis are computed for τ, τ ′, θ ∈ (0, t).
Dividing in (3.2) by t and taking t → 0, one obtains (3.1).
By Lemma 3.1 we have also that if all parallel translations of ∇ are

isometries with respect to g, then ∇g = 0. Thus, in order to prove that ∇
is metrizable we need to find a Riemannian metric g such that all parallel
translations of ∇ are isometries with respect to g. Taking an arbitrary
bundle chart (Uα, ϕα,Rm), using the linear isomorphism ϕα,x : Ex → Rm,
we may identify φ(x), x ∈ Uα, with a subgroup of GL(Rm). When ∇
is metrizable, by Lemma 3.1 it follows that this subgroup is contained in
the orthogonal group O(m). Therefore, a necessary condition for ∇ to be
metrizable is that its holonomy group is contained in O(m). We show two
versions of the converse. ¤

Theorem 3.1. Let ∇ be a linear connection in the vector bundle

ξ = (E, p,M) with M connected. Assume that there exists a point x0 ∈ M

such that the holonomy group φ(x0) is contained in the orthogonal group

of Ex0 when Ex0 is regarded as being isomorphic with the Euclidean space

(Rm, 〈 , 〉) via a fixed bundle chart. Then ∇ is metrizable.
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Proof. Let h0 be the inner product on Ex0 induced by 〈 , 〉 via the
bundle chart (Uα, ϕα,Rm), x0 ∈ Uα, that is,

h0(u, v) = 〈ϕα,x0u, ϕα,x0v〉. (∗)

By hypothesis this inner product is invariant under the group φ(x0). Let
x be any point of M . We join x with x0 using a curve c : [0, 1] → M ,
c(0) = x, c(1) = x0, consider the parallel translation Pc : Ex → Ex0 and
define an inner product hx in Ex by

hx(A,B) = h0(PcA,PcB), A, B ∈ Ex. (3.3)

Lemma 3.2. The inner product hx does not depend on the curve c.

Indeed, if c̃ is another curve joining x with x0, then we consider the
reverse c− of c and the loop c̃◦c− in x0. It follows that h0(Pec◦c−u, Pec◦c−v) =
h0(u, v), u, v ∈ Ex0 . Inserting here u = PcA and v = PcB and taking into
account (3.3), the lemma follows.

The mapping x → hx is smooth since Pc smoothly depends on x

according to the general theory of differential equations. Thus we obtain
a Riemannian metric h in ξ. The parallel translations of ∇ are isometries
with respect to h. Indeed, for a point y of M different from x, any parallel
translation from Ex to Ey has the form Pσ−◦c = Pσ− ◦ Pc, for σ− the
reverse of a curve σ joining y with x0. As a product of isometries this is
an isometry. Therefore, using Lemma 3.1 we may conclude that ∇h = 0.

¤
The following version of Theorem 3.1 extends to the vector bundle

setting a result of B. G. Schmidt [5].

Theorem 3.2. Let ∇ be a linear connection in the vector bundle

ξ = (E, p,M) with M connected. Assume that for a fixed x0 ∈ M , the

holonomy group φ(x0) leaves invariant a given positive-definite quadratic

form h0 on Ex0 . Then there exists a Riemannian metric h in ξ such that

∇h = 0.

Proof. Let us denote by the same letter h0 the inner product in Ex0

defined by the quadratic form h0. This inner product could be obtained by
transferring one from Rm using a bundle chart. By hypothesis the inner
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product h0 is invariant under φ(x0). From now on the reasoning proving
Theorem 3.1 can be repeated in its entirety in order to find h such that
∇h = 0. ¤

Remark 3.1. The Riemannian metric h found in Theorem 3.1 is not
unique and is not canonical in any way. The same applies for h found in
Theorem 3.2.

4. Another condition for ∇ to be metrizable

We are to deal with the problem of the metrizability of a linear con-
nection ∇ in a vector bundle endowed with a Finsler function.

Definition 4.1. Let ξ = (E, p, M) be a vector bundle of rank m. A
Finsler function on E is a nonnegative real function F on E with the
properties

1) F is smooth on E \ {(x, 0), x ∈ M},
2) F (x, λy) = λF (x, y) for all λ > 0,

3) The matrix with the entries gab(x, y) = 1
2

∂2F 2

∂ya∂yb is positive definite.

On the manifold E we have the vertical distribution u → VuE = ker p∗,u
where p∗ denotes the differential of p. This is spanned by ∂̇a := ∂

∂ya . A
distribution u → HuE which is supplementary to the vertical distribution
is called a horizontal distribution or a nonlinear connection on E. This
is usually taken as spanned by δi = ∂i − Na

i (x, y)∂̇a, where the functions
(Na

i (x, y)) are called the coefficients of the given nonlinear connection.
Under a change of coordinates they behave as follows:

Ña
j

∂x̃j

∂xk
= Ma

b (x)N b
k(x, y)− ∂Ma

b

∂xk
yb, (4.1)

a fact which is equivalent to

δi =
∂x̃k

∂xi
δ̃k. (4.1’)

Introducing the horizontal distribution we have

TuE = HuE ⊕ VuE, u ∈ E. (4.2)
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It is convenient to decompose the geometrical objects on E according
to (4.2) using the adapted basis (δi, ∂̇a) and its dual (dxi, δya = dya +
Na

i (x, y)dxi).

The linear connection ∇ in ξ defines a nonlinear connection on E if we
take Na

i (x, y) = Γa
bi(x)yb. Indeed, using (2.4) it is easy to check that these

functions satisfy (4.1). From now on we shall use only the decomposition
(4.2) provided by these functions. Furthermore, the linear connection ∇
induces a linear connection D in the vertical bundle over E as follows:
D : X (E)× Γ(V E) → Γ(V E), (X, Z) → DXZ is given for Z = Za∂̇a by

Dδk
∂̇a = Γa

bk(x)∂̇a, D∂̇b
∂̇a = 0. (4.3)

We call D the vertical lift of ∇ and we use Dδk
for defining a horizontal

covariant derivative operator in the tensor algebra of the vertical bundle,
denoted by |k, setting

f|k = δkf for any function on E,

Xa
|k = δkX

a + Γa
bk(x)Xb.

(4.4)

For a fixed x ∈ E, the pair (Ex, Fx) is a Minkowski space. Here Fx

denotes the restriction of F to Ex and it is obvious that this is a Minkowski
norm on Ex.

Now we show that under certain conditions the parallel translations
of ∇ are isometries of Minkowski spaces.

Theorem 4.1. Let ξ = (E, p, M) be a vector bundle of rank m with M

connected, endowed with a Finsler function F and with a linear connection

∇ as well. Let |k be the horizontal covariant derivative operator defined

by the vertical lift D of ∇. If F|k = 0, then the parallel translation defined

by ∇, Pc : (Ex, Fx) → (Ey, Fy) is an isometry of Minkowski spaces for any

points x, y ∈ M and any curve c : [0, 1] → M joining them.

Proof. Let be u ∈ Ex, and t → A(t), t ∈ [0, 1] a section of ξ which
is parallel along c, and A(0) = u. Its local components Aa are solutions of
the system of differential equations (2.6), and Pc(u) = A(1) := v.

We know already that Pc is a linear isomorphism. Let us write out
the condition F|k = 0 for the points (x(t), A(t)) of E where t → x(t) is the
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local representation of the curve c. We obtain:

0 =
(

∂F

∂xk
−AbΓa

bk

∂F

∂ya

)
dxk

dt

(2.6)
=

∂F

∂xk

dxk

dt
+

∂F

∂ya

dAa

dt
=

dF (x(t), A(t))
dt

.

Thus the function F (x(t), A(t)) is constant. It follows F (x, u) = F (y, Pcu),
that is, Fx(u) = Fy(Pcu). In other words, Pc is an isometry of Minkowski
spaces (Ex, Fx) and (Ey, Fy). ¤

Corollary 4.1. Under the hypothesis of Theorem 4.1, the holonomy

group φ(x) consists of isometries of the Minkowski space (Ex, Fx).

The functions gab(x, y) define a Riemannian metric in the vertical bun-
dle over E by g = gab(x, y)δya⊗ δyb. We call (gab(x, y)) the Finsler metric
associated with F .

The condition F|k = 0 from the hypothesis of Theorem 4.1 can be
replaced by gab|k = 0, because of

Lemma 4.1. F|k = 0 is equivalent to gab|k = 0.

Proof. The homogeneity of F implies F 2(x, y) = gab(x, y)yayb. Then
F 2
|k = 2FF|k = gab|kyayb + 2gaby

a
|ky

b = gab|kyayb since ya
|k = 0. Thus if

gab|k = 0, then F|k = 0. In order to prove the converse, we notice that
∂̇a(H|k) = (∂̇aH)|k for any function H on E. This follows by a direct
calculation taking into account that ∂̇aH is a vertical 1-form. Using this
“commutation” formula we get gab|k = 1

2 ∂̇a∂̇b(F 2
|k) = ∂̇a∂̇b(FF|k) = 0. ¤

Now we are ready to prove the main result of this section.

Theorem 4.2. Let ∇ be a linear connection in the vector bundle

ξ = (E, p, M) with M connected. Suppose that E is endowed with a

Finsler function F having the associated Finsler metric gab(x, y). Let |k be

the h-covariant derivative operator induced by ∇. If gab|k = 0, then ∇ is

metrizable.

Proof. For a fixed x0 ∈ M we have the Minkowski space (Ex0 , Fx0).
Let G be the group of all linear isomorphisms of Ex0 which preserve the
set Sx0 = {u ∈ Ex0 , Fx0(u) = 1}. This G is a compact Lie group since Sx0

is compact. In our hypothesis, according to Lemma 4.1 and Corollary 4.1,
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the holonomy group φ(x0) is a Lie subgroup of G. Let 〈 , 〉 be any inner
product on Ex0 . Define a new inner product on Ex0 by

hx0(u, v) =
1

vol(G)

∫

G
〈gu, gv〉µG, (4.5)

for u, v ∈ Ex0 , g ∈ G and µG the bi-invariant Haar measure on G.
It follows that for every a ∈ G we have

hx0(au, av) = hx0(u, v), u, v ∈ Ex0 . (4.6)

In particular, (4.6) holds for any element of φ(x0) ⊂ G. Thus φ(x0) leaves
invariant the inner product hx0 in Ex0 . The inner product hx0 is extended
by parallel translations to a Riemannian metric h in ξ. Furthermore, this
metric verifies∇h = 0 since all parallel translations of∇ become isometries
with respect to h. Thus ∇ is metrizable. ¤

Remark 4.1. The Riemannian metric h is not unique and it is not
canonical in any way.
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(1987), 54.

[4] R. Miron and M. Anastasiei, The Geometry of Lagrange Spaces: Theory and
Applications, Kluwer Academic Publishers, 1994, FTPH 59.

[5] B. G. Schmidt, Conditions on a Connection to be a Metric Connection, Commun.
Math. Phys. 29 (1973), 55–59.

[6] Z. I. Szabó, Positive Definite Berwald Spaces, Tensor N.S. 35 (1981), 25–39.

[7] L. Tamassy, Metrizability of Affine Connections, Balkan J. of Geometry and Its
Applications 1, no. 1 (1996), 83–90.

MIHAI ANASTASIEI

FACULTY OF MATHEMATICS

UNIVERSITY “AL.I.CUZA” IAŞI

6600, IAŞI
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