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Reduction theorems of certain Douglas spaces
to Berwald spaces
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Abstract. The notion of Douglas space was proposed by the present authors
as a generalization of the notion of Berwald space. Some Finsler spaces of Douglas
type are reduced to Berwald spaces. In the present paper we are mainly concerned
with Finsler spaces with (α, β)-metric and expect further development.

1. Introduction

We consider an n-dimensional Finsler space Fn = (Mn, L(x, y)) on
a smooth n-manifold Mn with a fundamental function L(x, y). Consider
F = L2/2 and denote the fundamental tensor by gij(x, y) = ∂̇i∂̇jF . If we
define functions Gi(x, y) by 2gijG

i = (∂̇j∂rF )yr − ∂jF , then the geodesic
curve x(t) of Fn is given by the differential equations

d2xi/ds2 + 2Gi(x, dx/ds) = 0,

in terms of the arc-length s =
∫

L(x(t), dx/dt)dt as the parameter. The
functions Gi(x, y) are positively homogeneous in yi of degree two.
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The Berwald connection BΓ = (Gi
j , G

i
jk, 0) of Fn is defined by Gi

j =
∂̇jG

i and Gi
jk = ∂̇kG

i
j . Then Gi

jkh = ∂̇hGi
jk are components of the

hv-curvature tensor of Fn. The h- and v-covariant differentiations with
respect to BΓ are indicated by (; , .): For a contravariant vector field
X = (Xi) we have

Xi
;j = δjX

i + XrGi
rj , Xi.j = ∂̇jX

i,

where δj = ∂j −Gr
j ∂̇r.

If Gi(x, y) of Fn are homogeneous polynomials Gi = Gi
jk(x)yjyk/2

in yi, then Fn is called Berwald space as usual. Thus a Berwald space is
characterized by the tensorial equation Gi

jkh = 0.
The present authors defined the notion of Douglas space [BM,2]: In

general, Dij(x, y) = Gi(x, y)yj −Gj(x, y)yi are positively homogeneous in
yi of degree three. If Dij(x, y) of Fn are homogeneous polynomials in yi

of degree three, then Fn is called a Douglas space. Thus, a Douglas space
is characterized by Dlm

hijk = ∂̇k∂̇j ∂̇i∂̇hDlm = 0. It is easy to show

Dlr
hijr = (n + 1)Dl

hij ,

Dlm
hijk = (∂̇kD

l
hij)y

m + {Dl
ijkδ

m
h + (h, i, j, k)} − [l, m],

(1)

where (h, i, j, k) denotes cyclic permutation of these subscripts, [l, m] in-
terchange of these superscripts. The tensors Dl

hij are components of the
Douglas tensor

Dl
hij = Gl

hij −Ghijy
l/(n + 1)− {Ghiδ

l
j + (h, i, j)}/(n + 1),

where Ghi = Gr
rhi and Ghij = Ghi.j . Since (1) shows that Dlm

hijk = 0 is
equivalent to Dl

hij = 0, the vanishing of the Douglas tensor characterizes
a Douglas space, the origin of this naming.

If we treat the projective invariants

Qi = Gi −Gr
ry

i/(n + 1),

then we have Di
jkh = ∂̇j ∂̇k∂̇hQi, and hence Fn is a Douglas space, if and

only if Qi are homogeneous polynomials in yi of degree two. If we consider
Qi

j = ∂̇jQ
i and Qi

jk = ∂̇kQ
i
j , then the latter is a function of the position x

alone in a Douglas space.
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Let us define

Qi
jkh = ∂hQi

jk − (∂̇rQ
i
jk)Q

r
h + Qr

jkQ
i
rh − [k, h],

and let Qjk = Qr
rjk. Then

W i
jkh = Qi

jkh + {δi
kQjh − [k, h]}/(n− 1)

coincide with the components of the Weyl curvature tensor [BM,3]. Conse-
quently, both of the projective invariant tensors, the Douglas tensor Di

jkh

and the Weyl tensor W i
jkh, are obtained from the invariants Qi. For a

Douglas space, Qi
jk are functions of the position (xi) alone, and so are

W i
jkh.

In particular, for a two-dimensional Douglas space with the local co-
ordinates (x, y), the equation of a geodesic curve can be written in the
form

y′ = dy/dx,

dy′/dx = Y3(y′)3 + Y2(y′)2 + Y1y
′ + Y0,

where the coefficients Y0, Y1, Y2, Y3 are functions of (x, y) alone.
Finally, we consider the following sets of special Finsler spaces:

M(n) = {locally Minkowski spaces of dimension n}
B(n) = {Berwald spaces of dimension n}
L(n) = {Landsberg spaces of dimension n}
S(n) = {spaces of dimension n without stretch curvature}.

L. Berwald stated the following inclusion relations at the Interna-
tional Mathematical Congress, Bologna, 1928 [B]:

M(n) ⊂ B(n) ⊂ L(n) ⊂ S(n).

The reduction theorems of Landsberg spaces to Berwald spaces ([BM,1],
[M,3]) are related to B(n) ⊂ L(n).

If we deal with the set

D(n) = {Douglas spaces of dimension n},
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then Theorem 1 of [BM,2] states that

B(n) = L(n)
⋂

D(n).

In terms of the reduction this is expressed as

Theorem 1.1. (1) If a Landsberg space is of Douglas type then it

reduces to a Berwald space. (2) If a Douglas space is of Landsberg type

then it reduces to a Berwald type.

2. Randers space and Kropina space

We are concerned with Finsler spaces Fn = (Mn, L) with a special
metric L(α, β), called (α, β)-metric where α is a Riemannian metric and
β is a 1-form in yi:

α2 = aij(x)yiyj , β = bi(x)yi.

Thus we obtain a Riemannian space Rn = (Mn, α) on Mn, called the
associated Riemannian space [AIM].

We treat Rn which is equipped with the Levi–Civita connection γ =
(γi

jk(x)), and denote by ( , ) the covariant differentiation with respect to γ.
We shall use the usual notation:

rij = (bi,j + bj,i)/2, sij = (bi,j − bj,i)/2,

si
j = airsrj , sj = brs

r
j , bi = airbr, b2 = brb

r.

Let BΓ = (Gi
j , G

i
jk) be the Berwald connection of Fn and consider

2Gi = Gi
jy

j = Gi
jky

jyk. Owing to ([M,4], [KAM]) we have that the differ-
ence Bi = Gi − γi

00/2 is given by

Bi = (E/α)yi + (αL2/L1)si
0 − (αC∗L11/L1)(yi/α− αbi/β)

E = βC∗L2/L, C∗ = αβ(r00L1 − 2αs0L2)/2(β2L1 + αr2L11),

where r2 = b2α2 − β2, (L1, L2) = (∂L/∂α, ∂L/∂β) and the subscript 0
denotes the contraction by yi.
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Thus Fn is a Berwald space, if and only if Bi are homogeneous poly-
nomials in yi of degree two, and it is a Douglas space, if and only if

Bij = Biyj −Bjyi

= (αL2/L1)(si
0y

j − sj
0y

i) + (α2C∗L11/βL1)(biyj − bjyi),

are homogeneous polynomials in yi of degree three.

I. Randers space. We first consider a Randers space Fn with
L = α + β. Then we have

Bi = (r00 − 2αs0)yi/2L + αsi
0.

Owing to ([K], [M,2]), Fn is a Berwald space, if and only if rij = 0
and sij = 0, that is, bi,j = 0. Then Gi are reduced to γi

00/2.
Next we have

Bij = α(si
0y

j − sj
0y

i).

According to [BM,2], Fn is a Douglas space, if and only if sij = 0, that is,
bi is a gradient vector field. Then Gi = γi

00/2 + r00y
i/2L.

Therefore we conclude that there exist Randers spaces of Douglas type
which are not of Berwald type.

II. Kropina space. We deal with a Kropina space Fn with L = α2/β.
Then we have C∗ = (βr00 + α2s0)/2b2α and

Bi = 2αC∗(bi/2β − yi/α2)− (α2/2β)si
0.

Thus b2 6= 0 is assumed [M,4].
Owing to [K], [M,2], Fn is a Berwald space, if and only if there exist

functions fi(x) satisfying

(i) rij = (frb
r)aij , (ii) sij = bifj − bjfi.

Then Bi is written as

Bi = (α2/2b2)(si + frb
rbi)− (s0 + frb

rβ)yi/b2.

Let us consider (ii). This yields

bisij(= sj) = b2fj − bifibj ,



320 S. Bácsó and M. Matsumoto

bisj − bjsi = b2(bifj − bjfi) = b2sij .

Thus (ii) is equivalent to the necessary and sufficient condition sij = (bisj−
bjsi)/b2 for Fn to be of Douglas type, according to ([BM,2], [M,4]). The
Bij of a Douglas space Fn is written as

Bij = (r00/2b2)(biyj − bjyi) + (α2/2b2)(siyj − sjyi).

Consequently, (ii) is the only condition for Fn to be of Douglas type, and
hence there exist Kropina spaces of Douglas type which are not of Berwald
type [BM,4].

3. Generalized Kropina space

We consider an (α, β)-metric of the form

L = αm+1β−m, m 6= −1, 0.

Since the case m = +1 is the Kropina metric, this is called generalized
Kropina metric [HHM]. For this metric we have

C∗ = α{(1 + m)r00β + 2ms0α
2}/2(1 + m){(1−m)β2 + mb2α2},

and hence b2 = 0 may be admissible, provided that m 6= 1.
Now α2 ≡ 0 (mod β) causes a special situation [M,4]: n = 2 and

b2 = 0. Since there exists a 1-form γ such that α2 = βγ, the metric
L reduces to the 1-form metric L = β(1−m)/2γ(1+m)/2 of product type
(Example 3.5.1.2 of [AIM]). Consequently, the space F 2 is a Berwald
space (Theorem 3.5.3.1 of [AIM]).

In the ordinary case (α2 6≡ 0 (mod β) and b2 6= 0), we have Theorem 1
of [M,4]:

Fn is a Douglas space, if and only if bi,j are given by bi,j = rij + sij

where there exists a function k(x) satisfying

rij = {k/m(m + 1)}{mb2aij + (1−m)bibj}
+ {(1−m)/(1 + m)b2}(sibj + sjbi),

sij = (bisj − bjsi)/b2.
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If we consider

vi = 4m(si/b2 + kbi/2m)/(1 + m),

then rij and sij are written in the form

rij = (brvr/2)aij + {(1−m)/4m}(bivj + bjvi),

sij = {(1 + m)/4m}(bivj − bjvi).

Hence we get

bi,j =
1
2
(bivj/m− bjvi + brvraij),

which coincides with the condition (4.5), given by [K] for Fn to be a
Berwald space.

In fact, these rij and sij give Bi of the form

Bi = [α2(msi/b2 + kbi/2)− (kβ + 2s0m/b2)yi]/(1 + m),

which are homogeneous polynomials in yi of degree two. Then Fn is a
Berwald space.

Theorem 3.1. Let Fn be a generalized m-Kropina space which is not

a Kropina space. If Fn is a Douglas space, then Fn reduces to a Berwald

space.

4. Matsumoto space and space with
L = α + β2/α

I. Matsumoto space. The second of the present authors introduced
an (α, β)-metric L = α2/(α − β) [M, 1] as a realization of P. Finsler’s
idea “a slope measure of a mountain with respect to a time measure.” A
Finsler space with this metric was called Mastumoto space by the authors
of [AHY ]. According to them, a Matsumoto space is of Berwald type, if
and only if bi,j = 0.

On the other hand, [M,4] proved that the space is a Douglas space, if
and only if bi,j = 0, provided that α2 6≡ 0. Therefore
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Theorem 4.1. Let Fn be a Matsumoto space satisfying α2 6≡ 0
(mod β). If Fn is a Douglas space, then it reduces to a Berwald space.

II. Space with L = α+β2/α. We are concerned with a Finsler space
Fn with L = α + β2/α which was first proposed in [M, 4]. This space is
of Berwald type, if and only if bi,j = 0, provided that α2 6≡ 0 (mod β).

On the other hand, the space Fn (n > 2) is of Douglas type, if and
only if there exists a function k(x) such that

bi,j = k{(1 + 2b2)aij − 3bibj}, (2)

provided that b2 6= 0, 1. The assumption b2 6= 0 implies α2 6≡ 0 (mod β),
by the Lemma of [M,4].

For this space we have

Bij = r00α
2(biyj − bjyi)/{(1 + 2b2)α2 − 3β2}.

Under (2) we have Bij of the form

Bij = kα2(biyj − bjyi),

which are certainly homogeneous polynomials in yi of degree three.
Since bi,j = 0 of (2) holds only in the case k = 0, we have

Theorem 4.2. Let Fn be a Finsler space with L = α + β2/α

satisfying b2 6= 0, 1. It is of Douglas type, if and only if there exists a

function k(x) such that we have (2). It reduces to a Berwald space, if and

only if k vanishes.

5. On two-dimensional Douglas spaces

From the standpoint of the reduction theorem, we have two interesting
theorems on two-dimensional Douglas spaces in [BM,2].

First we recall that a two-dimensional Finsler space F 2 is a Douglas
space, if and only if the main scalar I satisfies the equation

6I,1 + εJ;2 + 2IJ = 0, (3)

where J = I,1;2 + I,2 and ε = ±1 is the signature of the metric: hij =
gij − lilj = εmimj in the Berwald frame (li,mi).
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We are concerned with the T -tensor Thijk of F 2:

Thijk = LChij |k + lhCijk + liChjk + ljChik + lkChij .

In the two-dimensional case we have LThijk = I;2mhmimjmk. From (3)
and I;2 = 0 it follows that

Theorem 5.1. If a two-dimensional Douglas space has a vanishing

T -tensor, then it reduces to a Berwald space with constant main scalar.

Next we are concerned with a Finsler space with cubic metric

L3 = aijk(x)yiyjyk,

which has the components of a symmetric covariant tensor aijk(x) as co-
efficients. In the two-dimensional case, this metric is characterized by the
main scalar I as

2I;2 + 6εI2 + 3 = 0.

From this condition and (3) we can show

Theorem 5.2. If a two-dimensional Douglas space F 2 is equipped

with a cubic metric, then F 2 reduces to a locally Minkowski space, or a

Berwald space with L3 = {bi(x)yi}{cj(x)yj}2, ε = −1 and I2 = 1/2.
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Mat. Bologna 4 (1928), 263–270.

[BM,1] S. Bácsó and M. Matsumoto, Reduction theorems of certain Landsberg
spaces to Berwald spaces, Publ. Math. Debrecen 48 (1996), 357–366.
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