Publ. Math. Debrecen
62/3-4 (2003), 447-460

The Weyl tensors

By DEMETER KRUPKA (Brno)

Dedicated to Professor L. Tamássy on his 80th birthday

Abstract

The projections of tensor spaces of types $(1,3),(2,2)$, and $(1,4)$ over a real, n-dimensional vector space onto their complementary subspaces of Weyl (i.e. traceless), and Kronecker tensors are considered. The corresponding trace decomposition formulas providing a basis for an algebraic classification of these tensor, are discussed.

1. Introduction

In this paper, \mathbb{R} denotes the field of real numbers, and E is a real, n-dimensional vector space. The space of tensors of type (r, s) over E is denoted by $T_{s}^{r} E$. In a (fixed) basis e_{i} of E, we usually denote a tensor $U \in T_{s}^{r} E$ by its components, i.e., we write $U=U_{i_{1} i_{2} \ldots i_{s}}^{j_{1} j_{2} \ldots j_{r}}$.

Let r and s be any positive integers. We define a Weyl tensor to be any traceless tensor $W \in T_{s}^{r} E$. We define a Kronecker tensor as a tensor $V \in T_{s}^{r} E, V=V_{j_{1} j_{2} \ldots j_{s}}^{i_{1} i_{2} \ldots i_{r}}$, of the form

$$
\begin{aligned}
V_{j_{1} j_{2} \ldots j_{s}}^{i_{1} i_{2} \ldots i_{r}}= & \delta_{j_{1}}^{i_{1}} V_{(1) j_{2} j_{3} \ldots j_{s}}^{(1) i_{2} i_{3} \ldots i_{r}}+\delta_{j_{2}}^{i_{1}} V_{(2) j_{1} j_{3} \ldots j_{s}}^{(1) i_{2} i_{3} \ldots i_{r}}+\cdots+\delta_{j_{s}}^{i_{1}} V_{(s) j_{1} j_{3} \ldots j_{s-1}}^{(1) i_{2} i_{3} \ldots i_{r}} \\
& +\delta_{j_{1}}^{i_{2}} V_{(1) j_{2} j_{3} \ldots j_{s}}^{(2) i_{1} i_{3} \ldots i_{r}}+\delta_{j_{2}}^{i_{2}} V_{(2) j_{1} j_{3} \ldots j_{s}}^{(2) i_{1} i_{3} \ldots i_{r}}+\cdots+\delta_{j_{s}}^{i_{2}} V_{(s) j_{1} j_{3} \ldots j_{s-1}}^{(2) i_{1} i_{3} \ldots i_{r}}
\end{aligned}
$$

Mathematics Subject Classification: 15A72, 53A45, 53B20.
Key words and phrases: tensor, trace, duality, curvature tensor, Weyl tensor.
Supported by grants 201/00/0724 and 201/03/0512 of the Czech Grant Agency (GACR).

$$
\begin{aligned}
& +\ldots \\
& +\delta_{j_{1}}^{i_{r}} V_{(1) j_{2} j_{3} \ldots j_{s}}^{(r) i_{2} i_{3} \ldots i_{r-1}}+\delta_{j_{2}}^{i_{r}} V_{(2) j_{1} j_{3} \ldots j_{s}}^{(r) i_{2} i_{3} \ldots i_{r-1}}+\cdots+\delta_{j_{s}}^{i_{r}} V_{(s) j_{1} j_{3} \ldots j_{s-1}}^{(r) i_{2} i_{3} \ldots i_{r-1 r}}
\end{aligned}
$$

for some tensors $V_{(q)}^{(p)} \in T_{s-1}^{r-1} E, V_{(q)}^{(p)}=V_{(q) j_{1} j_{2} \ldots j_{s-1}}^{(p) i_{2} \ldots i_{r-1}}$; the Kronecker tensors are also called δ-generated. According to the trace decomposition theorem, every tensor $U \in T_{s}^{r} E$ can be uniquely decomposed into the Weyl (i.e., traceless), and Kronecker components. Examples show, however, that for lower dimensions, the tensors $V_{(q)}^{(p)}$ may not be unique. For the general trace decomposition theory we refer to Krupka [8], [9], and Mikes [10].

The natural trace operation is defined on the basis of duality of vector spaces, i.e., only in mixed tensor spaces, and does not require any metric tensor structure on the underlying vector space. In contradistinction to the metric tensor case (see e.g. Weyl [14], Hamermesh [5], Chapter 10, and Welsh [13]), the trace operation is invariant with respect to the general linear group. In this setting, the trace decomposition problem appears as a problem of the theory of systems of linear equations, or of natural projectors in mixed tensor spaces [7], rather than a problem of the group representation theory.

The aim of this note is to review recent results on the trace decomposition of tensors of type $(1,3),(2,2)$, and $(1,4)$ (see [6], [8], [9]). Tensors of these types appear in differential geometry of Riemann, and Finsler spaces (curvature tensors and their covariant derivatives), and their trace decompositions represent a basis for an (algebraic) classification of the underlying geometric structures. In particular, it turns out that the Weyl components in these cases coincide with the classical Weyl tensors, characterizing various geometric properties of smooth manifolds endowed with linear connections (see e.g., Bokan [1], Chern, Chen, Lam [2], Eisenhart [3], Gromoll, Klingenberg, Meyer [4], Tamássy, Binh [11], Thomas [12], Weyl [15]).

2. The Weyl tensors of type $(1,3)$

Consider the tensor space $T_{3}^{1} E$. In general, a tensor $U \in T_{3}^{1} E$ has three traces, the (1, 1)-, (1,2)-, and (1,3)-traces. the Ricci tensor of U is defined
to be the (1,2)-trace $U_{k s m}^{s}$. In the following theorem, we give the basic trace decomposition formula for tensors of type $(1,3)$, which defines the Weyl component of these tensors. The proof, based on an explicit solution of the trace decomposition equations, can be found in [8]. E denotes a real vector space of dimension $n \geq 3$.

Theorem 1. Let $\operatorname{dim} E \geq 3$, and let $U \in T_{3}^{1} E, U=U_{k \ell m}^{i}$. There exists a unique Weyl tensor $W \in T_{3}^{1} E, W=W_{k \ell m}^{i}$, and unique tensors $P, Q, R \in T_{2}^{0} E, P=P_{\ell m}, Q=Q_{k m}, R=R_{k \ell}$ such that

$$
U_{k \ell m}^{i}=W_{k \ell m}^{i}+\delta_{k}^{i} P_{\ell m}+\delta_{\ell}^{i} Q_{k m}+\delta_{m}^{i} R_{k \ell} .
$$

These tensors are given by

$$
\begin{aligned}
P_{k \ell}= & \frac{1}{\left(n^{2}-1\right)\left(n^{2}-4\right)}\left(n\left(n^{2}-3\right) U_{t k \ell}^{t}-\left(n^{2}-2\right) U_{k t \ell}^{t}\right. \\
& \left.+n U_{k \ell t}^{t}-2 U_{t \ell k}^{t}+n U_{\ell t k}^{t}-\left(n^{2}-2\right) U_{\ell k t}^{t}\right) \\
Q_{k \ell}= & \frac{1}{\left(n^{2}-1\right)\left(n^{2}-4\right)}\left(-\left(n^{2}-2\right) U_{t k \ell}^{t}+n\left(n^{2}-3\right) U_{k t \ell}^{t}\right. \\
& \left.-\left(n^{2}-2\right) U_{k \ell t}^{t}+n U_{t \ell k}^{t}-2 U_{\ell t k}^{t}+n U_{\ell k t}^{t}\right) \\
R_{k \ell}= & \frac{1}{\left(n^{2}-1\right)\left(n^{2}-4\right)}\left(n U_{t k \ell}^{t}-\left(n^{2}-2\right) U_{k t \ell}^{t}+n\left(n^{2}-3\right) U_{k \ell t}^{t}\right. \\
& \left.-\left(n^{2}-2\right) U_{t \ell k}^{t}+n U_{\ell t k}^{t}-2 U_{\ell k t}^{t}\right)
\end{aligned}
$$

and

$$
W_{k \ell m}^{i}=U_{k \ell m}^{i}-\delta_{k}^{i} P_{\ell m}-\delta_{\ell}^{i} Q_{k m}-\delta_{m}^{i} R_{k \ell}
$$

In a series of corollaries, we now compute the Weyl components of tensors $U=U_{k \ell m}^{i}$, satisfying certain symmetry conditions. The proofs are easy applications of Theorem 1.

Corollary 1. Let $n \geq 3$, and let $U \in T_{3}^{1} E, U=U_{k \ell m}^{i}$. Assume that

$$
\begin{equation*}
U_{k \ell m}^{i}+U_{k m \ell}^{i}=0 \tag{1}
\end{equation*}
$$

Then there exists a unique Weyl tensor $W \in T_{3}^{1} E, W=W_{k \ell m}^{i}$, and unique tensors $P, Q \in T_{2}^{0} E, P=P_{\ell m}, Q=Q_{k m}$, such that

$$
\begin{equation*}
U_{k \ell m}^{i}=W_{k \ell m}^{i}+\delta_{k}^{i} P_{\ell m}+\delta_{\ell}^{i} Q_{k m}-\delta_{m}^{i} Q_{k \ell} \tag{2}
\end{equation*}
$$

These tensors are given by

$$
\begin{aligned}
P_{k \ell} & =\frac{1}{(n+1)(n-2)}\left((n-1) U_{t k \ell}^{t}+U_{\ell t k}^{t}-U_{k t \ell}^{t}\right) \\
Q_{k \ell} & =\frac{1}{\left(n^{2}-2\right)(n-2)}\left(-(n-1) U_{t k \ell}^{t}+\left(n^{2}-n-1\right) U_{k t \ell}^{t}-U_{\ell t k}^{t}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
W_{k \ell m}^{i}= & U_{k \ell m}^{i}-\frac{1}{(n+1)(n-2)} \delta_{k}^{i}\left((n-1) U_{t \ell m}^{t}+U_{m t \ell}^{t}-U_{\ell t m}^{t}\right) \\
& -\frac{1}{\left(n^{2}-1\right)(n-2)} \delta_{\ell}^{i}\left(-(n-1) U_{t k m}^{t}+\left(n^{2}-n-1\right) U_{k t m}^{t}-U_{m t k}^{t}\right) \\
& +\frac{1}{\left(n^{2}-1\right)(n-2)} \delta_{m}^{i}\left(-(n-1) U_{t k \ell}^{t}+\left(n^{2}-n-1\right) U_{k t \ell}^{t}-U_{\ell t k}^{t}\right) .
\end{aligned}
$$

Proof. The proof is straightforward. We substitute from (1) to (2), and then we use Theorem 1 and the identities $n^{3}-3 n+2=(n+2)(n-1)^{2}$, $n^{3}+n^{2}-3 n-2=(n+2)\left(n^{2}-n-1\right)$, and $n^{2}+n-2=(n+2)(n-1)$.

Remark 1. Corollary 1 describes, in particular, the trace decomposition of the curvature tensors of linear connections on smooth manifolds; these tensors satisfy property (1). Note that the δ-components in (2) depends on both the (1,1)-trace, and (1,2)-trace of U.

Corollary 2. Let $n \geq 3$, and assume that $U=U_{k \ell m}^{i}$ satisfies

$$
\begin{equation*}
U_{k \ell m}^{i}+U_{k m \ell}^{i}=0, \quad U_{k \ell m}^{i}+U_{m k \ell}^{i}+U_{\ell m k}^{i}=0 . \tag{3}
\end{equation*}
$$

Then there exists a unique Weyl tensor $W \in T_{3}^{1} E, W=W_{k \ell m}^{i}$, and unique tensors $P, Q \in T_{2}^{0} E, P=P_{\ell m}, Q=Q_{k m}$, such that

$$
U_{k \ell m}^{i}=W_{k \ell m}^{i}+\delta_{k}^{i} P_{\ell m}+\delta_{\ell}^{i} Q_{k m}-\delta_{m}^{i} Q_{k \ell}
$$

These tensors are given by

$$
\begin{gather*}
P_{k \ell}=\frac{1}{n+1}\left(U_{k t \ell}^{t}-U_{\ell t k}^{t}\right), \\
Q_{k \ell}=\frac{1}{2(n-1)}\left(U_{k t \ell}^{t}+U_{\ell t k}^{t}\right)+\frac{1}{2(n+1)}\left(U_{k t \ell}^{t}-U_{\ell t k}^{t}\right), \tag{4}
\end{gather*}
$$

and

$$
\begin{align*}
W_{k \ell m}^{i}= & U_{k \ell m}^{i}-\frac{1}{n+1} \delta_{k}^{i}\left(U_{\ell t m}^{t}-U_{m t \ell}^{t}\right) \tag{5}\\
& -\frac{1}{n^{2}-1} \delta_{\ell}^{i}\left(n U_{k t m}^{t}+U_{m t k}^{t}\right)+\frac{1}{n^{2}-1} \delta_{m}^{i}\left(n U_{k t \ell}^{t}+U_{\ell t k}^{t}\right)
\end{align*}
$$

Proof. Using identities (3), we find $U_{t k \ell}^{t}=-U_{k \ell t}^{t}-U_{\ell t k}^{t}=U_{k t \ell}^{t}-U_{\ell t k}^{t}$. Formulas (4), (5) now follow from Theorem 1.

Remark 2. The tensor $W=W_{k \ell m}^{i}$ (5) is the Weyl projective curvature tensor. It follows from Corollary 2 that under the symmetry assumptions (3), the tensor $U=U_{j k \ell}^{i}$ is completely determined by its (1,2)-trace $U_{k t \ell}^{t}$, i.e., by the Ricci tensor, and by the Weyl projective curvature tensor. Note, however, that the Weyl and the Ricci tensors are not sufficient to determine the trace decomposition (2) in Corollary 1.

Remark 3. Identities (3) are satisfied by the curvature tensor of a connection without torsion (see e.g. Gromoll, Klingenberg, Meyer [4]), and by the first Chern connection in Finsler geometry (see Chern, Chen, Lam [2], Chapter 8).

Corollary 3. Let $n \geq 3$, and assume that $U=U_{k \ell m}^{i}$ satisfies

$$
U_{k l m}^{i}+U_{k m \ell}^{i}=0, \quad U_{\ell t k}^{t}=U_{k t \ell}^{t} .
$$

Then there exists a unique Weyl tensor $W \in T_{3}^{1} E, W=W_{k \ell m}^{i}$, and unique tensors $P, Q \in T_{2}^{0} E, P=P_{\ell m}, Q=Q_{k m}$, such that

$$
U_{k \ell m}^{i}=W_{k \ell m}^{i}+\delta_{k}^{i} P_{\ell m}+\delta_{\ell}^{i} Q_{k m}-\delta_{m}^{i} Q_{k \ell}
$$

These tensors are given by

$$
P_{k \ell}=\frac{n-1}{(n+1)(n-2)} U_{t k \ell}^{t}, \quad Q_{k \ell}=-\frac{1}{(n+1)(n-2)} U_{t k \ell}^{t}+\frac{1}{n-1} U_{k t \ell}^{t},
$$

and

$$
\begin{aligned}
W_{k \ell m}^{i}= & U_{k \ell m}^{i}-\frac{n-1}{(n+1)(n-2)} \delta_{k}^{i} U_{t \ell m}^{t} \\
& +\delta_{\ell}^{i}\left(\frac{1}{(n+1)(n-2)} U_{t k m}^{t}-\frac{1}{n-1} U_{k t m}^{t}\right)
\end{aligned}
$$

$$
-\delta_{m}^{i}\left(\frac{1}{(n+1)(n-2)} U_{t k \ell}^{t}-\frac{1}{n-1} U_{k t \ell}^{t}\right)
$$

Proof. We use Theorem 1, and the identity $n^{2}-n-2=(n-2)(n+1)$.

Corollary 4. Let $n \geq 3$, and assume that $U=U_{k \ell m}^{i}$ satisfies

$$
\begin{equation*}
U_{k \ell m}^{i}+U_{k m \ell}^{i}=0, \quad U_{k \ell m}^{i}+U_{m k \ell}^{i}+U_{\ell m k}^{i}=0, \quad U_{t k \ell}^{t}=0 \tag{6}
\end{equation*}
$$

Then there exists a unique Weyl tensor $W \in T_{3}^{1} E, W=W_{k \ell m}^{i}$, and a unique tensor $Q \in T_{2}^{0} E, Q=Q_{k m}$, such that

$$
U_{k \ell m}^{i}=W_{k \ell m}^{i}+\delta_{\ell}^{i} Q_{k m}-\delta_{m}^{i} Q_{k \ell}
$$

These tensors are given by

$$
Q_{k \ell}=\frac{1}{n-1} U_{\ell t k}^{t}, \quad W_{k \ell m}^{i}=U_{k \ell m}^{i}-\frac{1}{n-1}\left(\delta_{\ell}^{i} U_{m t k}^{t}-\delta_{m}^{i} U_{\ell t k}^{t}\right)
$$

Proof. This follows from Corollary 2.
Remark 4. Conditions (6) are equivalent with

$$
U_{k \ell m}^{i}+U_{k m \ell}^{i}=0, \quad U_{k \ell m}^{i}+U_{m k \ell}^{i}+U_{\ell m k}^{i}=0, \quad U_{k t \ell}^{t}=U_{\ell t k}^{t}
$$

The third of these conditions means that the Ricci tensor is symmetric.
We now discuss a symmetry condition which appears in Finsler geometry.

Corollary 5. Let $\operatorname{dim} E \geq 3$, and let $U \in T_{3}^{1} E, U=U_{k \ell m}^{i}$. Assume that

$$
U_{k \ell m}^{i}-U_{\ell k m}^{i}=0
$$

Then there exists a unique Weyl tensor $W \in T_{3}^{1} E, W=W_{k \ell m}^{i}$, and unique tensors $P, R \in T_{2}^{0} E, P=P_{\ell m}, R=R_{k \ell}$, such that

$$
U_{k \ell m}^{i}=W_{k \ell m}^{i}+\delta_{k}^{i} P_{\ell m}+\delta_{\ell}^{i} P_{k m}+\delta_{m}^{i} R_{k \ell}
$$

These tensors are given by

$$
P_{k \ell}=\frac{1}{\left(n^{2}-1\right)(n+4)}\left(\left(n^{2}+n-1\right) U_{k t \ell}^{t}+U_{\ell t k}^{t}-(n+1) U_{k \ell t}^{t}\right)
$$

$$
R_{k \ell}=\frac{1}{(n-1)(n+2)}\left(-U_{k t \ell}^{t}-U_{\ell t k}^{t}+(n+1) U_{k \ell t}^{t}\right)
$$

and

$$
\begin{aligned}
W_{k \ell m}^{i}= & U_{k \ell m}^{i}-\frac{1}{\left(n^{2}-1\right)(n+4)} \\
& \times\left(\delta_{k}^{i}\left(\left(n^{2}+n-1\right) U_{k t m}^{t}+U_{m t k}^{t}-(n+1) U_{k m t}^{t}\right)\right. \\
& \left.-\delta_{\ell}^{i}\left(\left(n^{2}+n-1\right) U_{k t m}^{t}+U_{m t k}^{t}-(n+1) U_{k m t}^{t}\right)\right) \\
& +\frac{1}{(n-1)(n+2)} \delta_{m}^{i}\left(U_{k t \ell}^{t}+U_{\ell t k}^{t}-(n+1) U_{k \ell t}^{t}\right) .
\end{aligned}
$$

Proof. We use Theorem 1, and the identities $n^{3}-n^{2}-3 n+2=$ $(n-2)\left(n^{2}+n-1\right), n^{2}-n-2=(n-2)(n+1)$, and $n^{3}-3 n-2=$ $(n+1)^{2}(n-2)$.

3. The Weyl tensors of type $(2,2)$

Consider the tensor space $T_{2}^{2} E$. A tensor $U \in T_{2}^{2} E, U=U_{k \ell}^{i j}$, has four traces, the $(1,1)-,(1,2)-,(2,1)-$, and $(2,2)$-traces. In the following Theorem 2 we recall the trace decomposition formula for tensors of type $(2,2)$; this formula defines the Weyl component of a tensor $U \in T_{2}^{2} E$. The proof of Theorem 2 can be found in [9]. As before, E denotes a real, n-dimensional vector space such that $n \geq 3$.

Theorem 2. Let $\operatorname{dim} E \geq 3$, and let $U \in T_{2}^{2} E, U=U_{k \ell}^{i j}$. There exists a unique Weyl tensor $W \in T_{2}^{2} E, W=W_{k \ell}^{i j}$, unique traceless tensors $P, Q, R, S \in T_{1}^{1} E, P=P_{k}^{i}, Q=Q_{k}^{i}, R=R_{k}^{i}, S=S_{k}^{i}$, and unique numbers $G, H \in \mathbb{R}$ such that

$$
U_{k \ell}^{i j}=W_{k \ell}^{i j}+\delta_{k}^{i} P_{\ell}^{j}+\delta_{\ell}^{i} Q_{k}^{j}+\delta_{k}^{j} R_{\ell}^{i}+\delta_{\ell}^{j} S_{k}^{i}+\delta_{k}^{i} \delta_{\ell}^{j} G+\delta_{\ell}^{i} \delta_{k}^{j} H
$$

These tensors are given by

$$
\begin{aligned}
P_{j}^{i} & =\frac{1}{n\left(n^{2}-4\right)}\left(\left(n^{2}-2\right) U_{s j}^{s i}-n U_{j s}^{s i}-n U_{s j}^{i s}+2 U_{j s}^{i s}-n \delta_{j}^{i} U_{s t}^{s t}+2 \delta_{j}^{i} U_{t s}^{s t}\right) \\
Q_{j}^{i} & =\frac{1}{n\left(n^{2}-4\right)}\left(-n U_{s j}^{s i}+\left(n^{2}-2\right) U_{j s}^{s i}+2 U_{s j}^{i s}-n U_{j s}^{i s}+2 \delta_{j}^{i} U_{s t}^{s t}-n \delta_{j}^{i} U_{t s}^{s t}\right),
\end{aligned}
$$

$$
\begin{aligned}
R_{j}^{i} & =\frac{1}{n\left(n^{2}-4\right)}\left(-n U_{s j}^{s i}+2 U_{j s}^{s i}+\left(n^{2}-2\right) U_{s j}^{i s}-n U_{j s}^{i s}+2 \delta_{j}^{i} U_{s t}^{s t}-n \delta_{j}^{i} U_{t s}^{s t}\right) \\
S_{j}^{i} & =\frac{1}{n\left(n^{2}-4\right)}\left(2 U_{s j}^{s i}-n U_{j s}^{s i}-n U_{s j}^{i s}+\left(n^{2}-2\right) U_{j s}^{i s}+2 \delta_{j}^{i} U_{t s}^{s t}-n \delta_{j}^{i} U_{s t}^{s t}\right) \\
G & =\frac{1}{n\left(n^{2}-1\right)}\left(n U_{s t}^{s t}-U_{t s}^{s t}\right) \\
H & =\frac{1}{n\left(n^{2}-1\right)}\left(-U_{s t}^{s t}+n U_{t s}^{s t}\right)
\end{aligned}
$$

and

$$
W_{k \ell}^{i j}=U_{k \ell}^{i j}-\delta_{k}^{i} P_{\ell}^{j}-\delta_{\ell}^{i} Q_{k}^{j}-\delta_{k}^{j} R_{\ell}^{i}-\delta_{\ell}^{j} S_{k}^{i}-\delta_{k}^{i} \delta_{\ell}^{j} G-\delta_{\ell}^{i} \delta_{k}^{j} H
$$

Before going on to special cases, we fix some notation. We denote by E a real, n-dimensional vector space, endowed with a tensor g of type $(0,2) . g$ is supposed to be symmetric and regular, but is not necessarily positive definite. As an application of Theorem 2, we discuss the trace decomposition of tensors of type $(0,4)$ on E. Since g allows us to raise and to lower indices, the trace operation can be applied to the corresponding tensors of type $(2,2)$. In a basis e_{i} of E, we write $g=g_{i j} e^{i} \otimes e^{j}$, where e^{i} is the dual basis of this one. Then $g_{i j}=g_{j i}$ and $\operatorname{det}\left(g_{i j}\right) \neq 0$. As usual, we denote by $g^{i j}$ the components of the inverse matrix to $g_{i j}$; then $g_{i j} g^{j k}=\delta_{i}^{k}$, $g^{i j}=g^{j i}$.

We consider tensors $V \in T_{4}^{0} E, V=V_{m j k \ell}$, satisfying

$$
\begin{equation*}
V_{i j k \ell}=-V_{i j \ell k}, \quad V_{i j k \ell}+V_{i \ell j k}+V_{i k \ell j}=0, \quad V_{i j k \ell}=-V_{j i k \ell} . \tag{1}
\end{equation*}
$$

Then V also satisfies

$$
V_{i j k \ell}=V_{k \ell i j} .
$$

We define a tensor $U \in T_{3}^{1} E, U=U_{j k \ell}^{i}$, by

$$
U_{j k \ell}^{i}=g^{i s} V_{j s k \ell}
$$

U obviously satisfies

$$
U_{j k \ell}^{i}+U_{j \ell k}^{i}=0, \quad U_{j k \ell}^{i}+U_{\ell j k}^{i}+U_{k \ell j}^{i}=0 .
$$

The Ricci tensor of U,

$$
\begin{equation*}
M_{j \ell}=U_{j s \ell}^{s}=g^{s t} V_{j s t \ell} \tag{2}
\end{equation*}
$$

is symmetric, $M_{j \ell}=g^{s t} V_{j s t \ell}=g^{s t} V_{\ell t s j}=M_{\ell j}$. Therefore, the (1,1)-trace of U satisfies

$$
U_{s k \ell}^{s}=-U_{\ell s k}^{s}-U_{k \ell s}^{s}=-U_{\ell s k}^{s}+U_{k s \ell}^{s}=0
$$

The scalar

$$
\begin{equation*}
M=g^{i j} M_{i j}=g^{i j} g^{k \ell} V_{i k \ell j}=g^{i j} U_{i s j}^{s} \tag{3}
\end{equation*}
$$

is the scalar curvature of V.
The following is a modification of Corollary 4, Section 2 (see Remark 4, Section 2).

Corollary 1. Every tensor $V \in T_{4}^{0} E, V=V_{m j k \ell}$, satisfying properties (1) admits a unique decomposition

$$
V_{r j k \ell}=W_{r j k \ell}+g_{k r} Q_{j \ell}-g_{\ell r} Q_{j k}
$$

such that $U_{j k \ell}^{i}=g^{r i} W_{r j k \ell}$ is a Weyl tensor. The tensors $Q_{k \ell}$ and $W_{r j k \ell}$ are determined by

$$
Q_{k \ell}=\frac{1}{n-1} M_{k \ell}, \quad W_{i j k \ell}=V_{i j k \ell}-\frac{1}{n-1}\left(g_{j k} M_{i \ell}-g_{j \ell} M_{i k}\right)
$$

Proof. It follows from Corollary 4, Section 2, that $U_{j k \ell}^{i}=W_{j k \ell}^{i}+$ $\delta_{k}^{i} Q_{j \ell}-\delta_{\ell}^{i} Q_{j k}$, where

$$
\begin{gathered}
Q_{k \ell}=\frac{1}{n-1} U_{\ell s k}^{s}=\frac{1}{n-1} M_{k \ell} \\
W_{j k \ell}^{i}=g^{i s} V_{j s k \ell}-\frac{1}{n-1} \delta_{k}^{i} M_{j \ell}+\frac{1}{n-1} \delta_{\ell}^{i} M_{j k}
\end{gathered}
$$

Then

$$
W_{i j k \ell}=g_{j s} W_{i k \ell}^{s}=V_{i j k \ell}-\frac{1}{n-1} g_{j k} M_{i \ell}+\frac{1}{n-1} g_{j \ell} M_{i k}
$$

Remark 1. If $U=g^{i s} V_{j s k \ell}$ is the curvature tensor of a Levi-Civita connection, then $W=W_{j k \ell}^{i}$ is the well-known Weyl projective curvature tensor of U.

Corollary 2. Every tensor $V=T_{4}^{0} E, V=V_{m j k \ell}$, satisfying properties (1), admits a unique decomposition

$$
\begin{aligned}
V_{r s k \ell}= & g_{i r} g_{j s} W_{k \ell}^{i j}+g_{k r} g_{i s} P_{\ell}^{i}-g_{\ell r} g_{i s} P_{k}^{i} \\
& -g_{i r} g_{k s} P_{\ell}^{i}+g_{i r} g_{\ell s} P_{k}^{i}-\left(g_{\ell r} g_{k s}-g_{k r} g_{\ell s}\right) G
\end{aligned}
$$

such that the tensors $W_{k \ell}^{i j}, P_{\ell}^{i}$ are Weyl tensors. The tensors $G, P_{\ell}^{i}, V_{k \ell}^{i j}$ are given by

$$
G=-\frac{1}{n(n-1)} M, \quad P_{j}^{i}=-\frac{1}{n-2} g^{i q} M_{q j}+\frac{1}{n(n-2)} \delta_{j}^{i} M
$$

and

$$
W_{k \ell}^{i j}=g^{i p} g^{j q} V_{p q k \ell}-\delta_{k}^{i} P_{\ell}^{j}+\delta_{\ell}^{i} P_{k}^{j}+\delta_{k}^{j} P_{\ell}^{i}-\delta_{\ell}^{j} P_{k}^{i}+\left(\delta_{\ell}^{i} \delta_{k}^{j}-\delta_{k}^{i} \delta_{\ell}^{j}\right) G
$$

Proof. We introduce a tensor $T \in T_{2}^{2} E, T=T_{k \ell}^{i j}$, by

$$
\begin{equation*}
T_{k \ell}^{i j}=g^{i p} U_{p k \ell}^{j}=g^{i p} g^{j q} V_{p q k \ell} \tag{4}
\end{equation*}
$$

The trace decomposition of T is of the form

$$
\begin{equation*}
T_{k \ell}^{i j}=W_{k \ell}^{i j}+\delta_{k}^{i} P_{\ell}^{j}+\delta_{\ell}^{i} Q_{k}^{j}+\delta_{k}^{j} R_{\ell}^{i}+\delta_{\ell}^{j} S_{k}^{i}+\delta_{k}^{i} \delta_{\ell}^{j} G+\delta_{\ell}^{i} \delta_{k}^{j} H \tag{5}
\end{equation*}
$$

where the tensors $W_{k \ell}^{i j}, P_{\ell}^{j}, Q_{k}^{j}, R_{\ell}^{i}, S_{k}^{i}, G$, and H are uniquely determined by Theorem 2. But by (4), (2), and (3),

$$
\begin{array}{ll}
T_{s \ell}^{s j}=-g^{j q} M_{q \ell}, & T_{k s}^{s j}=g^{j q} M_{q k}, \quad T_{s \ell}^{i s}=g^{i p} M_{p \ell} \\
T_{k s}^{i s}=-g^{i p} M_{p k}, & T_{s t}^{s t}=-M, \quad T_{t s}^{s t}=M
\end{array}
$$

In particular, $T_{s \ell}^{s j}=-T_{\ell s}^{s j}=-T_{s \ell}^{j s}=T_{\ell s}^{j s}, T_{s t}^{s t}=-T_{t s}^{s t}$, and we easily get

$$
\begin{align*}
P_{j}^{i} & =S_{j}^{i}=-Q_{j}^{i}=-R_{j}^{i}=-\frac{1}{n-2} g^{i q} M_{q j}+\frac{1}{n(n-2)} \delta_{j}^{i} M \\
G & =-H=-\frac{1}{n(n-1)} M \tag{6}
\end{align*}
$$

Consequently,

$$
\begin{align*}
W_{k \ell}^{i j} & =T_{k \ell}^{i j}-\delta_{k}^{i} P_{\ell}^{j}-\delta_{\ell}^{i} Q_{k}^{j}-\delta_{k}^{j} R_{\ell}^{i}-\delta_{\ell}^{j} S_{k}^{i}-\delta_{k}^{i} \delta_{\ell}^{j} G-\delta_{\ell}^{i} \delta_{k}^{j} H \tag{7}\\
& =g^{i p} g^{j q} V_{p q k \ell}-\delta_{k}^{i} P_{\ell}^{j}+\delta_{\ell}^{i} P_{k}^{j}+\delta_{k}^{j} P_{\ell}^{i}-\delta_{\ell}^{j} P_{k}^{i}+\left(\delta_{\ell}^{i} \delta_{k}^{j}-\delta_{k}^{i} \delta_{\ell}^{j}\right) G
\end{align*}
$$

Formulas (6), (7) completely determine the trace decomposition (5). We have

$$
T_{k \ell}^{i j}=W_{k \ell}^{i j}+\delta_{k}^{i} P_{\ell}^{j}-\delta_{\ell}^{i} P_{k}^{j}-\delta_{k}^{j} P_{\ell}^{i}+\delta_{\ell}^{j} P_{k}^{i}-\left(\delta_{\ell}^{i} \delta_{k}^{j}-\delta_{k}^{i} \delta_{\ell}^{j}\right) G
$$

To conclude the proof, it is now sufficient to compute the induced decomposition of the tensor $V_{r s k \ell}=g_{i r} g_{j s} T_{k \ell}^{i j}$.

Remark 2. We have more possibilities of raising the subscripts of $V=$ $V_{m j k \ell}$ in (4). However, the components of tensors which arise in this way are expressible as linear combinations of (4).

Remark 3. Denote in Corollary 2,

$$
C_{i j k \ell}=g_{i r} g_{j s} W_{k \ell}^{r s} .
$$

Since

$$
\begin{aligned}
g_{i s} P_{j}^{s} & =-\frac{1}{n-2} g_{i s} g^{s q} M_{q j}+\frac{1}{n(n-2)} g_{i s} \delta_{j}^{s} M \\
& =-\frac{1}{n-2} M_{i j}+\frac{1}{n(n-2)} g_{i j} M
\end{aligned}
$$

we get by a routine calculation

$$
\begin{aligned}
C_{i j k \ell}= & W_{r s k \ell}+\frac{1}{n-2}\left(g_{k r} W_{s \ell}-g_{\ell r} W_{s k}-g_{k s} W_{r \ell}+g_{\ell s} W_{r k}\right) \\
& +\frac{1}{(n-1)(n-2)} g_{\ell r} g_{k s} W-\frac{1}{(n-1)(n-2)} g_{k r} g_{\ell s} W .
\end{aligned}
$$

This is the well-known expression for the Weyl conformal curvature tensor of a metric tensor $g=g_{i j}$.

4. The Weyl tensors of type $(1,4)$

In this section, we consider the tensor space $T_{4}^{1} E$. In Theorem 3 we give the trace decomposition formula for tensors $U \in T_{4}^{1} E, U=U_{j k \ell m}^{i}$, which defines the Weyl component of U. The formula has been derived by KovÁr with the help of Maple (see [6]). For the sake of uniqueness of the trace decomposition in this case, we have to assume that $\operatorname{dim} E=n \geq 4$.

Since the trace decomposition formula in this case is very long, we first introduce some abbreviations. We set

$$
\begin{aligned}
& A=\left(n^{2}-9\right)\left(n^{2}-4\right)\left(n^{2}-1\right), \\
& B=n^{6}-11 n^{4}+22 n^{2}-6, \\
& C=n^{4}-9 n^{2}+10, \quad D=n^{4}-6 n^{2}+3, \\
& E=n^{2}+1, \quad F=n^{2}-4, \quad G=2 n^{2}-3 .
\end{aligned}
$$

Theorem 3. Let $\operatorname{dim} E \geq 4$, and let $U \in T_{4}^{1} E, U=U_{j k \ell m}^{i}$. There exists a unique Weyl tensor $W \in T_{4}^{1} E, W=W_{j k \ell m}^{i}$ and unique tensors $P, Q, R, S \in T_{3}^{0} E, P=P_{k \ell m}, Q=Q_{k \ell m}, R=R_{k \ell m}, S=S_{k \ell m}$, such that

$$
U_{j k \ell m}^{i}=W_{j k \ell m}^{i}+\delta_{j}^{i} P_{k \ell m}+\delta_{k}^{i} Q_{j \ell m}+\delta_{\ell}^{i} R_{j k m}+\delta_{m}^{i} S_{j k \ell} .
$$

These tensors are given by

$$
\begin{aligned}
& P_{k \ell m}=\frac{1}{A}\left(\frac{B}{n} U_{s k \ell m}^{s}+\frac{3 E}{n}\left(U_{s \ell m k}^{s}+U_{s m k \ell}^{s}\right)-2 F\left(U_{s \ell k m}^{s}+U_{s m \ell k}^{s}+U_{s k m \ell}^{s}\right)\right) \\
& +\frac{1}{A}\left(-C U_{k s \ell m}^{s}+\frac{D}{n}\left(U_{\ell s k m}^{s}+U_{m s \ell k}^{s}\right)-E\left(U_{\ell s m k}^{s}+U_{m s k \ell}^{s}\right)+\frac{2 G}{n} U_{k s m \ell}^{s}\right) \\
& +\frac{1}{A}\left(-C U_{\ell k s m}^{s}+\frac{D}{n}\left(U_{k \ell s m}^{s}+U_{m k s \ell}^{s}\right)-E\left(U_{m \ell s k}^{s}+U_{k m s \ell}^{s}\right)+\frac{2 G}{n} U_{\ell m s k}^{s}\right) \\
& +\frac{1}{A}\left(-C U_{m k \ell s}^{s}+\frac{D}{n}\left(U_{\ell k m s}^{s}+U_{k m \ell s}^{s}\right)-E\left(U_{k \ell m s}^{s}+U_{\ell m k s}^{s}\right)+\frac{2 G}{n} U_{m \ell k s}^{s}\right), \\
& Q_{k \ell m}=\frac{1}{A}\left(-C U_{s k \ell m}^{s}+\frac{D}{n}\left(U_{s \ell k m}^{s}+U_{s m \ell k}^{s}\right)-E\left(U_{s \ell m k}^{s}-U_{s m k \ell}^{s}\right)+\frac{2 G}{n} U_{s k m \ell}^{s}\right) \\
& +\frac{1}{A}\left(\frac{B}{n} U_{k s \ell m}^{s}+\frac{3 E}{n}\left(U_{\ell s m k}^{s}+U_{m s k \ell}^{s}\right)-2 F\left(U_{\ell s k m}^{s}+U_{m s \ell k}^{s}+U_{k s m \ell}^{s}\right)\right) \\
& +\frac{1}{A}\left(-C U_{k \ell s m}^{s}+\frac{D}{n}\left(U_{\ell k s m}^{s}+U_{k m s \ell}^{s}\right)-E\left(U_{\ell m s k}^{s}+U_{m k s \ell}^{s}\right)+\frac{2 G}{n} U_{m \ell s k}^{s}\right) \\
& +\frac{1}{A}\left(-C U_{k m \ell s}^{s}+\frac{D}{n}\left(U_{k \ell m s}^{s}+U_{m k \ell s}^{s}\right)-E\left(U_{\ell k m s}^{s}+U_{m \ell k s}^{s}\right)+\frac{2 G}{n} U_{\ell m k s}^{s}\right), \\
& R_{k \ell m}=\frac{1}{A}\left(-C U_{s \ell k m}^{s}+\frac{D}{n}\left(U_{s k \ell m}^{s}+U_{s \ell m k}^{s}\right)-E\left(U_{s m \ell k}^{s}+U_{s k m \ell}^{s}\right)+\frac{2 G}{n} U_{s m k \ell}^{s}\right) \\
& +\frac{1}{A}\left(-C U_{k s \ell m}^{s}+\frac{D}{n}\left(U_{\ell s k m}^{s}+U_{k s m \ell}^{s}\right)-E\left(U_{\ell s m k}^{s}+U_{m s k \ell}^{s}\right)+\frac{2 G}{n} U_{m s \ell k}^{s}\right) \\
& +\frac{1}{A}\left(\frac{B}{n} U_{k \ell s m}^{s}+\frac{3 E}{n}\left(U_{\ell m s k}^{s}+U_{m k s \ell}^{s}\right)-2 F\left(U_{\ell k s m}^{s}+U_{m \ell s k}^{s}+U_{k m s \ell}^{s}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{1}{A}\left(-C U_{k \ell m s}^{s}-E\left(U_{\ell m k s}^{s}+U_{m k \ell s}^{s}\right)+\frac{D}{n}\left(U_{m \ell k s}^{s}+U_{k m \ell s}^{s}\right)+\frac{2 G}{n} U_{\ell k m s}^{s}\right), \\
& S_{k \ell m}=\frac{1}{A}\left(-C U_{s \ell m k}^{s}+\frac{D}{n}\left(U_{s \ell k m}^{s}+U_{s k m \ell}^{s}\right)-E\left(U_{s k \ell m}^{s}+U_{s m k \ell}^{s}\right)+\frac{2 G}{n} U_{s m \ell k}^{s}\right) \\
& +\frac{1}{A}\left(-C U_{k s m \ell}^{s}+\frac{D}{n}\left(U_{k s \ell m}^{s}+U_{\ell s m k}^{s}\right)-E\left(U_{\ell s k m}^{s}+U_{m s \ell k}^{s}\right)+\frac{2 G}{n} U_{m s k \ell}^{s}\right) \\
& +\frac{1}{A}\left(-C U_{k \ell s m}^{s}+\frac{D}{n}\left(U_{m \ell s k}^{s}+U_{k m s \ell}^{s}\right)-E\left(U_{\ell m s k}^{s}+U_{m k s \ell}^{s}\right)+\frac{2 G}{n} U_{\ell k s m}^{s}\right) \\
& \\
& +\frac{1}{A}\left(\frac{B}{n} U_{k \ell m s}^{s}+\frac{3 E}{n}\left(U_{\ell m k s}^{s}+U_{m k \ell s}^{s}\right)-2 F\left(U_{\ell k m s}^{s}+U_{m \ell k s}^{s}+U_{k m \ell s}^{s}\right)\right),
\end{aligned}
$$

and

$$
W_{j k \ell m}^{i}=U_{j k \ell m}^{i}-\delta_{j}^{i} P_{k \ell m}-\delta_{k}^{i} Q_{j \ell m}-\delta_{\ell}^{i} R_{j k m}-\delta_{m}^{i} S_{j k \ell}
$$

Proof. To prove Theorem 3, we solve the trace decomposition equations

$$
\begin{gather*}
U_{j k \ell m}^{i}=W_{j k \ell m}^{i}+\delta_{j}^{i} P_{k \ell m}+\delta_{k}^{i} Q_{j \ell m}+\delta_{\ell}^{i} R_{j k m}+\delta_{m}^{i} S_{j k \ell} \\
W_{s k \ell m}^{s}=0, \quad W_{j s \ell m}^{s}=0, \quad W_{j k s m}^{i}=0, \quad W_{j k \ell s}^{i}=0 \tag{1}
\end{gather*}
$$

Remark 1. If $n \leq 3$, then the trace decomposition equations (1) have more solutions. For $n=3$, all solutions are described in [6].

Remark 2. Theorem 3 provides a basis for an algebraic (as well as geometric) classification of the tensors, arising as the covariant derivative of curvature tensors.

References

[1] N. Bokan, On the complete decomposition of curvature tensors of Riemannian manifolds with symmetric connection, Rendiconti del Circ. Mat. di Palermo Ser. II 39 (1990), 331-380.
[2] S. S. Chern, W. H. Chen and K. S. Lam, Lectures on Differential Geometry, World Scientific, 2000.
[3] L. P. Eisenhart, Riemannian Geometry, Princenton University Press, Princenton, 1964.
[4] D. Gromoll, W. Klingenberg and W. Meyer, Riemannsche Geometrie im Grossen, Springer, Berlin, 1968.
[5] M. Hamermesh, Group Theory and Its Applications to Physical Problems, Addi-son-Wesley, Massachusetts, 1964.
[6] M. Kovár, Decompositions of tensors by the trace operation, Thesis, Mathematical Institute, Silesian Univ. Opava, 1996 (in Czech).
[7] D. Krupka, Natural projectors in tensor spaces, Beiträge zur Algebra und Geometrie 43 (2002), 217-231.
[8] D. Krupka, The trace decompositions of tensors of type $(1,2)$ and (1,3), in: New Developments in Differential Geometry, Proc. Colloq. on Diff. Geom., July 1994, Debrecen, (J. Szenthe and L. Tamássy, eds.), Kluwer Academic Publishers, Dordrecht, 1996, 243-253.
[9] D. Krupka, The trace decomposition problem, Beiträge zur Algebra und Geometrie 36 (1995), 303-315.
[10] J. Mikes, On the general trace decomposition problem, in: Differential Gemetry and its Applications, Proc. Conf., Brno (Czech Republic), August 1995, (J. Janyska, I. Kolár, J. Slovák, eds.), Masaryk University, Brno, 1996, 45-50.
[11] L. Tamássy and T. Q. Binh, On weakly symmetric Riemannian manifolds, Coll. Math. Soc. János Bolyai 56, Budapest, Hungary, (J. Szenthe and L. Tamássy, eds.), Elsevier Science Publishers, 1992, 663-670.
[12] T. Y. Thomas, The Differential Invariants of Generalized Spaces, Cambridge, At the University Press, 1934.
[13] T. A. Welsh, Young Tableaux and Modules of Groups and Lie Algebras, Ph.D. thesis, University of Southampton, 1992.
[14] H. Weyl, The Classical Groups, Princeton Univ. Press, Princeton, 1946.
[15] H. Weyl, Zur Infinitesimalgeometrie: Einordnung der projektiven und der konformen Auffassung, Götinger Nachrichten, 1921, 99-112.

DEMETER KRUPKA
INSTITUTE OF THEORETICAL PHYSICS AND ASTROPHYSICS
FACULTY OF SCIENCE, MASARYK UNIVERSITY
KOTLARSKA 2, 61137 BRNO
CZECH REPUBLIC
E-mail: krupka@physics.muni.cz
(Received November 8, 2002; revised March 24, 2003)

