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Remarks on prime values of polynomials
at prime arguments
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Dedicated with gratitude and respect to Professor Lajos Tamássy
on the occasion of his 80th birthday

Abstract. We show that for a large number N and for any functions taking
integer values bounded by polynomials there exist integers t1, t2, . . . , ts and primes
2 ≤ p1 < p2 < · · · < pM ≤ N such that the numbers f1(pi) + t1, f2(pi) +
t2, . . . , fs(pi) + ts are primes for i = 1, 2, . . . ,M and M ≥ c N

ln Ns+1 (where c is
a positive constant independent of N), as expected. In Theorem 3.1 we show
that when s = 1 and f1 is a polynomial taking integer values the order of the
magnitude of M can be improved by a factor log log N . Theorem 4.1 illustrates
that there exists a function f1 which is “not far” from being a polynomial but the
value of M never exceeds the expected order of magnitude, so in the improvement
it is essential that the function is actually a polynomial.

1. Introduction

It is a generally accepted conjecture that an irrecucible polynomial in
one variable with integer coefficents without a constant divisor assumes in-
finitely many prime values (positive or negative) at integers. This is known
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to hold for linear polynomials (Dirichlet’s theorem), even in a quantita-
tive form (the prime number theorem for arithmetic progressions), and it
seems to lie beyond the reach of present methods for any polynomial of
higher degree. The inaccessibility of this conjecture led several authors to
establish at least the existence of polynomials with many prime values.

Sierpiński [19] showed that there exists an integer cM for any large
positive integer M such that the polynomial

f(x) = x2 + cM

takes prime values for M natural numbers at least. His result has been
extended in various ways in [1], [4], [7], [8] and [20].

A stronger conjecture is expressed by Schinzel’s Hypothesis H, which
asserts that for any collection f1, . . . , fj of irreducible polynomials with
integral coefficients and positive leading coefficient such that

∏
fi has no

constant divisors there are infinitely many positive integers n such that
each fi(n) is a prime. The simplest case of this hypothesis is the twin prime
conjecture, also generally considered hopeless. Ribenboim [17] gives a
comprehensive account of the connection between primes and polynomials
and among other things he treats the hypothesis of Schinzel in detail.

Let f1, . . . , fs be arbitrary functions taking integer values. Denote by
Q(f1, f2, . . . , fs; N) the number of integers n between 0 and N for which
each number f1(n), f2(n), . . . , fs(n) is a prime, and by P (f1, f2, . . . , fs; N)
the number of primes p between 1 and N such that each number
f1(p),f2(p) . . . , fs(p) is a prime.

From the notation it is clear that

P (f1, f2, . . . , fs; N) = Q(f0, f1, f2, . . . , fs;N),

if f0(x) = x.
With this notation Schinzel Hypothesis H can be reformulated as

lim
N→∞

Q(f1, f2, . . . , fs;N) = ∞.

Bateman and Horn [3] formulated a quantitative version of Hypoth-
esis H in the following form. If the polynomials f1, f2, . . . , fs satisfy the
conditions of Hypothesis H and their degrees are h1, h2, . . . , hs then

Q(f1, f2, . . . , fs; N) ∼ h−1
1 h−1

2 . . . h−1
s C(f1, f2, . . . , fs)

∫ N

2
(log u)−sdu
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where

C(f1, f2, . . . , fs) =
∏
p

(
(1− 1/p)−s(1− ω(p)/p)

)
.

Here p runs over all the prime numbers and ω(p) denotes the number of
solutions of the congruence

f1(x)f2(x) . . . fs(x) ≡ 0 (mod p).

As a contrast we mention some results that show the limitations of such
hypotheses by exhibiting irreducible polynomials which assume composite
values for a long run.

Adleman and Odlyzko pose the following problem in [2]: how can
we decide the irreducibility of a polynomial f(x) with integer coefficients
by testing the prime property of f(v) for small v.

In [13]–[15] McCurley studied for which M and a can an irreducible
polynomial f(x) = xd + a takes composite values at v for 0 ≤ v ≤ M . He
obtained the strongest result in [15] which says that

M ≥ C(d)
log a

log3 a

(
(log2 a)(log4 a)

log3 a

)τ(d)

for infinitely many values of a, where c(d) is a positive constant depending
only on d, logk a denotes the logarithm iterated k times, τ(d) denotes the
number of the divisors of d.

This is (apart from the value of the constant) a generalization of a
result of Rankin [16] which asserts that there exist infinitely many con-
secutive primes pn+1 and pn such that

pn+1 − pn > (eγ − ε) log pn
log2 pn log4 pn

(log3 pn)2

(where γ is Euler’s constant and ε > 0).
It is possible to extend McCurley’s result to general polynomials, that

is, to find a translate which assumes composite values in a long run. We
remark that while it is possible to tell explicitly whether a binomial xd +a

is reducible, this is not the case for the translates of a general polynomial.
However, one can get around this by using the fact that irreducible poly-
nomials are ubiquitous; for instance, a result of Győry [9] states that an
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arbitrary polynomial f(x) has a translate f + c which is irreducible and
the upper bound of the absolute values of c depends only on the number of
the divisors of the leading coefficients of the polynomial f and its degree.
We plan to return to this problem in a future paper.

In Section 2 we show by a simple averaging argument that every
function of polinomial order of magnitude has a translation that assumes
À N/(log N)2 prime values at prime arguments≤ N . In Section 3 we show
that for an actual polynomial this can be improved by a factor log log N .
In Section 4 we exhibit an example of an almost polynomial function for
which such an improvement is impossible.

2. Prime values of translations of general functions

We consider integer-valued functions defined on the set of positive in-
tegers. We say that such a function f is polynomially bounded if there is
a polynomial g such that |f(x)| ≤ g(x) for sufficiently large x, or equiva-
lently, if |f(x)| ≤ Axd for large x and fixed A, d.

Theorem 2.1. If f1, f2, . . . , fs are arbitrary polynomially bounded

functions then for sufficiently large N there exist integers t1, t2, . . . ts (de-

pending on N) such that

P (f1 + t1, f2 + t2, . . . , fs + ts, N) ≥ c
N

(log N)s+1

where the constant c does not depend on N .

Proof. Take d, A such that |fj(x)| ≤ Axd for large x. Now consider
(s + 1)-tuples (p, p1, . . . , ps) of primes such that

1 ≤ p ≤ N, 1 ≤ pi ≤ ANd.

The number of such tuples is clearly π(N)π(ANd)s. For each such tuple
there are unique integers t1, . . . , ts such that

f(p) + ti = pi, ı = 1, . . . , s.

These numbers satisfy

|ti| = |pi − f(p)| ≤ 2ANd.



Remarks on prime values of polynomials at prime arguments 593

Hence the number of s-tuples (t1, . . . , ts) is ≤ (4ANd + 1)s. Consequently
there is such a tuple which occurs at least

π(N)π(ANd)s

(4ANd + 1)s
≥ c

N

(log N)s+1

times; the last inequality holds for large N with any c < (4d)−s by the
prime number theorem. ¤

3. Prime values of polynomials at prime arguments

Let f be a polynomial with integral coefficients. Define

P (f,N) = {p ≤ N : p and f(p) are primes}.

It is not known whether P (f,N) → ∞ as N → ∞, except the trivial
case f(x) = ±x. The simplest case of this question is the twin prime
conjecture, which arises for f(x) = x + 2.

On the other hand, if we consider a polynomial together with its trans-
lates, it becomes possible to find lower estimates. The averaging argument
of the previous section gives the existence of t ∈ N such that

P (f + t,N) À N

(log N)2

(case s = 1 of Theorem 2.1).
Our aim is to improve this estimate if f is a polynomial.

Theorem 3.1. Let f be a polynomial of degree d with integral coef-

ficients. We have

max
1≤t≤Nd+1

P (f + t,N) ≥ cd
N log log N

(log N)2

with a constant cd > 0 depending on the degree only, and all sufficiently

large N .
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The case f(x) = x is essentially a result of Erdős and Straus [6],
and the proof is similar to theirs. The idea is to average P (f +t,N) for the
integers belonging to a suitable arithmetic progression t ≡ a (mod m).
We want to find such numbers for which the integers f(p) + t have a
greater than average chance of being prime. Coprimality to m increases
this chance, and first we show how this can be achieved.

Lemma 3.2. Let f be a polynomial with integral coefficients, and let

m be a positive integer. We can find an integer a such that (f(p)+a,m) = 1
for every prime p such that p - m.

Proof. Let p1, p2, . . . , pk be the prime divisors of m. For an i,
1 ≤ i ≤ k, consider the integers f(1), f(2), . . . , f(pi − 1). These occupy at
most pi − 1 residue class modulo pi, hence there is a residue class, say bi

(mod pi), which does not contain any of them.
Any prime p - m satisfies p ≡ j (mod pi) with 1 ≤ j ≤ pi − 1, hence

f(p) ≡ f(j) (mod pi), consequently f(p) 6≡ bi (mod pi). If we now select
a so that a ≡ −bi (mod pi) for each i = 1, 2, . . . , k, then the above con-
gruences becomes f(p) + a 6≡ 0 (mod pi). As this holds for every prime
divisor of m, we conclude that (f(p) + a, m) = 1.

For the estimation we will need the prime number theorem for arith-
metic progressions which we quote now, see e.g. Karatsuba [12]. We
use π(x, a, m) to denote the number of primes p ≤ x satisfying p ≡ a

(mod m). ¤
Lemma 3.3. There are positive constants c1, c2 such that uniformly

for m ≤ exp(c1
√

log x ), (a,m) = 1 we have

π(x, a,m) =
li(x)
ϕ(m)

+ O
(
x exp(−c2

√
log x )

)
(3.1)

except possibly for those integers m that are multiples of a certain integer

m0 (which may depend on x).

This integer m0 is characterized by the existence of a Siegel root of an
L-function belonging to the modulus m0.

Proof of Theorem 3.1. Consider the sum

S =
∑

1≤t≤Nd+1, t≡a (mod m)

P (f + t,N);
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we shall specify a and m later. This counts the number of pairs (p, t)
such that 1 ≤ p ≤ N , 1 ≤ t ≤ Nd+1, t ≡ a (mod m) and both p and
f(p) + t are primes. We rearrange this sum according to the value of p.
For a given p, the integers f(p) + t, 1 ≤ t ≤ Nd+1, run over the interval
[f(p) + 1, f(p) + Nd+1] and the condition t ≡ a (mod m) is equivalent to
f(p) + t ≡ f(p) + a (mod m). So the number of prime values is

π(f(p) + Nd+1, f(p) + a,m)− π(f(p), f(p) + a, m).

Summing this we obtain

S =
∑

p≤N

(
π(f(p) + Nd+1, f(p) + a,m)− π(f(p), f(p) + a,m)

)
.

To estimate this first observe that |f(p)| ≤ ANd with some constant A,
hence

π(f(p) + Nd+1, f(p) + a,m) = π(Nd+1, f(p) + a, m) + O(Nd)

and π(f(p), f(p) + a,m) = O(Nd), so we can simplify S to

S =
∑

p≤N

π(Nd+1, f(p) + a,m) + O(Nd+1).

We will select m so that Lemma 3.3 could be applied, that is, m0 - m
with the m0 belonging to x=Nd+1. We take an a such that (f(p)+ a, m)=1
for every prime p - m, which can be done by Lemma 3.2. Then applying
Lemma 3.3 to each summand and denoting by ω(m) the number of prime
factors of m we get

S ≥ (π(N)− ω(m))
li(Nd+1)

ϕ(m)
+ O

(
Nd+2e−c2

√
log N

)

as ω(m) < log N , π(N) ∼ N
log N and li(Nd+1) ∼ Nd+1

(d+1) log N and this implies

S ≥ Nd+2

(d + 1)(log N)2ϕ(m)
(1 + o(1)).

As the number of summands in S is Nd+1

m + O(1) we conclude that

max
1≤t≤Nd+1

P (f + t,N) ≥ (1 + o(1))
N

(log N)2
m

ϕ(m)
1

d + 1
. (3.2)
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Now we specify m. Let q0 be the greatest prime factor of m0. We
will put

m =
∏

p≤K, p6=q0

p,

this guarantees m0 - m where K tending to infinity with N will be chosen
later. With this choice

m

ϕ(m)
=

∏

p≤K, p 6=q0

(
1− 1

p

)−1

.

As
∏

p≤K

(
1− 1

p

)−1

∼ eγ log K

according to Mertens’ theorem, we have

m

ϕ(m)
∼

(
1− 1

q0

)
eγ log K ≥

(
eγ

2
+ o(1)

)
log K.

In order to achieve m < exp(c1
√

log N ) we put K = c3
√

log N with c3 <

c1, then log K ∼ 1
2 log log N and

m

ϕ(m)
≥

(
eγ

2
+ O(1)

)
log log N.

Substituting this into (3.2) we obtain the claim of the theorem for any
cd < eγ

4(d+1) . With a slightly more careful calculation, the value of cd can be

improved to eγ

2d . Indeed, the range of averaging can be lowered to Nd+o(1),
and the estimate q0 ≥ 2 can be improved. Namely, we know that m0 →∞
(in fact m0 À (log N)B for any fixed B), hence if m0 is squarefree, then
q0 À log m0 À log log N . If m0 is not squarefree, then

m0 -
∏

p≤K

p,

so there is no need to exclude a prime from the product at all.
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4. Prime values of almost polynomials
at prime arguments

In this section we exhibit an example of a function f which is very
near to a polynomial and for which the analog of Theorem 3.1 fails.

Theorem 4.1. Let f be a function of the form f(n) = [g(n)], where g

is a polynomial of degree d ≥ 1 such that all coefficients of g are integers,

except that of degree 1 which is a quadratic irrational. We have

P (f + t,N) ≤ c
N

(log N)2

for all N ≥ N0(f) with an absolute constant c and 1 ≤ t ≤ Nd+1.

Proof. We can write f as f(n) = h(n)+ [αn], where α is a quadratic
irrational and h is a polynomial with integer coefficients. ¤

Lemma 4.2. The number of positive integers n ≤ N satisfying

n ≡ u (mod m), [αn] ≡ v (mod m)

is N/m2 + O(log N).

Proof. Write n = u + km. The condition 1 ≤ n ≤ N is essentially
equivalent to 1 ≤ k ≤ N/m, the difference being at most two numbers.
The condition [αn] ≡ v (mod m) is equivalent to

{
αn− v

m

}
< 1/m,

and after substituting n = u + km this becomes
{

αk +
αu− v

m

}
< 1/m.

As the discrepancy of the sequence {αk} is known to be of order
O(log N) for quadratic irrationals (or for any real number with bounded
partial quotients), this number is N/m2 + O(log n). ¤

Lemma 4.3. Let m be a squarefree integer, t arbitrary. The number

of pairs (u, v) of residue classes modulo m satisfying

u(h(u) + t + v) ≡ 0 (mod m) (4.1)
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is ∏

p|m
(2p− 1).

Proof. First consider the case when m is a prime. The solutions
are clearly u ≡ 0 and arbitrary v, which yields p solutions, or u 6≡ 0 and
v ≡ −h(u)− t, which yields further p− 1. For a composite m the number
of solutions is clearly the product of the number of solutions for the prime
divisors of m. ¤

Lemma 4.4. Let m be a squarefree integer, t arbitrary. The number

of integers n ≤ N such that

n(f(n) + t) ≡ 0 (mod m) (4.2)

is γmN + O(m2 log N), where γm is defined by

γm =
∏

p|m

2p− 1
p2

and the implied constant is independent of t.

Proof. We split the integers n ≤ N into m2 classes according to
the residue of n and [αn] modulo m. From Lemma 4.2 we know that the
cardinality of each class is N/m2 + O(log N). If n ≡ u and [αn] ≡ v,
then f(n) ≡ h(u) + v (mod m), so congruence (4.2) is equivalent to (4.1).
Lemma 4.3 tells us that the number of pairs u, v corresponding to a solution
is m2γm and the claim of the lemma follows. ¤

Lemma 4.5. Let A be a set of integers, let

Nd =
∣∣{a ∈ A : d | a}∣∣,

and let S(A, y) denote the number of those elements of A that are free

of prime divisors ≤ y. Assume that there is a nonnegative multiplicative

function w such that w(p) is bounded for all primes p and we have

Nd = Nw(d)/d + Rd (4.3)

for every squarefree d whose all prime divisors are ≤ y. Then we have for

arbitrary u ≥ 1

S(A, y) = N
∏

p≤y

(
1− w(p)

p

)(
1 + O(u−u/2)

)
+ O

( ∑

d≤yu

|Rd|
)

. (4.4)
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This is a form of the combinatorial sieve, see [10]; we quoted it in a
less general form than given there, where w is assumed to be bounded only
in a certain average and sieving is done with a general subset of primes
rather than all primes ≤ y.

Proof of Theorem 4.1. We apply Lemma 4.5 to the set of integers
n(f(n) + t). If both n and f(n) + t are primes, then this number is free
of prime divisors ≤ √

N , except when either n ≤ √
N or |f(n) + t| ≤ √

N ,
which gives O(

√
N ) possibilites at most. We set y = N1/4 and u = 1. The

assumptions of Lemma 4.5 hold with w(d) = dγd. This function satisfies
w(p) = 2− 1/p, thus it is bounded, and a routine calculation reveals that

∏

p≤y

(
1− w(p)

p

)
= (c + o(1))(log y)−2

with a positive constant c. Hence the principal term in (4.4) is
O(N(log N)−2) as wanted. Since by Lemma 4.4 we have

|Rd| = O(d2 log N),

the remainder term is O(y3 log N) = O(N3/4+ε).

The second author wishes to thank B. Brindza, K. Győry and the
referee of the paper for their valuable advice and help.
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