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Where do homogeneous polynomials attain their norm?

By DANIEL CARANDO (Victoria)
and IGNACIO ZALDUENDO (Buenos Aires)

Abstract. Given a fixed subset A of the unit sphere of a real finite-dimen-
sional Banach space, how probable is it for a norm-one homogeneous polynomial
to attain its norm on A? We study the linear case in Section 1, and in Section 2
consider the case of k-homogeneous polynomials on `n

∞
.

If E is a real Banach space, a k-homogeneous polynomial P : E −→ R

is a function that can be written as P (x) = B(x, . . . , x), where B is a

continuous k-linear form over E. The space P(kE) of all such polynomials

can be normed by considering the largest value of |P | over the unit sphere

SE of E:

‖P‖ = sup{|P (x)| : ‖x‖ = 1}.

In recent years there has been considerable interest in the study of geo-

metric properties of the space P(kE). It has been shown not to be strictly

convex [13], extremal and smooth points of the unit ball have been charac-

terised for a number of spaces ([3], [4], [5], [6], [7], [8], [9], [10]), and related

problems have been considered, often in the finite-dimensional setting ([1],

[2], [11], [12]).

The question which gave rise to the material presented here can be

loosely posed as: how probable is it for a polynomial to attain its norm

at a given point or in a given subset A of the unit sphere of E? What we

want is to measure – or otherwise give an indication of the size of – the
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set of norm-one polynomials for which

‖P‖ = sup{|P (x)| : x ∈ A}.

We restrict ourselves to finite dimensional real Banach spaces. Since here

the unit sphere is compact, all norms are attained. Also, to simplify com-

putations we will be looking at norm-one polynomials with P (x) = 1

instead of |P (x)| = 1, so we are considering half the set of polynomials P .

In Section 1 we study the case k = 1 of linear forms over E with a

C2 norm. It is perhaps noteworthy that the point of view of the geometer

[14] and that of the functional analyst do not coincide. The geometer

considers tangents to a convex body as points in a euclidean sphere; for

the functional analyst – duality being what it is to functional analysts –

it seems more natural to consider tangents as points in the dual (non-

euclidean) sphere. The resulting measures are different. We adopt the

functional analytic point of view here.

In Section 2 we consider the case of general k-homogeneous polynomi-

als on E, with emphasis on E = `n∞. It is important to note that the space

of polynomials P(kRn) has no preferred or canonical basis, so Lebesgue

measure of subsets depends on an inevitably arbitrary choice. We limit

ourselves to indicating zero measure and positive measure subsets.

We have had several useful conversations on these matters with Nacho

Villanueva and with Ursula Molter, and are happy to acknowledge their

help.

1. Linear forms

Given a subset A ⊂ SE of the unit sphere of E, we want to measure the

set A′ = {γ ∈ SE′ : supx∈A γ(x) = 1} considered as an (n−1)-dimensional

surface in Rn. It is clear that if A = {x0}, then A′ (which is a convex

subset of SE′) has positive measure if and only if it contains n linearly

independent functionals (we will see later that this can be generalized for

homogeneous polynomials of any degree).

Let us assume that we have a norm N on Rn which is twice contin-

uously differentiable on A ⊂ SE . Then for each x ∈ A the differential

DN(x) is the unique norm-one linear functional that takes the value 1
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at x. Therefore, A′ = DN(A). Moreover, if U ⊂ Rn−1 is an open set

and σ : U → A is a parametrization of A, the composition DN ◦ σ will

be a parametrization of A′. We obtain the following result regarding the

measure of A′.

Theorem 1. With the above notation, the Lebesgue measure of A′

can be calculated as

µ(A′) =

∫

A

|λ1(x) · · ·λn−1(x)|

‖DN(x)‖2 ‖x‖2
dx.

where λ1(x), . . . , λn−1(x) are the non-zero eigenvalues of the hessianHN(x),

and ‖ . ‖2 denotes the euclidean norm.

Proof. We have

µ(A′) = µ((DN ◦ σ)(U))

=

∫

U

∥
∥(DN ◦ σ)u1(u) ∧ · · · ∧ (DN ◦ σ)un−1

(u)
∥
∥ du

=

∫

U

∥
∥HN(σ(u)) (σu1(u)) ∧ · · · ∧HN(σ(u)) (σun−1(u))

∥
∥ du (1)

where HN is the hessian of N . It is easily verified that this hessian has

the following properties:

i) HN(x)(x) = 0.

ii) HN(σ(u)) (σui
(u)) = (DN ◦ σ)ui

(u) for each u ∈ U . Consequently,

HN(x)(TSE
(x)) = TSE′

(DN(x)), where TSE
(x) and TSE′

(DN(x)) are

the tangent hyperplanes to SE and SE′ at x and DN(x) respectively.

iii) HN(x) is a symmetric matrix, so we can find an orthonormal basis

of Rn consisting of eigenvectors of HN(x), {v1, . . . , vn−1,
x
‖x‖2

}, with

eigenvalues λ1(x), . . . , λn−1(x), 0.

The norm
∥
∥HN(σ(u)) (σu1(u)) ∧ · · · ∧HN(σ(u)) (σun−1(u))

∥
∥ can be

computed as
∣
∣
∣det

(
̂HN(σ(u))

)∣
∣
∣σu1(u) ∧ · · · ∧ σun−1(u)

where ̂HN(σ(u)) denotes the operator HN(σ(u)) considered from TSE
(x)

to TSE′
(DN(x)). Since the vectors v1, . . . , vn−1 span the image of HN(x)
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and HN(x)(TSE
(x)) = TSE′

(DN(x)), we have that [x]⊥ = [v1, . . . , vn−1] =

TSE′
(DN(x)). So, if P : Rn → [v1, . . . , vn−1] is the orthogonal projection,

the operator HN(x) : TSE
(x)→ TSE′

(DN(x)) can be seen as the compo-

sition of

P |TSE
(x) : TSE

(x)→ [v1, . . . , vn−1] = TSE′
(DN(x))

and the diagonal operator

TSE′
(DN(x))→ TSE′

(DN(x))

vi 7→ λi(x)vi.

The determinant of this last operator is the product λ1(x) · · ·λn−1(x).

Since TSE
(x) coincides with [DN(x)]⊥, the determinant of P |TSE

(x) is
〈DN(x),x〉

‖DN(x)‖2‖x‖2
= 1
‖DN(x)‖2‖x‖2

, where 〈·, ·〉 denotes the canonical inner prod-

uct. Therefore, the determinant of the operator ĤN(x) : TSE
(x) →

TSE′
(DN(x)) is

λ1(x) · · ·λn−1(x)

‖DN(x)‖2‖x‖2
and from (1) we have

µ(A′) =

∫

U

|λ1(σ(u)) · · ·λn−1(σ(u))|

‖DN(σ(u))‖2 ‖σ(u)‖2

∥
∥σu1(u) ∧ · · · ∧ σun−1(u)

∥
∥ du

=

∫

A

|λ1(x) · · ·λn−1(x)|

‖DN(x)‖2 ‖x‖2
dx.

¤

Note that the function

x 7→
|λ1(x) · · ·λn−1(x)|

‖DN(x)‖2 ‖x‖2

is therefore the (non-normalized) density of linear functionals attaining

their norms at subsets of SE .

We may compare this with the density of linear functionals from the

geometer’s point of view [14]. Instead of considering A′ = DN(A), con-

sider A′ = (s ◦ DN)(A), where s is the euclidean normalization s(y) =
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y
‖y‖2

. Since Ds(DN(x)) is 1
‖DN(x)‖2

times the orthogonal projection onto

[DN(x)]⊥ and the image of HN(x) is [x]⊥, we obtain the geometer’s den-

sity

x 7→
|λ1(x) · · ·λn−1(x)|

‖DN(x)‖32 ‖x‖
2
2

.

2. k-homogeneous polynomials

The space P(kRn) of k-homogeneous polynomials on Rn is a vector

space of dimension dn,k =
(n+k−1)!
(n−1)!k! . Therefore, we can identify it with Rdn,k

(in a non-unique way). With this identification, SP(kRn) is a (dn,k − 1)-

dimensional surface of Rdn,k and we will consider a measure µ on SP(kRn)

which is non-zero on relatively open subsets of SP(kRn) but is zero on

subsets of lower dimension than dn,k − 1. For example, the Lebesgue

measure of hypersurfaces on Rdn,k is such a measure.

We will say that a point x0 in the unit ball BE of E is a vertex if

there are n linearly independent functionals that attain their norms at x0.

This is equivalent to saying that the set {γ ∈ SE′ : γ(x0) = 1} has positive

measure. We want to show that this is equivalent to the fact that the

set {P ∈ SP(kRn) : P (x0) = 1} has positive measure. First we need the

following:

Lemma 2. If P attains its norm at x0 ∈ SE , then DP (x0) attains its

norm at x0 and therefore ‖DP (x0)‖ = ‖P‖.

Proof. For y ∈ SE define α : [0, 1]→ R as

α(t) = P (x0 + t(y − x0)).

Since P attains its norm at x0, t = 0 is a maximum of α and therefore,

α′(0) ≤ 0. Then, we have

0 ≥ α′(0) = DP (x0)(y − x0) = DP (x0)(y)−DP (x0)(x0)

which means that x0 is a maximum of DP (x0) on SE . ¤

Theorem 3. The point x0 is a vertex of SE if and only if the set

{P ∈ SP(kRn) : P (x0) = 1} has positive measure in SP(kRn).
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Proof. If x0 is a vertex of SE , there are norm-one linearly indepen-

dent functionals γ1, . . . , γn such that γ1(x0) = · · · = γn(x0) = 1. For

each α = (α1, . . . , αn) ∈ Nn such that α1 + · · · + αn = k the polynomials

Pα = γα11 + · · · + γαn
n are dn,k linearly independent polynomials of norm

one with Pα(x0) = 1. Therefore, co({Pα}α) contains a relatively open

subset of the (dn,k − 1)-dimensional surface SE . Consequently, co({Pα}α)

has positive measure and so does {P ∈ SP(kRn) : P (x0) = 1}.

Conversely, suppose {P ∈ SP(kRn) : P (x0) = 1} has positive measure.

Being convex, it contains linearly independent polynomials P1, . . . , Pdn,k
.

Consider the linear functionals φi = DPi(x0) for i = 1, . . . , dn,k. The

previous lemma affirms that ‖φi‖ = 1 for all i, so to see that x0 is a vertex

it is enough to show that φ1, . . . , φdn,k
span E′. If γ ∈ E′, the polynomial

γk is a linear combination of the polynomials P1, . . . , Pdn,k
:

γk =
∑

i

λiPi

and taking differentials on x0 we have

kγ(x0)
k−1γ =

∑

i

λi DPi(x0) =
∑

i

λi φi

which shows that every γ which is non-zero at x0 is spanned by the φi’s.

Since the set of linear functionals that are non-zero at x0 is dense in E
′

we conclude that the span of φ1, . . . , φdn,k
is E′ and consequently x0 is a

vertex. ¤

We have seen that vertices behave similarly for linear functionals and

for polynomials. However, not every subset of the unit sphere has the same

behavior in both cases. For simplicity, we start looking at `n∞, that is, Rn

with the supremum norm. For 1 ≤ r ≤ n− 1, consider in the unit cube of

`n∞ the r-face given by

Ar = {(1, . . . , 1
︸ ︷︷ ︸

n−r

, u1, . . . , ur) : −1 < ul < 1 for l = 1, . . . , r}.

Note that for r = 1, Ar is an edge, while for r = n − 1, Ar is a face of

the unit cube of `n∞. The set of linear functionals that attain their norm

at Ar is

{(α1, . . . , αn−r, 0, . . . , 0) : α1 + · · ·+ αn−r = 1, αi ≥ 0 for all i},
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which has zero measure in S(`n
∞

)′ = S`n1 . However, we will see that the set

of norm-one 2-homogenous polynomials that attain their norm at Ar has

positive measure in the unit sphere of P(2`n∞) for any r = 1, . . . , n − 1.

The polynomials

x2
i , xixj for 1 ≤ i < j ≤ n− r

x2
i −

(
xn−r+l − ulxi

2

)2
for 1 ≤ i ≤ n− r

and 1 ≤ l ≤ r

x2
1 −

(
xn−r+l + xn−r+k − (ul + uk)x1

4

)2
for 1 ≤ i ≤ n− r

and 1 ≤ l < k ≤ r

are linearly independent, have norm one and take the value 1 at the point

(1, . . . , 1, u1, . . . , ur) in Ar. There are
(n−r+1)(n−r)

2 polynomials of the first

class, (n − r)r of the second, and r(r−1)
2 of the third, which gives a total

number of n(n+1)
2 − r. Taking the convex hull of these polynomials and

moving the r free parameters u1, . . . , ur we get a (dn,2 − 1)-dimensional

surface on the unit sphere of P(2`n∞) consisting of polynomials that attain

their norm at Ar. Therefore, the set

{P ∈ P(2`n∞) : P attains its norm at Ar}

has positive measure on SP(2`n
∞

). Clearly the same holds for all other

r-faces such as

{(1, u1,−1, . . . , 1, . . . ,−1, . . . , ur) : −1 < ul < 1 for l = 1, . . . , r}.

As an example, consider the case n = 2. The following figure repre-

sents the unit sphere of the space of 2-homogeneous polynomials on `2∞.

The triangle A is the convex hull of x2
1, x

2
2 and x1x2, all of which take the

value 1 at the vertex (1, 1). The rectangle that contains the triangle is the

set of all polynomials that attain their norms at (1, 1). The segment B

is the set of polynomials attaining their norm at the point (1, t) for some

fixed t with −1 < t < 1. By itself, it has zero measure but the union of

these segments over t is a semiconic surface with positive measure.
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If the unit sphere of our space is not a cube but has curved edges or

faces (like a cylinder, for example), something similar can be done. If E

denotes Rn with an arbitrary norm, we have the following.

Proposition 4. Let A ⊂ SE be such that there exists an open subset

U ⊂ Rr and a differentiable (non-degenerate) parametrization of A

U −→ A u 7−→ xu.

Assume that for u ∈ U there are norm-one linearly independent func-

tionals γu1 , . . . , γ
u
n−r such that γui (xu) = 1 and that the mapping u 7→ γui

is differentiable for each i. Then the subset of norm-one 2-homogeneous

polynomials that attain their norm at A has positive measure.

Proof. Taking a smaller U if necessary, we can find norm one linear

functionals ϕu1 , . . . , ϕ
u
r such that {γ

u
1 , . . . , γ

u
n−r, ϕ

u
1 , . . . , ϕ

u
r} is a basis of Rn

and the mapping u 7→ ϕul is differentiable for each l. Now, for each u, the

polynomials

(γui )
2 , γui γ

u
j for 1 ≤ i < j ≤ n− r

(γui )
2 −

(
ϕul − ϕul (xu)γ

u
i

2

)2
for 1 ≤ i ≤ n− r

and 1 ≤ l ≤ r

(γu1 )
2 −

(
ϕul + ϕuk − (ϕ

u
l (xu) + ϕul (xu))γ

u
1

4

)2
for 1 ≤ i ≤ n− r

and 1 ≤ l < k ≤ r

are n(n+1)
2 − r norm-one linearly independent polynomials that take the

value 1 at xu. If we enumerate them as {P u
k : k = 1, . . . , s} were s =
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n(n+1)
2 − r, the set

{
s∑

j=1

αjP
u
j : α1 + · · ·+ αs = 1, αi ≥ 0 for each i and u ∈ U

}

is a (dn,k − 1)-dimensional surface in SP(2`n
∞

). Since all these polynomials

attain their norm at A, the subset of all polynomials attaining their norm

at A has positive measure in SP(2`n
∞

). ¤
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VITO DUMAS 284

(B1644BID) VICTORIA

ARGENTINA

E-mail: daniel@udesa.edu.ar

IGNACIO ZALDUENDO

INSTITUTO ARGENTINO DE MATEMATICA, CONICET

SAAVEDRA 15 - PISO 3

(C1083ACA) BUENOS AIRES

ARGENTINA

(Received May 22, 2001; revised November 21, 2002)


