Publ. Math. Debrecen
63/3 (2003), 389-400

Babbage equation on the circle

By WITOLD JARCZYK (Zielona Góra and Katowice)

Abstract

Given a positive integer n a description of all continuous selfmappings of the unit circle, having the identity as the n-th iterate, is presented.

Introduction

It seems that it was Ch. Babbage ([1]; cf. also [5, Chap. XV] and [6, Chap. 11]) who still in 1815 dealt with the equation

$$
\begin{equation*}
\varphi^{n}(x)=x \tag{1}
\end{equation*}
$$

where φ is an unknown self-mapping of a set and, for a given positive integer n, φ^{n} stands for the n-th iterate of φ. Equation (1) is intensively investigated till now (cf., for instance, [3, Section 2] and the bibliography therein). Its solutions are named n-th iterative roots of identity. In the case $n=2$ such roots are called involutions. If n is the smallest positive integer such that φ is an n-th root we say that n is the order of φ.

Studying solutions of (1) we may actually confine ourselves to roots of order n which can be read from the following.

Proposition 1. Let $\varphi: X \rightarrow X$ be an iterative root of order n of identity. If $m \in \mathbb{N}$ and $\varphi^{m}=\operatorname{id}_{X}$ then n divides m.

Proof. Fix a positive integer m such that $\varphi^{m}=\mathrm{id}_{X}$. Then $m=$ $p n+r$ with $p \in \mathbb{N}$ and $r \in\{0, \ldots, n-1\}$. Moreover,

$$
\varphi^{r}=\mathrm{id}_{X} \circ \varphi^{r}=\left(\varphi^{n}\right)^{p} \circ \varphi^{r}=\varphi^{p n+r}=\varphi^{m}=\mathrm{id}_{X}
$$

Therefore, in view of the definition of n, we have $r=0$, that is $m=p n$.
Thus, given a positive integer m, to determine all m-th roots of identity it is enough to find all roots of order n for every divisor n of m.

Corollary 1. Let $f: X \rightarrow X, x_{0} \in X$ and let n be the smallest positive integer such that $f^{n}\left(x_{0}\right)=x_{0}$. If $m \in \mathbb{N}$ and $f^{m}\left(x_{0}\right)=x_{0}$ then n divides m.

Proof. Apply Proposition 1 to the restriction of f to $\left\{x_{0}, \ldots\right.$, $\left.f^{n-1}\left(x_{0}\right)\right\}$ or simply repeat the argument proving it.

Clearly every solution of (1) is a bijection of its domain. What concerns monotonic and/or continuous solutions of (1) defined on a set of reals we have what follows.

1. Every monotonic self-mapping of a set of reals satisfying (1) is either the identity function, or a decreasing involution (E. Vincze [8], N. McShane [7]; cf. also M. Kuczma [5, Theorem 15.2], M. Kuczma, B. Choczewski, R. Ger [6, Theorems 11.7.1 and 11.2.1]).
2. For solutions of (1) defined on a real interval monotonicity and continuity are equivalent (cf. [5, Theorem 5.3] and [6, Theorem 11.2.1]).
3. All decreasing involutions defined on a real interval I are given by

$$
\varphi(x)= \begin{cases}\varphi_{0}(x) & \text { for } x \in I \cap\left(-\infty, x_{0}\right], \\ \varphi_{0}^{-1}(x) & \text { for } x \in I \cap\left(x_{0}, \infty\right),\end{cases}
$$

where $x_{0} \in I$ and φ_{0} is an arbitrary decreasing bijection mapping $I \cap$ $\left(-\infty, x_{0}\right]$ onto $I \cap\left[x_{0}, \infty\right)$ (cf. [5, Lemma 15.2] and [6, Theorem 11.7.2]).

Thus, for an interval domain, continuous solutions of (1), different from the identity function, depend on an arbitrary function. The aim of the present paper is to show a similar effect for self-mappings of the unit circle S^{1}; we will find all continuous iterative roots of identity defined
on S^{1}, that is all continuous functions $\phi: S^{1} \rightarrow S^{1}$ satisfying the Babbage equation

$$
\begin{equation*}
\phi^{n}(z)=z \tag{2}
\end{equation*}
$$

with a positive integer n. As continuous bijections of a compact set they are necessarily homeomorphisms. (In particular, every continuous involution defined on S^{1} is a homeomorphism.) For this reason we recall a terminology useful in studying homeomorphisms of the circle. In what follows, homeomorphicity of a self-mapping F of S^{1} means, among others, that F maps S^{1} onto S^{1}.

Given points $z_{0}, \ldots, z_{m-1} \in S^{1}$ with $m \geq 2$ we write

$$
z_{0}<\cdots<z_{m-1}
$$

if there are reals t_{1}, \ldots, t_{m-1} such that

$$
0<t_{1}<\cdots<t_{m-1}<1 \text { and } z_{j}=z_{0} \mathrm{e}^{2 \pi i t_{j}} \quad \text { for } j \in\{1, \ldots, m-1\} .
$$

This is a modification of the notion of cyclic order proposed by M. BAJGER [2]. The following is almost obvious and is a simple consequence of the above definition.

Remark 1. If $z_{0}, \ldots, z_{m-1} \in S^{1}$ with $m \geq 2$ and $z_{0}<\cdots<z_{m-1}$ then

$$
z_{j(\bmod m)}<\cdots<z_{(j+m-1)(\bmod m)}
$$

for every $j \in \mathbb{N}$.
For any different points $z_{1}, z_{2} \in S^{1}$ define the $\operatorname{arcs}\left(z_{1}, z_{2}\right),\left[z_{1}, z_{2}\right)$ and $\left(z_{1}, z_{2}\right]$ by

$$
\begin{gathered}
\left(z_{1}, z_{2}\right):=\left\{z \in S^{1}: z_{1}<z<z_{2}\right\}, \\
{\left[z_{1}, z_{2}\right):=\left(z_{1}, z_{2}\right) \cup\left\{z_{1}\right\} \quad \text { and } \quad\left(z_{1}, z_{2}\right]:=\left(z_{1}, z_{2}\right) \cup\left\{z_{2}\right\},}
\end{gathered}
$$

respectively. A standard argument allows us to state that

$$
\left(z_{1}, z_{2}\right)=\left\{\mathrm{e}^{2 \pi i t} \in S^{1}: t \in\left(t_{1}, t_{2}\right)\right\}
$$

where t_{1}, t_{2} are the unique reals satisfying the conditions

$$
z_{1}=\mathrm{e}^{2 \pi i t_{1}}, z_{2}=\mathrm{e}^{2 \pi i t_{2}}, \quad 0 \leq t_{1}<t_{2}<t_{1}+1<2 .
$$

It is well-known (cf., for instance, [4, Chap. 2, Section 3] or [9, Chap. 6]) that for every homeomorphism $F: S^{1} \rightarrow S^{1}$ there is a (unique up to an additive integer constant) homeomorphism $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
F\left(\mathrm{e}^{2 \pi i t}\right)=\mathrm{e}^{2 \pi i f(t)} \quad \text { for } t \in \mathbb{R}
$$

and f satisfies the Abel equations

$$
f(t+1)=f(t)+1
$$

if it is increasing and

$$
f(t+1)=f(t)-1
$$

if f is decreasing; every such an f is called a lift of F. In the first case we say that F preserves orientation. Otherwise F reverses orientation.

1. Roots of identity having fixed points

We start with
Theorem 1. Let ϕ be a homeomorphism of S^{1} satisfying (2) and having a fixed point.
(i) If ϕ preserves orientation then it is the identity function.
(ii) If ϕ reverses orientation then it is an involution.

Proof. Denote by φ a lift of ϕ. Therefore $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ is a homeomorphism and

$$
\begin{equation*}
\phi\left(\mathrm{e}^{2 \pi i t}\right)=\mathrm{e}^{2 \pi i \varphi(t)} \quad \text { for } t \in \mathbb{R} \tag{3}
\end{equation*}
$$

Let $t_{0} \in \mathbb{R}$ be such that $\phi\left(\mathrm{e}^{2 \pi i t_{0}}\right)=\mathrm{e}^{2 \pi i t_{0}}$. Then, by $(3), \varphi\left(t_{0}\right)=t_{0}+p$ for an integer p. Replacing the lift φ by $\varphi-p$, if necessary, we may additionally assume that $p=0$, that is $\varphi\left(t_{0}\right)=t_{0}$. Since ϕ satisfies (2) and (3) and it is continuous, there is an integer k such that

$$
\begin{equation*}
\varphi^{n}(t)=t+k \quad \text { for } t \in \mathbb{R} \tag{4}
\end{equation*}
$$

Applying (4) to t_{0} we get

$$
t_{0}=\varphi^{n}\left(t_{0}\right)=t_{0}+k
$$

which means that $k=0$ and, consequently, φ satisfies equation (1).
Put $\varepsilon=1$ if the homeomorphism φ is increasing and $\varepsilon=2$ otherwise. Then φ^{ε} is strictly increasing. Thus, if $\varphi^{\varepsilon}(t) \neq t$, say $\varphi^{\varepsilon}(t)>t$ for a $t \in \mathbb{R}$ then, since φ satisfies (1), we would have

$$
t<\varphi^{\varepsilon}(t)<\cdots<\varphi^{n \varepsilon}(t)=t
$$

which is impossible. Consequently, $\varphi^{\varepsilon}(t)=t$ for each $t \in \mathbb{R}$ and both the statements follow.

As an immediate corollary we obtain the first of our main results.
Theorem 2. The only homeomorphism of S^{1} satisfying (2), preserving orientation and having a fixed point is the identity function.

Now, following Theorem 1, we will study involutions reversing orientation.

Proposition 2. For every different points $z_{0}, z_{1} \in S^{1}$ and every invertible function ϕ_{0} mapping $\left[z_{0}, z_{1}\right)$ onto $\left(z_{1}, z_{0}\right]$ and sending z_{0} to z_{0} the formula

$$
\phi(z)= \begin{cases}\phi_{0}(z), & \text { if } \quad z \in\left[z_{0}, z_{1}\right) \tag{5}\\ z_{1}, & \text { if } z=z_{1} \\ \phi_{0}^{-1}(z), & \text { if } \quad z \in\left(z_{1}, z_{0}\right)\end{cases}
$$

defines a unique extension $\phi: S^{1} \rightarrow S^{1}$ of ϕ_{0} to an involution.
Proof. It is enough to observe that $\phi_{0}\left(\left(z_{0}, z_{1}\right)\right)=\left(z_{1}, z_{0}\right)$ and make a standard computation.

Theorem 3. For every different points $z_{0}, z_{1} \in S^{1}$ any homeomorphism ϕ_{0} mapping $\left[z_{0}, z_{1}\right)$ onto ($\left.z_{1}, z_{0}\right]$ can be uniquely extended to an involution $\phi: S^{1} \rightarrow S^{1}$. Moreover, ϕ is a reversing orientation homeomorphism with z_{0} and z_{1} as unique fixed points and it is defined by (5).

Conversely: if $\phi: S^{1} \rightarrow S^{1}$ is a continuous involution and reverses orientation then it has exactly two fixed points $z_{0}, z_{1} \in S^{1}$ and maps $\left[z_{0}, z_{1}\right)$ onto ($\left.z_{1}, z_{0}\right]$.

Proof. Fix $z_{0}, z_{1} \in S^{1}, z_{0} \neq z_{1}$, and a homeomorphism ϕ_{0} mapping $\left[z_{0}, z_{1}\right)$ onto $\left(z_{1}, z_{0}\right]$. Then $\phi_{0}\left(z_{0}\right)=z_{0}$ and $\lim _{z \rightarrow z_{1}} \phi_{0}(z)=z_{1}$. Thus, by

Proposition 2, formula (5) defines a unique extension $\phi: S^{1} \rightarrow S^{1}$ of ϕ_{0} to an involution which, in addition, is a homeomorphism having z_{0} and z_{1} as unique fixed points. Since ϕ_{0} cannot be the identity function, Theorem 2 implies that ϕ reverses orientation.

Now let $\phi: S^{1} \rightarrow S^{1}$ be a continuous involution which reverses orientation and take an arbitrary lift $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ of ϕ. As a decreasing continuous function, defined on the real line, φ has exactly one fixed point, say t_{0}. Then

$$
\varphi\left(t_{0}\right)-t_{0}+1=1>0 .
$$

Moreover, since

$$
\varphi(t+1)=\varphi(t)-1 \quad \text { for } t \in \mathbb{R}
$$

we have

$$
\varphi\left(t_{0}+1\right)-\left(t_{0}+1\right)+1=-1<0 .
$$

Thus, by continuity and strict monotonicity of the function $\mathbb{R} \ni t \mapsto$ $\varphi(t)-t+1$, we can find a unique $t_{1} \in\left(t_{0}, t_{0}+1\right)$ such that $\varphi\left(t_{1}\right)=t_{1}-1$; in addition, $\varphi\left(\left[t_{0}, t_{1}\right)\right)=\left(t_{1}-1, t_{0}\right]$ and t_{0}, t_{1} are the unique reals $t \in$ $\left[t_{0}, t_{0}+1\right)$ satisfying the condition $\varphi(t) \in t+\mathbb{Z}$. Consequently, according to (3), $z_{0}:=\mathrm{e}^{2 \pi i t_{0}}$ and $z_{1}:=\mathrm{e}^{2 \pi i t_{1}}$ are the unique fixed points of ϕ and $\phi\left(\left[z_{0}, z_{1}\right)\right)=\left(z_{1}, z_{0}\right]$.

2. Roots of identity without fixed points

Any lift of a reversing orientation homeomorphism of a circle, being a decreasing continuous function defined on \mathbb{R}, has a fixed point. Therefore, homeomorphisms with no fixed points necessarily preserve orientation.

Proposition 3. For every integer $k \in\{1, \ldots, n-1\}$ relatively prime to n, points $z_{0}, \ldots, z_{n-1} \in S^{1}$ such that $z_{0}<\cdots<z_{n-1}$ and every invertible function ϕ_{0} mapping $\left[z_{0}, z_{n-1}\right)$ onto $\left[z_{k}, z_{k-1}\right)$ and satisfying the condition

$$
\begin{equation*}
\phi_{0}\left(\left[z_{j-1}, z_{j}\right)\right)=\left[z_{j-1+k}, z_{j+k}\right) \quad \text { for } j \in\{1, \ldots, n-1\} \tag{6}
\end{equation*}
$$

(with $z_{j}:=z_{j(\bmod n)}$ for $j \geq n$) the formula

$$
\phi(z)=\left\{\begin{array}{lll}
\phi_{0}(z), & \text { if } z \in\left[z_{0}, z_{n-1}\right), \tag{7}\\
\left(\phi_{1} \circ \cdots \circ \phi_{n-1}\right)^{-1}(z), & \text { if } z \in\left[z_{n-1}, z_{0}\right),
\end{array}\right.
$$

where

$$
\begin{equation*}
\phi_{j}:=\left.\phi_{0}\right|_{\left[z_{j(n-k)-1}, z_{j(n-k)}\right)} \quad \text { for } j \in\{1, \ldots, n-1\} \tag{8}
\end{equation*}
$$

defines a unique extension $\phi: S^{1} \rightarrow S^{1}$ of ϕ_{0} to a solution of (2); if $z \in S^{1}$, $j \in\{1, \ldots, n\}$ and $\phi^{j}(z)=z$ then $j=n$.

Proof. Fix an integer $k \in\{1, \ldots, n-1\}$ relatively prime to n, and points $z_{0}, \ldots, z_{n-1} \in S^{1}$ with $z_{0}<\cdots<z_{n-1}$. Put $z_{j}:=z_{j(\bmod n)}$ for $j \geq n$. Let ϕ_{0} be an invertible function mapping $\left[z_{0}, z_{n-1}\right)$ onto $\left[z_{k}, z_{k-1}\right.$) and satisfying (6). By (8) and (6) we have

$$
\phi_{j+1}\left(\left[z_{(j+1)(n-k)-1}, z_{(j+1)(n-k)}\right)\right)=\left[z_{j(n-k)-1}, z_{j(n-k)}\right)
$$

for $j \in\{1, \ldots, n-2\}$ whenever $n \geq 3$ and

$$
\phi_{1}\left(\left[z_{n-k-1}, z_{n-k}\right)\right)=\left[z_{n-1}, z_{n}\right)=\left[z_{n-1}, z_{0}\right) .
$$

Since $(n-1)(n-k)=n(n-k-1)+k$, we have $\left[z_{(n-1)(n-k)-1}, z_{(n-1)(n-k)}\right)=$ $\left[z_{k-1}, z_{k}\right)$. Thus $\phi_{1} \circ \cdots \circ \phi_{n-1}$ maps $\left[z_{k-1}, z_{k}\right)$ onto $\left[z_{n-1}, z_{0}\right)$ and formula (7) defines a function $\phi: S^{1} \rightarrow S^{1}$; in particular (cf. also (6)),

$$
\begin{equation*}
\phi\left(\left[z_{j-1}, z_{j}\right)\right)=\left[z_{j-1+k}, z_{j+k}\right) \quad \text { for } j \in\{1, \ldots, n\} . \tag{9}
\end{equation*}
$$

Fix an arbitrary $z \in S^{1}$. Then $z \in\left[z_{l-1}, z_{l}\right)$ for a unique $l \in\{1, \ldots, n\}$. Since n and k are relatively prime, there is exactly one $m \in\{0, \ldots, n-1\}$ satisfying $(l+m k)(\bmod n)=0$. If $m=0$ then $l=n, z \in\left[z_{n-1}, z_{0}\right)$ and, by (7), (8) and (6),

$$
\phi^{n}(z)=\phi^{n-1} \circ \phi(z)=\phi_{1} \circ \cdots \circ \phi_{n-1} \circ\left(\phi_{1} \circ \cdots \circ \phi_{n-1}\right)^{-1}(z)=z .
$$

In the case $m \geq 1$ we have $\left[z_{l-1}, z_{l}\right)=\left[z_{m(n-k)-1}, z_{m(n-k)}\right)$, whence, again by (7), (8) and (6),

$$
\phi^{m}(z)=\phi_{1} \circ \cdots \circ \phi_{m}(z) \in\left[z_{n-1}, z_{0}\right)
$$

and

$$
\begin{aligned}
\phi^{m+1}(z) & =\left(\phi_{1} \circ \cdots \circ \phi_{n-1}\right)^{-1}\left(\phi^{m}(z)\right) \\
& =\phi_{n-1}^{-1} \circ \cdots \circ \phi_{1}^{-1} \circ \phi_{1} \circ \cdots \circ \phi_{m}(z) \in\left[z_{k-1}, z_{k}\right) \\
& =\left[z_{(n-1)(n-k)-1}, z_{(n-1)(n-k)}\right)
\end{aligned}
$$

If $m=n-1$ we get $\phi^{n}(z)=\phi^{m+1}(z)=z$. Otherwise

$$
\phi^{m+1}(z)=\phi_{n-1}^{-1} \circ \cdots \circ \phi_{m+1}^{-1}(z)
$$

whence

$$
\begin{aligned}
\phi^{n}(z) & =\phi^{n-m-1} \circ \phi^{m+1}(z) \\
& =\phi_{m+1} \circ \cdots \circ \phi_{n-1} \circ \phi_{n-1}^{-1} \circ \cdots \circ \phi_{m+1}^{-1}(z)=z
\end{aligned}
$$

Consequently, in all the cases we obtain $\phi^{n}(z)=z$. Suppose that $\phi^{j}(z)=z$ for a $j \in\{1, \ldots, n-1\}$. By (9) we have $\phi^{j}\left(\left[z_{l-1}, z_{l}\right)\right)=$ $\left[z_{l-1+j k}, z_{l+j k}\right)$. Hence $\left[z_{l-1}, z_{l}\right) \cap\left[z_{l-1+j k}, z_{l+j k}\right) \neq \emptyset$, so $\left[z_{l-1}, z_{l}\right)=$ $\left[z_{l-1+j k}, z_{l+j k}\right)$, that is $z_{l+j k}=z_{l}$, which means that n divides $j k$ contrary to the fact that $j<n$ and k is relatively prime to n. Thus ϕ is a solution of (2) and for every $z \in S^{1}$ the number n is the smallest positive integer j with $\phi^{j}(z)=z$. In particular, ϕ is of order n and it has no fixed points. Clearly $\left.\phi\right|_{\left[z_{0}, z_{n-1}\right)}=\phi_{0}$. Moreover, if $z \in\left[z_{n-1}, z_{0}\right)$ then

$$
\phi(z)=\left(\phi^{n-1}\right)^{-1}(z)=\left(\phi_{1} \circ \cdots \circ \phi_{n-1}\right)^{-1}(z) .
$$

Therefore ϕ is the unique extension of ϕ_{0} to a solution of (2).
The next result provides a complete description (cf. also Proposition 1) of continuous solutions of (2) having no fixed points.

Theorem 4. For every integer $k \in\{1, \ldots, n-1\}$ relatively prime to n and points $z_{0}, \ldots, z_{n-1} \in S^{1}$ such that $z_{0}<\cdots<z_{n-1}$ any homeomorphism ϕ_{0} mapping $\left[z_{0}, z_{n-1}\right.$) onto $\left[z_{k}, z_{k-1}\right.$) and satisfying condition (6) (with $z_{j}:=z_{j(\bmod n)}$ for $j \geq n$) can be uniquely extended to a solution $\phi: S^{1} \rightarrow S^{1}$ of (2). Moreover, ϕ is a homeomorphism with no fixed points, it is defined by (7) and (8), and is a root of identity of order n.

Conversely: if $\phi: S^{1} \rightarrow S^{1}$ is a continuous solution of (2) of order n and has no fixed points then there are an integer $k \in\{1, \ldots, n-1\}$ relatively prime to n and points $z_{0}, \ldots, z_{n-1} \in S^{1}$ such that $z_{0}<\cdots<z_{n-1}$
and ϕ maps $\left[z_{j-1}, z_{j}\right)$ onto $\left[z_{(j-1+k)(\bmod n)}, z_{(j+k)(\bmod n)}\right)$ for every $j \in$ $\{1, \ldots, n-1\}$.

Proof. Fix an integer $k \in\{1, \ldots, n-1\}$ relatively prime to n, points $z_{0}, \ldots, z_{n-1} \in S^{1}$ such that $z_{0}<\cdots<z_{n-1}$ and a homeomorphism ϕ_{0} mapping $\left[z_{0}, z_{n-1}\right)$ onto $\left[z_{k}, z_{k-1}\right)$. Put $z_{j}:=z_{j(\bmod n)}$ for $j \geq n$ and assume (6). By Proposition 3 formulas (7) and (8) give a unique extension of ϕ_{0} to a solution $\phi: S^{1} \rightarrow S^{1}$ of (2). It is a root of order n and has no fixed points. Clearly, (7) and (8) give the continuity of ϕ at every point of $\left(z_{0}, z_{n-1}\right)$ and $\left(z_{n-1}, z_{0}\right)$. Moreover,

$$
\lim _{z \rightarrow z_{n-1}} \phi_{0}(z)=z_{k-1}=\left(\phi_{1} \circ \cdots \circ \phi_{n-1}\right)^{-1}\left(z_{n-1}\right)=\phi\left(z_{n-1}\right)
$$

whence

$$
\left.\lim _{z \rightarrow z_{n-1}} \phi\right|_{\left[z_{0}, z_{n-1}\right)}(z)=\phi\left(z_{n-1}\right)
$$

By (7) we have also

$$
\begin{aligned}
\left.\lim _{z \rightarrow z_{0}} \phi\right|_{\left[z_{n-1}, z_{0}\right)}(z) & =\lim _{z \rightarrow z_{0}}\left(\phi_{1} \circ \cdots \circ \phi_{n-1}\right)^{-1}(z)=\lim _{z \rightarrow z_{0}} \phi_{n-1}^{-1} \circ \cdots \circ \phi_{1}^{-1}(z) \\
& =\lim _{z \rightarrow z_{n-k}} \phi_{n-1}^{-1} \circ \cdots \circ \phi_{2}^{-1}(z)=\cdots=\lim _{z \rightarrow z_{(n-2)(n-k)}} \phi_{n-1}^{-1}(z) \\
& =z_{(n-1)(n-k)}=z_{k}=\phi_{0}\left(z_{0}\right)=\phi\left(z_{0}\right) .
\end{aligned}
$$

This means that ϕ is also continuous at z_{0} and z_{n-1} whence, consequently, it is a homeomorphism.

To prove the converse let $\phi: S^{1} \rightarrow S^{1}$ be a continuous solution of (2) of order n, having no fixed points. As ϕ is a bijection it is a homeomorphism. Since it has no fixed points, ϕ preserves orientation. Thus there is an increasing homeomorphism φ mapping \mathbb{R} onto \mathbb{R} such that

$$
\begin{equation*}
\varphi(t+1)=\varphi(t)+1 \quad \text { for } t \in \mathbb{R} \tag{10}
\end{equation*}
$$

and (3) holds.
Since ϕ has no fixed points and it is continuous, by (3) there is an integer p such that

$$
t+p<\varphi(t)<t+p+1 \quad \text { for } t \in \mathbb{R}
$$

Replacing the lift φ by $\varphi-p$, if necessary, we may assume without loss of generality that $p=0$. In other words

$$
\begin{equation*}
t<\varphi(t)<t+1 \quad \text { for } t \in \mathbb{R} \tag{11}
\end{equation*}
$$

As ϕ satisfies (2) and is continuous we can find, by (3), an integer k such that (4) holds. Using [10, Lemma 6] or simply repeating a part of its proof we infer that $k \in\{1, \ldots, n-1\}$ and k is relatively prime to n.

Since ϕ is a root of identity of order n, there is a $z_{0} \in S^{1}$ with the orbit consisting of exactly n points $z_{0}, \ldots, z_{n-1} \in S^{1}$. Choose $t_{0}, \ldots, t_{n-1} \in$ $[0,1)$ in such a way that $z_{j}=\mathrm{e}^{2 \pi i t_{j}}$ for $j \in\{0, \ldots, n-1\}$. Without loss of generality we may assume that $0 \leq t_{0}<\cdots<t_{n-1}<1$. Clearly $z_{0}<\cdots<z_{n-1}$.

We will verify that

$$
\begin{equation*}
\phi\left(z_{m}\right)=z_{(m+k)(\bmod n)} \quad \text { for } m \in\{0, \ldots, n-1\} . \tag{12}
\end{equation*}
$$

Fix an $m \in\{0, \ldots, n-1\}$. Then, according to Remark 1,

$$
\begin{equation*}
z_{m(\bmod n)}<\cdots<z_{(m+n-1)(\bmod n)} \tag{13}
\end{equation*}
$$

If $\varphi^{n-1}\left(t_{m}\right) \leq t_{m}+k-1$ then, by (4), (10) and (11), we would have

$$
\begin{aligned}
t_{m}+k & =\varphi^{n}\left(t_{m}\right) \\
& =\varphi\left(\varphi^{n-1}\left(t_{m}\right)\right) \leq \varphi\left(t_{m}+k-1\right)=\varphi\left(t_{m}\right)+k-1<t_{m}+k
\end{aligned}
$$

which is impossible. Thus $\varphi^{n-1}\left(t_{m}\right)>t_{m}+k-1$. Moreover, on account of (11) and (4),

$$
t_{m}<\varphi\left(t_{m}\right)<\cdots \leq \varphi^{n-1}\left(t_{m}\right)<\varphi^{n}\left(t_{m}\right)=t_{m}+k
$$

Therefore, for every $j \in\{0, \ldots, k-1\}$ there is an $r_{j} \in\{0, \ldots, n-1\}$ satisfying the condition

$$
\varphi^{r_{j}-1}\left(t_{m}\right)<t_{m}+j \leq \varphi^{r_{j}}\left(t_{m}\right)
$$

Hence, taking into account strict monotonicity of φ and (10), we infer that

$$
\begin{align*}
\varphi^{r_{j}-1}\left(t_{m}\right) & <t_{m}+j \leq \varphi^{r_{j}}\left(t_{m}\right)<\varphi\left(t_{m}+j\right) \\
& =\varphi\left(t_{m}\right)+j \leq \varphi^{r_{j}+1}\left(t_{m}\right) \tag{14}
\end{align*}
$$

for every $j \in\{0, \ldots, k-1\}$. This means that

$$
\begin{equation*}
\left\{\phi^{r_{0}}\left(z_{m}\right), \ldots, \phi^{r_{k-1}}\left(z_{m}\right)\right\} \subset\left[z_{m}, \phi\left(z_{m}\right)\right) \tag{15}
\end{equation*}
$$

By (14) and (11) we have

$$
t_{m}+j \leq \varphi^{r_{j}}\left(t_{m}\right)<\varphi\left(t_{m}\right)+j<t_{m}+j+1 \quad \text { for } j \in\{0, \ldots, k-1\}
$$

whence r_{0}, \ldots, r_{k-1} are distinct and, consequently, the set on the lefthand side of the inclusion (15) consists of exactly k elements of the orbit $\left\{z_{0}, \ldots, z_{n-1}\right\}$. On the other hand, if $\phi^{s}\left(z_{m}\right) \in\left[z_{m}, \phi\left(z_{m}\right)\right)$ for an $s \in$ $\{0, \ldots, n-1\}$ then (cf. also (4))

$$
t_{m}+j \leq \varphi^{s}\left(t_{m}\right)<\varphi\left(t_{m}\right)+j
$$

with an $j \in\{0, \ldots, k-1\}$. Thus, since the sequence $\left(\varphi^{i}\left(t_{m}\right): i \in \mathbb{N}\right)$ is strictly increasing, from (14) we get that $s=r_{j}$. Summarizing, the arc [$\left.z_{m}, \phi\left(z_{m}\right)\right)$ contains exactly k of the points z_{0}, \ldots, z_{n-1}. Thus, according to (13), we have $\phi\left(z_{m(\bmod n)}=z_{(m+k)(\bmod n)}\right.$. This completes the proof of (12).

The function $\phi_{0}:=\left.\phi\right|_{\left[z_{0}, z_{n-1}\right)}$ is a homeomorphism preserving orientation which, by virtue of (12), satisfies condition (6). In particular, $\phi_{0}\left(\left[z_{0}, z_{n-1}\right)\right)=\left[z_{k(\bmod n)}, z_{(n-1+k)(\bmod n)}\right):=\left[z_{k}, z_{k-1}\right)$ and the theorem follows.

Acknowledgement. The author was supported by the Silesian University Project No. BST/IM/5/2001/.

References

[1] Ch. Babbage, Essay towards the calculus of functions, Philosoph. Transact, 1815, 389-423; II. ibid. 1816, 179-256.
[2] M. Bajger, On the structure of some flows on the unit circle, Aequationes Math. 55 (1998), 106-121.
[3] K. Baron and W. Jarczyk, Recent results on functional equations in a single variable perspectives and open problems, Aequationes Math. 61 (2001), 1-48.
[4] I. P. Cornfeld, S. V. Fomin and Y. G. Sinai, Ergodic theory, Grundlehren 245, Springer Verlag, Berlin - Heidelberg - New York, 1982.
[5] M. Kuczma, Functional equations in a single variable, Monografie Mat. 46, Polish Scientific Publishers, Warszawa, 1968.
[6] M. Kuczma, B. Choczewski and R. Ger, Iterative functional equations, Encyclopedia of Mathematics and its Applications 32, Cambridge University Press, Cambridge, 1990.
[7] N. McShane, On the periodicity of homeomorphisms of the real line, Amer. Math. Monthly 68 (1961), 562-563.
[8] E. Vincze, Über die Charakterisierung der assoziativen Funktionen von mehreren Veränderlichen, Publ. Math. Debrecen 6 (1959), 241-253.
[9] C. T. C. Wall, A geometric introduction to topology, Addison-Wesley, Reading, 1972.
[10] M.C. Zdun, On embedding of homeomorphisms of the circle in a continuous flow, European Conference on Iteration Theory, (Schloss Hofen, 1984), 218-231, Lecture Notes in Mathematics 1163, Springer Verlag, Berlin - Heidelberg - New York, 1985.

WITOLD JARCZYK

INSTITUTE OF MATHEMATICS
UNIVERSITY OF ZIELONA GÓRA
SZAFRANA 4A, PL-65-516 ZIELONA GÓRA
POLAND
AND
INSTITUTE OF MATHEMATICS
SILESIAN UNIVERSITY
BANKOWA 14, PL-40-007 KATOWICE
POLAND
(Received February 4, 2002; revised December 28, 2002)

