Publ. Math. Debrecen
63/3 (2003), 431-443

Existence of solutions for nonlinear second order systems on a measure chain

By CHEN-HUANG HONG (Chung-Li), FU-HSIANG WONG (Taipei) and CHEH-CHIH YEH (Kueishan Taoyuan)

Abstract

Under suitable conditions on positive functions $f(t, v)$ and $g(t, u)$, we prove that the nonlinear second order systems on a measure chain (BVPS) $$
\left\{\begin{array}{ll} \left(\mathrm{E}_{1}\right) & u^{\Delta \Delta}(t)+f(t, v(\sigma(t)))=0, \\ \left(\mathrm{E}_{2}\right) & 0<t<1 \\ v^{\Delta \Delta}(t)+g(t, u(\sigma(t)))=0, & 0<t<1 \end{array}, \begin{array}{l} \alpha_{1} u(0)-\beta_{1} u^{\Delta}(0)=0 \\ \left(\mathrm{BC}_{1}\right) \end{array}\left\{\begin{array} { l } { \gamma _ { 1 } u (\sigma (1)) + \delta _ { 1 } u ^ { \Delta } (\sigma (1)) = 0 } \\ { (\mathrm { BC } _ { 2 }) } \end{array} \left\{\begin{array}{l} \alpha_{2} v(0)-\beta_{2} v^{\Delta}(0)=0, \\ \gamma_{2} v(\sigma(1))+\delta_{2} v^{\Delta}(\sigma(1))=0 \end{array}\right.\right.\right.
$$

has at least one positive solution.

1. Introduction

In 1990, S. Hilger [8] introduced the theorey of measure chain in order to unify continuous and discrete calculus. Recently, the developement of theory of measure chain has received a lot of attention, see [1]-[7], [9], [11], [12].

Mathematics Subject Classification: 34B15.
Key words and phrases: measure chain, boundary value problem systems, positive solution, cone, fixed point.

The existence of solutions of the boundary value problem
(BVP)

$$
\begin{cases}(\mathrm{E}) & u^{\Delta \Delta}(t)+f(t, u(\sigma(t)))=0, \quad 0<t<1 \\
(\mathrm{BC}) & \left\{\begin{array}{l}
\alpha u(0)-\beta u^{\Delta}(0)=0 \\
\gamma u(\sigma(1))+\delta u^{\Delta}(\sigma(1))=0
\end{array}\right.\end{cases}
$$

on a measure chain has been studied by many authors, see, for examples, Chyan and Henderson [4], Erbe and Peterson [7], Hong and Yeh [9] and W. C. Lian, C. C. Chou, C. T. Liu and F. H. Wong [12].

In this article, we shall consider the existence of positive solutions of the following boundary value problem systems
(BVPS)

$$
\begin{cases}\left(\mathrm{E}_{1}\right) & u^{\Delta \Delta}(t)+f(t, v(\sigma(t)))=0, \quad 0<t<1, \\
\left(\mathrm{E}_{2}\right) & v^{\Delta \Delta}(t)+g(t, u(\sigma(t)))=0, \quad 0<t<1, \\
\left(\mathrm{BC}_{1}\right) & \left\{\begin{array}{l}
\alpha_{1} u(0)-\beta_{1} u^{\Delta}(0)=0, \\
\gamma_{1} u(\sigma(1))+\delta_{1} u^{\Delta}(\sigma(1))=0,
\end{array}\right. \\
\left(\mathrm{BC}_{2}\right) & \left\{\begin{array}{l}
\alpha_{2} v(0)-\beta_{2} v^{\Delta}(0)=0, \\
\gamma_{2} v(\sigma(1))+\delta_{2} v^{\Delta}(\sigma(1))=0,
\end{array}\right.\end{cases}
$$

where $\alpha_{i}, \beta_{i}, \gamma_{i}, \delta_{i}$ are nonnegative real numbers and $r_{i}:=\gamma_{i} \beta_{i}+\alpha_{i} \delta_{i}+$ $\alpha_{i} \gamma_{i} \sigma(1)>0, i=1,2$ and $f, g \in C_{r d}([0, \sigma(1)] \times[0, \infty),(0, \infty))$.

2. Main results

In order to abbreviate our discussion, throughout this paper, we suppose that the following assumptions hold:
$\left(\mathrm{C}_{1}\right) \xi:=\min \left\{t \in T \left\lvert\, t \geq \frac{\sigma(1)}{4}\right.\right\}$ and $\omega:=\max \left\{t \in T \left\lvert\, t \leq \frac{3 \sigma(1)}{4}\right.\right\}$ both exist and satisfy

$$
\frac{\sigma(1)}{4} \leq \xi<\omega \leq \frac{3 \sigma(1)}{4}
$$

$\left(\mathrm{C}_{2}\right) G_{i}(t, s)$ is the Green's function of the differential equation

$$
-u^{\Delta \Delta}(t)=0 \quad \text { in }(0,1)
$$

satisfying the boundary value condition $\left(\mathrm{BC}_{i}\right)$;
$\left(\mathrm{C}_{3}\right) M_{i}=\min \left\{d_{i}, l_{i}\right\}$, where

$$
d_{i}:=\min \left\{\frac{\gamma_{i} \sigma(1)+4 \delta_{i}}{4\left(\gamma_{i} \sigma(1)+\delta_{i}\right)}, \frac{\alpha_{i} \sigma(1)+4 \beta_{i}}{4\left(\alpha_{i} \sigma(1)+\beta_{i}\right)}\right\} \in(0,1)
$$

and

$$
l_{i}=\min _{s \in[0, \sigma(1)]} \frac{G_{i}(\sigma(\omega), s)}{G_{i}(\sigma(s), s)} .
$$

$\left(\mathrm{C}_{4}\right) f, g \in C([0, \sigma(1)] \times[0, \infty) ;(0, \infty))$.
In order to prove our main result (Theorem 2.1 below), we shall need the following two useful lemmas:

Lemma 2A (Erbe and Peterson [7]). Let M_{i} be defined as in (C_{3}). For the Green's function $G_{i}(t, s)(i=1,2)$ the following results hold:

Lemma 2B (Krasnoselskir [10]). Let $P \subseteq E$ be a cone in a Banach space E. Assume that Ω_{1}, Ω_{2} are open subsets of E with $0 \in \Omega_{1}, \overline{\Omega_{1}} \subset \Omega_{2}$. If

$$
\Phi: P \cap\left(\overline{\Omega_{2}} \backslash \Omega_{1}\right) \longrightarrow P
$$

is a completely continuous operator such that either
(i) $\|\Phi u\| \leq\|u\|, u \in P \cap \partial \Omega_{1}$ and $\|\Phi u\| \geq\|u\|$, $u \in P \cap \partial \Omega_{2}$; or
(ii) $\|\Phi u\| \geq\|u\|, u \in P \cap \partial \Omega_{1}$ and $\|\Phi u\| \leq\|u\|, u \in P \cap \partial \Omega_{2}$,
then Φ has a fixed point in $P \cap\left(\overline{\Omega_{2}} \backslash \Omega_{1}\right)$.
Denote the Banach space $E=\left\{\mathcal{U}=(u, v) \in(C[0, \sigma(1)])^{2}\right\}$ with norm

$$
\|\mathcal{U}\|=\|(u, v)\|:=\max \left\{\|u\|_{\infty},\|v\|_{\infty}\right\}
$$

Here $\|u\|_{\infty}:=\sup _{0 \leq t \leq \sigma(1)}|u(t)|$. Define a set $P \subset E$ by

$$
\begin{aligned}
P:=\{ & (u, v) \mid(u, v) \geq(0,0), \\
& \left.\left(\min _{\xi \leq t \leq \sigma(\omega)]} u(t), \min _{\xi \leq t \leq \sigma(\omega)} v(t)\right) \geq\left(M_{1}\|u\|_{\infty}, M_{2}\|v\|_{\infty}\right)\right\},
\end{aligned}
$$

where $(a, b) \geq(c, d)$ means that $a \geq c$ and $b \geq d$. Here $a, b, c, d \in \Re$. It is clear that P is a cone in E.

Now, we can state and prove our main result.
Theorem 2.1 (Main result). Assume that there exist four positive constants $\eta_{1}, \eta_{2}, \lambda_{1}$ and λ_{2} such that for $(v, u) \in\left[0, \lambda_{1}\right] \times\left[0, \lambda_{2}\right]$,

$$
\begin{equation*}
\left(\int_{0}^{\sigma(1)} G_{1}(t, s) f(s, v) \Delta s, \int_{0}^{\sigma(1)} G_{2}(t, s) g(s, u) \Delta s\right) \leq\left(\lambda_{1}, \lambda_{2}\right) \tag{1}
\end{equation*}
$$

and for $(v, u) \in\left[M_{1} \eta_{1}, \eta_{1}\right] \times\left[M_{2} \eta_{2}, \eta_{2}\right]$,

$$
\begin{equation*}
\left(\int_{\xi}^{\omega} G_{1}(\theta, s) f(s, v) \Delta s, \int_{\xi}^{\omega} G_{2}(\theta, s) g(s, u) \Delta s\right) \geq\left(\eta_{1}, \eta_{2}\right), \tag{2}
\end{equation*}
$$

where $\theta \in(\xi, \omega)$. Then (1) has at least one positive solution (u, v) between λ and η, where $\lambda:=\max \left\{\lambda_{1}, \lambda_{2}\right\}$ and $\eta:=\min \left\{\eta_{1}, \eta_{2}\right\}$.

Proof. Without loss of generality, we may assume that $\lambda<\eta$. It is clear that (1) has a solution $\mathcal{U}:=(u, v)=(u(t), v(t))$ if and only if \mathcal{U} is the solution of the operator equation

$$
\begin{aligned}
\Phi \mathcal{U}(t) & :=(\Phi u(t), \Phi v(t)) \\
& :=\left(\int_{0}^{\sigma(1)} G_{1}(t, s) f(s, v(\sigma(s))) \Delta s, \int_{0}^{\sigma(1)} G_{2}(t, s) g(s, u(\sigma(s))) \Delta s\right) \\
& =\mathcal{U}(t) \text { for } t \in[0, \sigma(1)] \text { and } \mathcal{U} \in E .
\end{aligned}
$$

It follows from the definition of P and Lemma 2A that

$$
\begin{aligned}
& \min _{t \in[\xi, \omega]}(\Phi \mathcal{U})(t) \\
& =\left(\min _{t \in[\xi, \omega]} \int_{0}^{\sigma(1)} G_{1}(t, s) f(s, v(\sigma(s))) \Delta s, \min _{t \in[\xi, \omega]}^{\sigma(1)} \int_{0}^{\sigma(t)} G_{2}(t, s) g(s, u(\sigma(s))) \Delta s\right) \\
& \geq\left(M_{1} \int_{0}^{\sigma(1)} G_{1}(\sigma(s), s) f(s, v(\sigma(s))) \Delta s, M_{2} \int_{0}^{\sigma(1)} G_{2}(\sigma(s), s) g(s, u(\sigma(s))) \Delta s\right) \\
& \geq\left(M_{1} \int_{0}^{\sigma(1)} G_{1}(t, s) f(s, v(\sigma(s))) \Delta s, M_{2} \int_{0}^{\sigma(1)} G_{2}(t, s) g(s, u(\sigma(s))) \Delta s\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& (\Phi \mathcal{U})(\sigma(\omega)) \\
& =\left(\int_{0}^{\sigma(1)} G_{1}(\sigma(\omega), s) f(s, v(\sigma(s))) \Delta s, \int_{0}^{\sigma(1)} G_{2}(\sigma(\omega), s) g(s, u(\sigma(s))) \Delta s\right) \\
& \geq\left(l_{1} \int_{0}^{\sigma(1)} G_{1}(\sigma(s), s) f(s, v(\sigma(s))) \Delta s, l_{2} \int_{0}^{\sigma(1)} G_{2}(\sigma(s), s) g(s, u(\sigma(s))) \Delta s\right) \\
& \geq\left(M_{1} \int_{0}^{\sigma(1)} G_{1}(\sigma(s), s) f(s, v(\sigma(s))) \Delta s, M_{2} \int_{0}^{\sigma(1)} G_{2}(\sigma(s), s) g(s, u(\sigma(s))) \Delta s\right) \\
& \geq\left(M_{1} \int_{0}^{\sigma(1)} G_{1}(t, s) f(s, v(\sigma(s))) \Delta s, M_{2} \int_{0}^{\sigma(1)} G_{2}(t, s) g(s, u(\sigma(s))) \Delta s\right) .
\end{aligned}
$$

Hence

$$
\min _{t \in[\xi, \sigma(\omega)]} \Phi \mathcal{U}(t) \geq\left(M_{1}\|\Phi u\|_{\infty}, M_{2}\|\Phi v\|_{\infty}\right)
$$

which implies $\Phi P \subset P$. Furthermore, it is easy to check that $\Phi: P \rightarrow P$ is completely continuous. In order to complete the proof, we separate the rest of the proof into the following two steps:

Step (I) Let $\Omega_{1}:=\{\mathcal{U} \in P \mid\|\mathcal{U}\|<\lambda\}$. It follows from (1), Lemmas $2 \mathrm{~A}-2 \mathrm{~B}$ and the fact $\mathcal{U} \in P$ that for $\mathcal{U} \in \partial \Omega_{1}$,

$$
\begin{aligned}
\Phi \mathcal{U}(t) & =\left(\int_{0}^{\sigma(1)} G_{1}(t, s) f(s, v(\sigma(s))) \Delta s, \int_{0}^{\sigma(1)} G_{2}(t, s) g(s, u(\sigma(s))) \Delta s\right) \\
& \leq\left(\int_{0}^{\sigma(1)} G_{1}(\sigma(s), s) f(s, v(\sigma(s))) \Delta s, \int_{0}^{\sigma(1)} G_{2}(\sigma(s), s) g(s, u(\sigma(s))) \Delta s\right) \\
& \leq\left(\lambda_{1}, \lambda_{2}\right) \leq(\lambda, \lambda)=(\|\mathcal{U}\|,\|\mathcal{U}\|) .
\end{aligned}
$$

Hence,

$$
\|\Phi \mathcal{U}\| \leq\|\mathcal{U}\| \quad \text { for } \mathcal{U} \in \partial \Omega_{1}
$$

Step (II) Let $\Omega_{2}:=\{\mathcal{U} \in P \mid\|\mathcal{U}\|<\eta\}$. It follows from the definitions of $\|\mathcal{U}\|, P$ and Lemma 2 B that for $\mathcal{U} \in \partial \Omega_{2}$,

$$
\mathcal{U}=(u(t), v(t)) \leq(\|\mathcal{U}\|,\|\mathcal{U}\|)=(\eta, \eta) \text { for } t \in[0, \sigma(1)]
$$

and for $t \in[\xi, \sigma(\omega)]$,

$$
\begin{aligned}
(u(t), v(t)) & \geq\left(\min _{t \in[\xi, \sigma(\omega)]} u(t), \min _{t \in[\xi, \sigma(\omega)]} v(t)\right) \\
& \geq\left(M_{1}\|u\|_{\infty}, M_{2}\|v\|_{\infty}\right) \\
& =\left(M_{1} \eta_{1}, M_{2} \eta_{2}\right) \\
& \geq\left(M_{1} \eta, M_{2} \eta\right)
\end{aligned}
$$

which implies

$$
\left(M_{1} \eta, M_{2} \eta\right) \leq(u(t), v(t)) \leq(\eta, \eta)
$$

Hence, by (2),

$$
\begin{aligned}
(\Phi \mathcal{U})(\theta) & =\left(\int_{0}^{\sigma(1)} G_{1}(\theta, s) f(s, v(\sigma(s))) \Delta s, \int_{0}^{\sigma(1)} G_{2}(\theta, s) g(s, u(\sigma(s))) \Delta s\right) \\
& \geq\left(\int_{\xi}^{\omega} G_{1}(\theta, s) f(s, v(\sigma(s))) \Delta s, \int_{\xi}^{\omega} G_{2}(\theta, s) g(s, u(\sigma(s))) \Delta s\right) \\
& \geq\left(\eta_{1}, \eta_{2}\right) \\
& \geq(\eta, \eta)=(\|\mathcal{U}\|,\|\mathcal{U}\|) .
\end{aligned}
$$

Thus,

$$
\|\Phi \mathcal{U}\| \geq\|\mathcal{U}\| \quad \text { for } \mathcal{U} \in \partial \Omega_{2}
$$

Hence, by the first part of Lemma 2B, we complete the proof.
Let

$$
\begin{aligned}
& \max h_{0}:=\lim _{w \rightarrow 0^{+}} \max _{t \in[0, \sigma(1)]} \frac{h(t, w)}{w} \\
& \min h_{0}:=\lim _{w \rightarrow 0^{+}} \min _{t \in[\xi, \sigma(\omega)]} \frac{h(t, w)}{w}
\end{aligned}
$$

$$
\begin{aligned}
\max h_{\infty} & :=\lim _{w \rightarrow \infty} \max _{t \in[0, \sigma(1)]} \frac{h(t, w)}{w} \\
\min h_{\infty} & :=\lim _{w \rightarrow \infty} \min _{t \in[\xi, \sigma(\omega)]} \frac{h(t, w)}{w}
\end{aligned}
$$

Then we have the following:
Remark 2.2. Let α, β, γ and δ be nonnegative constants, $r:=\gamma \beta+$ $\alpha \delta+\alpha \gamma \sigma(1)>0$,

$$
M:=\min \left\{\frac{\gamma \sigma(1)+4 \delta}{4(\gamma \sigma(1)+\delta)}, \frac{\alpha \sigma(1)+4 \beta}{4(\alpha \sigma(1)+\beta)}\right\}
$$

and $G(t, s)$ the Green's function of the differential equation

$$
u^{\Delta \Delta}(t)=0 \quad \text { on } \quad(0,1)
$$

satisfying the boundary value conditions

$$
\left\{\begin{array}{l}
\alpha w(0)-\beta w^{\Delta}(0)=0 \\
\gamma w(\sigma(1))+w^{\Delta}(\sigma(1))=0
\end{array}\right.
$$

Let

$$
\begin{aligned}
& \left(\int_{0}^{\sigma(1)} G(\sigma(s), s) \Delta s\right)^{-1}:=A \quad \text { and } \quad\left(\int_{\xi}^{\omega} G(\theta, s) \Delta s\right)^{-1}:=B . \\
& \left(\int_{0}^{\sigma(1)} G_{i}(\sigma(s), s) \Delta s\right)^{-1}:=A_{i} \quad \text { and } \quad\left(\int_{\xi}^{\omega} G_{i}(\theta, s) \Delta s\right)^{-1}:=B_{i}, \quad(i=1,2) .
\end{aligned}
$$

Then, we have the following results.
(I) Suppose that $\max h_{0}:=C_{1} \in[0, A)$. Taking $\epsilon=A-C_{1}>0$, there exists $\lambda_{1}>0$ (λ_{1} can be chosen arbitrarily small) such that

$$
\max _{t \in[0, \sigma(1)]} \frac{h(t, w)}{w} \leq \epsilon+C_{1}=A \quad \text { on }\left[0, \lambda_{1}\right] .
$$

Hence,

$$
h(t, w) \leq A w \leq A \lambda_{1} \text { on } \quad[0, \sigma(1)] \times\left[0, \lambda_{1}\right] .
$$

If we replace h by f and g, and replace A by A_{1} and A_{2}, respectively. Then, the hypothesis (1) of Theorem 2.1 is satisfied.
(II) Suppose that $\min h_{\infty}:=C_{2} \in\left(\frac{B}{M}, \infty\right]$. Taking $\epsilon=C_{2}-\frac{B}{M}>0$, there exists $\eta_{1}>0\left(\eta_{1}\right.$ can be chosen arbitrarily large) such that

$$
\min _{t \in[\xi, \sigma(\omega)]} \frac{h(t, w)}{w} \geq-\epsilon+C_{2}=\frac{B}{M} \quad \text { on }\left[M \eta_{1}, \infty\right)
$$

Hence,

$$
h(t, w) \geq \frac{B}{M} w \geq \frac{B}{M} M \eta_{1}=B \eta_{1}
$$

on $[\xi, \sigma(\omega)] \times\left[M \eta_{1}, \eta_{1}\right]$. If we replace h by f and g, and replace B by B_{1} and B_{2}, respectively. Then, the hypothesis (2) of Theorem 2.1 is satisfied.
(III) Suppose that $\min h_{0}:=C_{3} \in\left(\frac{B}{M}, \infty\right]$. Taking $\epsilon=C_{3}-\frac{B}{M}>0$, there exists $\eta_{2}>0\left(\eta_{2}\right.$ can be chosen arbitrarily small $)$ such that

$$
\min _{t \in[\xi, \sigma(\omega)]} \frac{h(t, w)}{w} \geq-\epsilon+C_{3}=\frac{B}{M} \quad \text { on }\left[0, \eta_{2}\right] .
$$

Hence,

$$
h(t, w) \geq \frac{B}{M} w \geq \frac{B}{M} M \eta_{2}=B \eta_{2}
$$

on $[\xi, \sigma(\omega)] \times\left[0, \eta_{2}\right]$. If we replace h by f and g, and replace B by B_{1} and B_{2}, respectively. Then, the hypothesis (2) of Theorem 2.1 is satisfied.
(IV) Suppose that $\max h_{\infty}:=C_{4} \in[0, A)$. Taking $\epsilon=A-C_{4}>0$, there exist $\theta>0$ (θ can be chosen arbitrarily large) such that

$$
\begin{equation*}
\max _{t \in[0, \sigma(1)]} \frac{h(t, w)}{w} \leq \epsilon+C_{4}=A \quad \text { on }[\theta, \infty) \tag{3}
\end{equation*}
$$

Hence, we have the following two cases:
Case (i): Assume that $\max _{t \in[0, \sigma(1)]} h(t, w)$ is bounded, say,

$$
h(t, w) \leq L \quad \text { on }[0, \sigma(1)] \times[0, \infty)
$$

Taking $\lambda_{2}=\frac{L}{A}$ (since L can be chosen arbitrarily large, λ_{2} can be chosen arbitrarily large, too),

$$
h(t, w) \leq L=A \lambda_{2} \quad \text { on }[0, \sigma(1)] \times\left[0, \lambda_{1}\right] \subseteq[0, \sigma(1)] \times[0, \infty)
$$

Case (ii): Assume that $\max _{t \in[0, \sigma(1)]} h(t, w)$ is unbounded, hence, there exists a $\lambda_{2} \geq \theta$ (λ_{2} can be chosen arbitrarily large) and $t_{0} \in[0, \sigma(1)]$ such that

$$
h(t, w) \leq h\left(t_{0}, \lambda_{2}\right) \quad \text { on }[0, \sigma(1)] \times\left[0, \lambda_{2}\right] .
$$

It follows from $\lambda_{2} \geq \theta$ and (3) that

$$
h(t, w) \leq h\left(t_{0}, \lambda_{2}\right) \leq A \lambda_{2} \quad \text { on }[0, \sigma(1)] \times\left[0, \lambda_{2}\right] .
$$

By cases (i) and (ii), if we replace h by f and g, and replace A by A_{1} and A_{2}, respectively. Then, the hypothesis (1) of Theorem 2.1 is satisfied.

By Remark 2.2, we have the following three corollaries.
Corollary 2.3. Let
$A_{i}:=\left(\int_{0}^{\sigma(1)} G_{i}(\sigma(s), s) \Delta s\right)^{-1}$ and $\quad B_{i}:=\left(\int_{\xi}^{\omega} G_{i}(\theta, s) \Delta s\right)^{-1}, \quad(i=1,2)$.
Then, (1) has at least one positive solution if one of the following conditions holds:
$\left(\mathrm{H}_{1}\right) \max f_{0}=D_{1} \in\left[0, A_{1}\right), \max g_{0}=E_{1} \in\left[0, A_{2}\right), \min f_{\infty}=D_{2} \in$ $\left(\frac{B_{1}}{M_{1}}, \infty\right]$ and $\min g_{\infty}=E_{2} \in\left(\frac{B_{2}}{M_{2}}, \infty\right] ;$
$\left(\mathrm{H}_{2}\right) \min f_{0}=D_{3} \in\left(\frac{B_{1}}{M_{1}}, \infty\right], \min g_{0}=E_{3} \in\left(\frac{B_{2}}{M_{2}}, \infty\right], \max f_{\infty}=D_{4} \in$ $\left[0, A_{1}\right)$ and $\max g_{\infty}=E_{4} \in\left[0, A_{2}\right) ;$
$\left(\mathrm{H}_{3}\right) \max f_{0}=D_{1} \in\left[0, A_{1}\right), \min g_{0}=E_{3} \in\left(\frac{B_{2}}{M_{2}}, \infty\right], \min f_{\infty}=D_{2} \in$ $\left(\frac{B_{1}}{M_{1}}, \infty\right]$, and $\max g_{\infty}=E_{4} \in\left[0, A_{2}\right)$;
$\left(\mathrm{H}_{4}\right) \min f_{0}=D_{3} \in\left(\frac{B_{1}}{M_{1}}, \infty\right], \max g_{0}=E_{1} \in\left[0, A_{2}\right), \max f_{\infty}=D_{4} \in$ $\left[0, A_{1}\right)$ and $\min g_{\infty}=E_{2} \in\left(\frac{B_{2}}{M_{2}}, \infty\right]$.
Proof. It follows from Remark 2.2 and Theorem 2.1 that the desired result holds, immediately.

Corollary 2.4. Let A_{i} and B_{i} be defined as in Corollary 2.3. Then, (1) has at least two positive solutions \mathcal{U}_{1} and \mathcal{U}_{2} such that

$$
0<\left\|\mathcal{U}_{1}\right\|<\lambda^{*}<\left\|\mathcal{U}_{2}\right\|
$$

if the following hypotheses hold:
$\left(\mathrm{H}_{5}\right) \min f_{\infty}=C_{1}, \min f_{0}=C_{2} \in\left(\frac{B_{1}}{M_{1}}, \infty\right]$ and $\min g_{\infty}=D_{1}, \min g_{0}=$ $D_{2} \in\left(\frac{B_{2}}{M_{2}}, \infty\right] ;$
$\left(\mathrm{H}_{6}\right)$ there exists a real number $\lambda^{*}=\max \left\{\lambda_{1}^{*}, \lambda_{2}^{*}\right\}>0$ such that

$$
\begin{cases}f(t, v) \leq A_{1} \lambda_{1}^{*} & \text { on }\left[0, \lambda_{1}^{*}\right], \\ g(t, u) \leq A_{2} \lambda_{2}^{*} & \text { on }\left[0, \lambda_{2}^{*}\right] .\end{cases}
$$

Proof. It follows from Remark 2.2 that there exist four real numbers $\eta_{1,1}, \eta_{1,2}, \eta_{2,1}$ and $\eta_{1,2}$ satisfying

$$
\begin{gathered}
0<\eta_{1,1}<\lambda^{*}<\eta_{1,2}, \quad 0<\eta_{2,1}<\lambda^{*}<\eta_{2,2}, \\
\begin{cases}f(t, v) \geq B_{1} \eta_{1,1} & \text { on }[\xi, \sigma(\omega)] \times\left[M_{1} \eta_{1,1}, \eta_{1,1}\right], \\
g(t, u) \geq B_{2} \eta_{1,2} & \text { on }[\xi, \sigma(\omega)] \times\left[M_{2} \eta_{1,2}, \eta_{1,2}\right]\end{cases}
\end{gathered}
$$

and

$$
\begin{cases}f(t, v) \geq B_{1} \eta_{2,1} & \text { on }[\xi, \sigma(\omega)] \times\left[M_{1} \eta_{2,1}, \eta_{2,1}\right], \\ g(t, u) \geq B_{2} \eta_{2,2} & \text { on }[\xi, \sigma(\omega)] \times\left[M_{2} \eta_{2,2}, \eta_{2,2}\right] .\end{cases}
$$

Hence, by Theorem 2.1, we see that (1) has two positive solutions \mathcal{U}_{1} and \mathcal{U}_{2} such that

$$
\eta_{2}<\left\|\mathcal{U}_{1}\right\|<\lambda^{*}<\left\|\mathcal{U}_{2}\right\|<\eta_{1} ;
$$

where $\eta_{1}:=\min \left\{\eta_{1,2}, \eta_{2,2}\right\}$ and $\eta_{2}:=\min \left\{\eta_{1,1}, \eta_{2,1}\right\}$. Thus, we complete the proof.

Corollary 2.5. Let A_{i} and B_{i} be defined as in Corollary 2.3. Then, (1) has at least two positive solutions \mathcal{U}_{1} and \mathcal{U}_{2} such that

$$
0<\left\|\mathcal{U}_{1}\right\|<\eta^{*}<\left\|\mathcal{U}_{2}\right\|
$$

if the following hypotheses hold:
$\left(\mathrm{H}_{7}\right) \max f_{0}=D_{1}, \max f_{\infty}=D_{4} \in\left[0, A_{1}\right)$ and $\max g_{0}=E_{1}, \min g_{\infty}=$ $E_{4} \in\left[0, A_{2}\right) ;$
$\left(\mathrm{H}_{8}\right)$ there exists a real number $\eta^{*}:=\min \left\{\eta_{1}^{*}, \eta_{2}^{*}\right\}>0$ such that

$$
\begin{cases}f(t, v) \geq B_{1} \eta_{1}^{*} & \text { on }[\xi, \sigma(\omega)] \times\left[M_{1} \eta_{1}^{*}, \eta_{1}^{*}\right], \\ g(t, u) \leq B_{2} \eta_{2}^{*} & \text { on }[\xi, \sigma(\omega)] \times\left[M_{2} \eta_{2}^{*}, \eta_{2}^{*}\right] .\end{cases}
$$

Proof. It follows from Remark 2.2, there exist four real numbers $\lambda_{1,1}$, $\lambda_{1,2}, \lambda_{2,1}$ and $\lambda_{2,2}$ satisfying

$$
\begin{gathered}
0<\lambda_{1,1}<\eta^{*}<\lambda_{1,2}, \quad 0<\lambda_{2,1}<\eta^{*}<\lambda_{2,2} \\
\left\{\begin{array}{l}
f(t, v) \leq A_{1} \lambda_{1,1} \quad \text { on }[0, \sigma(1)] \times\left[0, \lambda_{1,1}\right] \\
g(t, u) \leq A_{2} \lambda_{2,1} \quad \text { on }[0, \sigma(1)] \times\left[0, \lambda_{2,1}\right]
\end{array}\right.
\end{gathered}
$$

and

$$
\left\{\begin{array}{l}
f(t, v) \leq A_{1} \lambda_{1,2} \quad \text { on }[0, \sigma(1)] \times\left[0, \lambda_{1,2}\right] \\
g(t, u) \leq A_{2} \lambda_{2,2} \quad \text { on } \quad[0, \sigma(1)] \times\left[0, \lambda_{2,2}\right]
\end{array}\right.
$$

Hence, by Theorem 2.1 that (1) has two positive solutions \mathcal{U}_{1} and \mathcal{U}_{2} such that

$$
\lambda_{1}<\left\|\mathcal{U}_{1}\right\|<\eta^{*}<\left\|\mathcal{U}_{2}\right\|<\lambda_{2}
$$

where $\lambda_{1}=\max \left\{\lambda_{1,1}, \lambda_{2,1}\right\}$ and $\lambda_{2}=\max \left\{\lambda_{1,2}, \lambda_{2,2}\right\}$. Thus, we complete the proof.

Remark 2.6. Consider the following fourth order boundary value problem
(BVP.1)

$$
\begin{cases}\left(\mathrm{E}_{3}\right) \quad & u^{\Delta \Delta \Delta \Delta}(t)+g(t, u(\sigma(t)))=0, \quad 0<t<1 \\
\left(\mathrm{BC}_{3}\right) & \left\{\begin{array}{l}
\alpha_{1} u(0)-\beta_{1} u^{\Delta}(0)=0 \\
\gamma_{1} u(\sigma(1))+\delta_{1} u^{\Delta}(\sigma(1))=0
\end{array}\right. \\
\left(\mathrm{BC}_{4}\right) & \left\{\begin{array}{l}
-\alpha_{2} u^{\Delta \Delta}(0)+\beta_{2} v^{\Delta \Delta \Delta}(0)=0 \\
-\gamma_{2} u^{\Delta \Delta}(\sigma(1))-\delta_{2} u^{\Delta \Delta \Delta}(\sigma(1))=0
\end{array}\right.\end{cases}
$$

where $\alpha_{i}, \beta_{i}, \gamma_{i}, \delta_{i}$ are nonnegative real numbers, $r_{i}:=\gamma_{i} \beta_{i}+\alpha_{i} \delta_{i}+$ $\alpha_{i} \gamma_{i} \sigma(1)>0, i=1,2$ and $g \in C_{r d}([0, \sigma(1)] \times[0, \infty),[0, \infty))$. If we let
$-u^{\Delta \Delta}(t)=v(t)$, then (2.6) can be transformed into
(BVP.2)

$$
\begin{cases}\left(\mathrm{E}_{4}\right) & u^{\Delta \Delta}(t)+v(t)=0, \quad 0<t<1 \\
\left(\mathrm{E}_{5}\right) & v^{\Delta \Delta}(t)+g(t, u(\sigma(t)))=0, \quad 0<t<1 \\
\left(\mathrm{BC}_{1}\right) & \left\{\begin{array}{l}
\alpha_{1} u(0)-\beta_{1} u^{\Delta}(0)=0 \\
\gamma_{1} u(\sigma(1))+\delta_{1} u^{\Delta}(\sigma(1))=0
\end{array}\right. \\
\left(\mathrm{BC}_{2}\right) \quad & \left\{\begin{array}{l}
\alpha_{2} v(0)-\beta_{2} v^{\Delta}(0)=0 \\
\gamma_{2} u(\sigma(1))+\delta_{2} u^{\Delta}(\sigma(1))=0
\end{array}\right.\end{cases}
$$

Thus, we can apply the above-mentioned results to study the existence of solutions of (2.6).

References

[1] R. P. Agarwal and M. Bohner, Basic calculus on time scales and some of its applications, Results Math. 35 (1999), 3-22.
[2] R. P. Agarwal, M. Bohner and P. J. Y. Wong, Positive solutions and eigenvalues of conjugate boundary value problems, Proc. Edinburgh Math. Soc. 42 (1999), 349-374.
[3] M. Bohner and A. Peterson, Dynamic Equations On Time Scales, Birkhauser, Boston, 2001.
[4] C. J. Chyan and J. Henderson, Eigenvalue problems for nonlinear differential equations on a measure chain, J. Math. Anal. Appl. 245 (2000), 547-559.
[5] L. H. Erbe and S. Hilger, Sturm theory on measure chains, Differential Equations and Dynamical Systems 1 (1993), 223-246.
[6] L. Erbe and A. Peterson, Positive solutions for a nonlinear differential equation on a measure chain, Math. Comput. Modelling 32(5-6) (2000), 571-585.
[7] L. Erbe and A. Peterson, Green's functions and comparison theorems for differential equations on measure chains, Dynam. Contin. Discrete Impuls. Systems 6 (1999), 121-137.
[8] S. Hilger, Analysis on measure chains - A unified approach to continuous and discrete calculus, Results Math. 18 (1990), 18-56.
[9] C. H. Hong and C. C Yeh, Positive solutions for eigenvalue problems on a measure chain (to appear in Nonlinear Anal. T. M. \& A.).
[10] M. A. Krasnoselskir, Positive solutions of operator equations, Noordhoff, Groningen, 1964.
[11] V. Lakshmikantham, B. Kaymakcalan and S. Sivasundaram, Dynamic Systems on Measure Chains, Kluwer Academic Publishers, Boston, 1996.
[12] W. C. Lian, C. C. Chou, C. T. Liu and F. H. Wong, Existence of solutions of nonlinear BVPs of second order differential equations on measure chains, Math. \& Comp. Mod. 34 (2001), 821-837.

CHEN-HUANG HONG
DEPARTMENT OF MATHEMATICS
NATIONAL CENTRAL UNIVERSITY
CHUNG-LI, 320 TAIWAN
REPUBLIC OF CHINA
E-mail: hongch@math.ncu.edu.tw
FU-HSIANG WONG
DEPARTMENT OF MATHEMATICS
NATIONAL TAIPEI TEACHER'S COLLEGE
134, HO-PING E. RD. SEC. 2
TAIPEI 10659, TAIWAN
REPUBLIC OF CHINA
E-mail: prowong@tomail.com.tw

CHEH-CHIH YEH
DEPARTMENT OF INFORMATION MANAGEMENT
LUNGHWA UNIVERSITY OF SCIENCE AND TECHNOLOGY
KUEISHAN TAOYUAN, 333 TAIWAN
REPUBLIC OF CHINA
(Received July 15, 2002; revised March 20, 2003)

