The variation of an additive function on a Boolean algebra

By Z. LIPECKI (Wrocław)

Abstract

The possibility of representing a positive additive function on a Boolean algebra A as the variation of an arbitrary additive function or a bounded additive function on A with values in an Abelian normed group G is investigated. In particular, it is shown that if such a representation exists, then we can find one with $G=\mathbb{R}$ or $G=\ell_{\infty}(\Gamma)$ for some Γ, respectively.

1. Introduction

Let A be a Boolean algebra, let G be an Abelian normed group, and let $\varphi: A \rightarrow G$ be additive. The variation $|\varphi|$ of φ takes values in $[0, \infty]$, is additive and $|\varphi|(0)=0$ holds, i.e., $|\varphi|$ is a quasi-measure, in our terminology. No other properties of $|\varphi|$ seem to have been recorded in the literature, even in the case where φ is bounded and G is a normed space. The purpose of this paper is to exhibit two such properties, called (G) and (F) in the sequel, and to prove that every quasi-measure ν on A which has property (G) [resp., properties (G) and (F)] can be represented as the variation of an additive [resp., bounded additive] function on A with values in $\mathbb{R}\left[\right.$ resp., $l_{\infty}(\Gamma)$ for some $\left.\Gamma\right]$; see Theorem 1 of Section 4 and Theorem 2 of Section 5 .

A similar problem for a positive measure ν on a σ-algebra of sets was solved in [11]. The methods applied there are, however, quite different

[^0]Key words and phrases: Boolean algebra, nonatomic, quasi-measure, semifinite, decomposition, Abelian normed group, additive function, variation.
from the present ones. A point in common is the idea of decomposing the function ν to be represented in the required form (see [11, Lemma 1] and Proposition 1 of Section 2 below). Moreover, the atomic structure of ν plays a role in both [11] and this paper.

The notation and terminology we need are explained in Sections 2 and 3 , which also contain some auxiliary results. The remaining material is divided into Sections 4 and 5 . The former deals with the additive case and the latter with the bounded additive case. Our approach to both cases is unified to some extent and is based on Propositions 1 and 2.

2. Preliminaries on quasi-measures

Throughout the paper A stands for a Boolean algebra with the operations of join, meet and difference denoted by \vee, \wedge and \backslash, respectively. The natural ordering of A is denoted by \leq and its minimal and maximal elements by 0 and 1 , respectively. For every $a \in A$ we denote by C_{a} the ideal in A generated by a, i.e.,

$$
C_{a}=\{b \in A: b \leq a\}
$$

We say that A is nonatomic or atomless if for every nonzero $a \in A$ there are nonzero disjoint $a_{1}, a_{2} \in A$ with $a_{1} \vee a_{2}=a$.

We call a function $\nu: A \rightarrow[0, \infty]$ a quasi-measure if it is additive and $\nu(0)=0$ holds. For the quasi-measure ν we set

$$
I_{\nu}=\{a \in A: \nu(a)<\infty\}
$$

Clearly, I_{ν} is an ideal in A. We say that ν is semifinite provided for every $a \in A$ we have

$$
\nu(a)=\sup \left\{\nu(b): b \in I_{\nu} \cap C_{a}\right\}
$$

Two properties (G) and (F) the quasi-measure ν may have will be basic for our purposes. The former is defined as follows:
(G) Given $a \in A \backslash I_{\nu}$ and $\eta>0$, there are disjoint $a_{1}, a_{2} \in A$ with $\nu\left(a_{1}\right), \nu\left(a_{2}\right)>\eta$ and $a_{1} \vee a_{2}=a$.

We note that (G) holds if ν is semifinite. In the case where $\nu(A) \subset$ $\{0, \infty\},(\mathrm{G})$ is, clearly, equivalent to the following stronger property which
has already been considered by the author (see [10, the definition of a generous quasi-measure on p. 300]):
$(\mathrm{G})^{\prime}$ Given $a \in A \backslash I_{\nu}$, there are disjoint $a_{1}, a_{2} \in A \backslash I_{\nu}$ with $a_{1} \vee a_{2}=a$. As is easily seen, (G)' means that the quotient Boolean algebra A / I_{ν} is nonatomic.
(G) and (G) ${ }^{\prime}$ are also equivalent provided A is σ-complete. Indeed, it follows from (G) that given $a \in A \backslash I_{\nu}$, we can find pairwise disjoint b_{1}, b_{2}, \ldots in A with $\nu\left(b_{i}\right)>1$ for each i. Setting $a_{1}=\bigvee_{i=1}^{\infty} b_{2 i}$ and $a_{2}=$ $a \backslash a_{1}$, we see that $(\mathrm{G})^{\prime}$ holds. If, in addition, ν is σ-additive, then (G) is further equivalent to the condition that $\nu(d)<\infty$ for every atom d of ν (see [10, Proposition 1; cf. also Example 2 therein]).

In general, (G) is strictly weaker than $(\mathrm{G})^{\prime}$, as the example of the counting quasi-measure on the algebra of finite and cofinite subsets of \mathbb{N} shows.

The latter basic property ν may have is defined as follows:
(F) There exists a constant M such that given $a \in I_{\nu}$, we can find a_{1}, \ldots, a_{n} in A with $\nu\left(a_{i}\right) \leq M$ for each i and $\bigvee_{i=1}^{n}=a$.

Roughly speaking, this means that ν is uniformly bounded on the family of its atoms which have finite ν-quasi-measure.

We shall give two simple examples to show that there is no logical dependence between properties (G) and (F), in general.

Example 1. Let $A=2^{\mathbb{N}}$ and let $\nu=\sum_{n=1}^{\infty} n \delta_{n}$, where δ_{n} denotes the Dirac measure on $2^{\mathbb{N}}$ concentrated at $\{n\}$. Clearly, ν has property (G) (in fact, even $\left.(\mathrm{G})^{\prime}\right)$. On the other hand, (F) fails, since $\nu(\{n\}) \rightarrow \infty$.

Example 2. Let $A=2^{\Gamma}$, where Γ is a nonempty set, and let $\nu=\infty \cdot \delta_{\gamma}$ for some $\gamma \in \Gamma$. Then (G), clearly, fails, while (F) holds.

The first part of the following result is contained in [9, Propositions 3.1.8 and 3.1.9], and we use the argument of [9] below.

Proposition 1. Let ν be a quasi-measure on A. Then there exist quasi-measures ν_{1} and ν_{2} on A such that
(a) ν_{1} is semifinite;
(b) $\nu_{2}(A) \subset\{0, \infty\}$;
(c) $\nu=\nu_{1}+\nu_{2}$.

If, moreover, ν has property (F) or (G) or both, then ν_{1} and ν_{2} can be chosen with those properties.

Proof. Set

$$
\nu_{1}(a)=\sup \left\{\nu(b): b \in I_{\nu} \cap C_{a}\right\}
$$

for all $a \in A$. As is easily seen, ν_{1} is a quasi-measure on A and (a) holds. Suppose ν has property (F) with some constant M. We claim that ν_{1} has property (F) with the same constant M. Indeed, fix $a \in I_{\nu_{1}}$, and take $b \in I_{\nu}$ with $b \leq a$ and

$$
\nu_{1}(a)-\nu(b) \leq M .
$$

By assumption, we can find b_{1}, \ldots, b_{n} in A with $\nu\left(b_{i}\right) \leq M$ for each i and $\bigvee_{i=1}^{n} b_{i}=b$. Thus, (F) holds for ν_{1}, M, a and $a \backslash b, b_{1}, \ldots, b_{n}$.

Set

$$
J=\left\{a \in A: \nu(b)=\nu_{1}(b) \text { for every } b \in C_{a}\right\} .
$$

Clearly, J is an ideal in A with $I_{\nu} \subset J$. Set

$$
\nu_{2}(a)= \begin{cases}0 & \text { if } a \in J, \\ \infty & \text { if } a \in A \backslash J .\end{cases}
$$

Then ν_{2} is a quasi-measure on a A and (b) and (c) hold. Suppose ν has property (G). Fix $a \in A \backslash I_{\nu_{2}}$, and take $b \in C_{a}$ with $\nu(b)>\nu_{1}(b)$. Since $\nu(b)=\infty$, there are disjoint $b_{1}, b_{2} \in A$ with

$$
\nu\left(b_{1}\right), \nu\left(b_{2}\right)>\nu_{1}(b) \quad \text { and } \quad b=b_{1} \vee b_{2} .
$$

In particular, $\nu\left(b_{i}\right)>\nu_{1}\left(b_{i}\right)$, whence $\nu_{2}\left(b_{i}\right)=\infty$ for $i=1,2$. Consequently, ν_{2} has property (G).

Remark 1. Conditions (a)-(c) of Proposition 1 do not determine ν_{1} and ν_{2} uniquely. Indeed, if ν is infinite and semifinite, the proof above yields $\nu_{1}=\nu$ and $\nu_{2}=0$. Alternatively, we could then take for ν_{2} the quasi-measure which equals 0 on I_{ν} and ∞ otherwise. On the other hand, if $\nu(A)=\{0, \infty\}$, the proof above yields $\nu_{2}=\nu$ and $\nu_{1}=0$, but we could then take for ν_{1} an arbitrary semifinite quasi-measure majorized by ν.

Remark 2. The second part of Proposition 1 can be reversed as follows. If quasi-measures ν_{1} and ν_{2} on A have property (F) [resp., property (G)], then so does $\nu_{1}+\nu_{2}$.

3. Preliminaries on group-valued additive functions

Let G be an Abelian normed group. This means, in particular, that G is equipped with a map $\|\cdot\|: G \rightarrow[0, \infty)$, the norm of G, with the following three properties: $\|x\|=0$ if and only if $x=0,\|x\|=\|-x\|$ and $\|x+y\| \leq\|x\|+\|y\|$ for all $x, y \in G$. Standard examples are \mathbb{R}, the additive group of real numbers, and its subgroup \mathbb{Q} of rational numbers, both equipped with the usual absolute value.

Every real or complex normed space is a normed group. Of special importance for our purposes is the Banach space $l_{\infty}(\Gamma)$ of bounded scalar functions on a (nonempty) set Γ, with the supremum norm $\|\cdot\|_{\infty}$.

Let $\varphi: A \rightarrow G$ be additive (i.e., a group-valued charge, as some authors say). We denote by $|\varphi|$ the variation of φ, i.e., the map from A into $[0, \infty]$ whose value at $a \in A$ equals the supremum of the sums $\sum_{i=1}^{n}\left\|\varphi\left(a_{i}\right)\right\|$, where a_{1}, \ldots, a_{n} are pairwise disjoint elements of A with $\bigvee_{i=1}^{n} a_{i}=a$ (see [4, Definition I.1.4] for the case where G is a Banach space). As is easily seen, $|\varphi|$ is a quasi-measure on A.

For $\varphi: A \rightarrow G$ we set

$$
\|\varphi\|=\sup \{\|\varphi(a)\|: a \in A\} .
$$

We say that φ is bounded if $\|\varphi\|<\infty$.
We denote by $a(A, G)$ the set of all additive $\varphi: A \rightarrow G$ and we put

$$
b a(A, G)=\{\varphi \in a(A, G):\|\varphi\|<\infty\} .
$$

Equipped with the pointwise addition, $a(A, G)$ is an Abelian group, and $b a(A, G)$ is a subgroup of $a(A, G)$. Moreover, $\|\cdot\|$ defined above is a group norm in $b a(A, G)$.

The following result will be applied jointly with Proposition 1 in Sections 4 and 5 .

Proposition 2. Let $\varphi_{1}, \varphi_{2} \in a(A, G)$, let $\left|\varphi_{1}\right|$ be semifinite and let $\left|\varphi_{2}\right|(A) \subset\{0, \infty\}$. We then have

$$
\left|\varphi_{1}+\varphi_{2}\right|=\left|\varphi_{1}\right|+\left|\varphi_{2}\right| .
$$

Proof. We only need to show that $\left|\varphi_{1}\right|(a)+\left|\varphi_{2}\right|(a) \leq\left|\varphi_{1}+\varphi_{2}\right|(a)$ for all $a \in A$. This is clear if $\left|\varphi_{2}\right|(a)=0$. Suppose $\left|\varphi_{2}\right|(a)=\infty$ and consider two cases.

1. $\left|\varphi_{1}\right|(a)<\infty$. Given pairwise disjoint a_{1}, \ldots, a_{n} in A with $\bigvee_{i=1}^{n} a_{i}=a$, we have

$$
\begin{aligned}
\left|\varphi_{1}+\varphi_{2}\right|(a) & \geq \sum_{i=1}^{n}\left\|\varphi_{1}\left(a_{i}\right)+\varphi_{2}\left(a_{i}\right)\right\| \\
& \geq \sum_{i=1}^{n}\left\|\varphi_{2}\left(a_{i}\right)\right\|-\sum_{i=1}^{n}\left\|\varphi_{1}\left(a_{i}\right)\right\| \geq \sum_{i=1}^{n}\left\|\varphi_{2}\left(a_{i}\right)\right\|-\left|\varphi_{1}\right|(a),
\end{aligned}
$$

whence $\left|\varphi_{1}+\varphi_{2}\right|(a)=\infty$.
2. $\left|\varphi_{1}\right|(a)=\infty$. If there exists $b \in C_{a}$ with $\left|\varphi_{1}\right|(b)<\infty$ and $\left|\varphi_{2}\right|(b)=\infty$, then, by Case 1 ,

$$
\left|\varphi_{1}+\varphi_{2}\right|(a) \geq\left|\varphi_{1}+\varphi_{2}\right|(b)=\infty
$$

Otherwise, $\left|\varphi_{2}\right|(b)=0$ for all $b \in C_{a}$ with $\left|\varphi_{1}\right|(b)<\infty$, and so

$$
\left|\varphi_{1}+\varphi_{2}\right|(a) \geq\left|\varphi_{1}+\varphi_{2}\right|(b)=\left|\varphi_{1}\right|(b) .
$$

The semifiniteness of $\left|\varphi_{1}\right|$ yields $\left|\varphi_{1}+\varphi_{2}\right|(a)=\infty$.

4. The variation of an arbitrary additive function

The following essentially known result will be applied in the proofs of Lemmas 2 and 3.

Lemma 1. Let A_{0} be a subring of A and let $\varphi_{0}: A_{0} \rightarrow H$, where $H=\mathbb{Q}$ or \mathbb{R}, be additive. Then there exists $\varphi \in a(A, H)$ which extends φ_{0}.

Proof. In view of the Stone representation theorem, we may assume that A is an algebra of subsets of some set Ω. Let S [resp., $\left.S_{0}\right]$ stand for the \mathbb{Q}-linear space of A-simple [resp., A_{0}-simple] functions over Ω with values in \mathbb{Q}. As is well known (cf. [2, Corollary 3.1.8]), there exists a unique \mathbb{Q}-linear operator $\Phi_{0}: S_{0} \rightarrow H$ with

$$
\Phi_{0}\left(1_{a}\right)=\varphi_{0}(a) \quad \text { for all } a \in A_{0}
$$

By a standard transfinite argument, Φ_{0} can be extended to a \mathbb{Q}-linear operator $\Phi: S \rightarrow H$. Set $\varphi(a)=\Phi\left(1_{a}\right)$ for all $a \in A$. Clearly, φ is as desired.

Remark 3. In fact, Lemma 1 holds for an arbitrary Abelian group H; cf. [3, Theorem 4 and Remark 1], where groups of simple functions over Ω with values in \mathbb{Z} are considered and the argument is based on a theorem of G. Nöbeling.

Lemma 2. If ν is a semifinite quasi-measure on A, then there exists $\varphi \in a(A, \mathbb{R})$ with $|\varphi|=\nu$.

Proof. Apply Lemma 1 to $H=\mathbb{R}, A_{0}=I_{\nu}$ and $\varphi_{0}=\nu \mid I_{\nu}$. Since I_{ν} is an ideal in A, the resulting φ satisfies $|\varphi|(a)=\nu(a)$ for all $a \in I_{\nu}$. The assertion now follows by the semifiniteness of ν.

Remark 4. It is straightforward that in Lemma 2, and so in Theorem 1 below, the group \mathbb{R} cannot be replaced by any of its proper subgroups. Indeed, choose for A and ν the Lebesgue σ-algebra of $[0,1]$ and the Lebesgue measure over $[0,1]$, respectively. Take $\varphi \in a(A, \mathbb{R})$ with $|\varphi|=\nu$. By the Hahn decomposition theorem, $\varphi(A)$ includes one of the intervals $[0,1 / 2]$ or $[-1 / 2,0]$, and so is not included in a proper subgroup of \mathbb{R}.

Lemma 3. If A is nonatomic, then there exists $\varphi \in a(A, \mathbb{Q})$ with $|\varphi|(a)=\infty$ for every nonzero $a \in A$.

Proof. We argue in two steps.
Step I. We assume that A has the additional property thay $\left|C_{a}\right|=|A|$ for every nonzero $a \in A$, i.e., A is cardinality-homogeneous in the terminology of [8, pp. 198-199]. In view of the Stone representation theorem, we may assume that A is an algebra of subsets of some set Ω. Let S stand for the \mathbb{Q}-linear space of A-measurable simple functions over Ω with values in \mathbb{Q}.

Set $\alpha=|A|$. Arrange the nonzero elements of A into a transfinite sequence $\left\{a_{\beta}: \beta<\alpha\right\}$. By the additional property of A, the dimension of

$$
\operatorname{lin}_{\mathbb{Q}}\left\{1_{b}: b \in C_{a}\right\}
$$

equals α for every nonzero $a \in A$. This allows us to define, by transfinite induction, elements b_{β} of A such that for all $\beta<\alpha$ we have
(1) $b_{\beta} \in C_{a_{\beta}}$;
(2) $1_{b_{\beta}} \notin \operatorname{lin}_{\mathbb{Q}}\left\{1_{b_{\gamma}}: \gamma<\beta\right\}$.

In view of (2), we can find $T \subset S \backslash\left\{1_{b_{\beta}}: \beta<\alpha\right\}$ so that the set

$$
\left\{1_{b_{\beta}}: \beta<\alpha\right\} \cup T
$$

is a Hamel basis for S. In consequence, there exists a (unique) \mathbb{Q}-linear functional Φ on S with

$$
\Phi\left(1_{b_{\beta}}\right)=1 \text { for all } \beta<\alpha \text { and } \Phi(t)=0 \text { for all } t \in T .
$$

Set $\varphi(a)=\Phi\left(1_{a}\right)$ for all $a \in A$. Clearly, $\varphi \in a(A, \mathbb{Q})$. For every nonzero $a \in A$ there exist nonzero pairwise disjoint c_{1}, c_{2}, \ldots in C_{a}. By (1), we can find ordinals $\beta_{1}, \beta_{2}, \cdots<\alpha$ with $b_{\beta_{i}} \in C_{c_{i}}$ for each i. We then have

$$
\sum_{i=1}^{n}\left|\varphi\left(b_{\beta_{i}}\right)\right|=n,
$$

whence $|\varphi|(a)=\infty$.
Step II. A is an arbitrary nonatomic Boolean algebra. Let D be a subset of A of nonzero pairwise disjoint elements with $\sup D=1$ and C_{d} cardinality-homogeneous for each $d \in D$ (see [8, Lemma 13.12], and note that, in view of [8, Lemma 4.9], its proof does not require the assumption that A be complete). By Step I, there exists $\varphi_{d} \in a\left(C_{d}, \mathbb{Q}\right)$ with $\left|\varphi_{d}\right|(a)=$ ∞ whenever $d \in D$ and $a \in C_{d}$ is nonzero. Denote by J the ideal in A generated by D. For every $a \in J$ set

$$
\xi(a)=\sum_{d \in D} \varphi_{d}(a \wedge d)
$$

Since $\{d \in D: a \wedge d \neq 0\}$ is finite, this definition is correct. Moreover, $\xi: J \rightarrow \mathbb{Q}$ is additive. By Lemma 1 , there exists $\varphi \in a(A, \mathbb{Q})$ which extends ξ. Now, given nonzero $a \in A$, we have $a \wedge d \neq 0$ for some $d \in D$, so that

$$
|\varphi|(a) \geq|\varphi|(a \wedge d)=\left|\varphi_{d}\right|(a \wedge d)=\infty
$$

This completes the proof.

Remark 5. In the case where A is the quotient Boolean algebra of $2^{\mathbb{N}}$ by the ideal of finite subsets of \mathbb{N}, Lemma 3 is related to the following result due to Godefroy and Talagrand ([7, Proposition 5]; see also [6, Proposition 3]): There exists $\varphi \in a\left(2^{\mathbb{N}}, \mathbb{R}\right)$ such that $\varphi(M)=0$ if and only if $M \subset \mathbb{N}$ is finite. Then $|\varphi|(M)=0$ or ∞ according as M is finite or infinite. Indeed, suppose M is infinite, and take an uncountable family \mathfrak{N} of (infinite) subsets of M with $N \cap N^{\prime}$ finite whenever $N, N^{\prime} \in \mathfrak{N}$ and $N \neq N^{\prime}$ (see, e.g., [8, p. 80]). Then there exist different N_{1}, N_{2}, \ldots in \mathfrak{N} with

$$
\inf \left\{\left|\varphi\left(N_{i}\right)\right|: i=1,2, \ldots\right\}>0
$$

Set $P_{1}=N_{1}$, and $P_{i+1}=N_{i+1} \backslash \bigcup_{j=1}^{i} N_{j}$ for $i=1,2, \ldots$. Clearly,

$$
\sup \left\{\sum_{i=1}^{n}\left|\varphi\left(P_{i}\right)\right|: n=1,2, \ldots\right\}=\infty .
$$

Hence $|\varphi|(M)=\infty$.
Note, however, that the range of φ of the Godefroy-Talagrand result has cardinality $2^{\aleph_{0}}$. Indeed, let \mathfrak{C} be a family of subsets of \mathbb{N} such that $|\mathfrak{C}|=2^{\aleph_{0}}$ and $N \subset N^{\prime}$ or $N^{\prime} \subset N$ and $N \triangle N^{\prime}$ is infinite whenever N, $N^{\prime} \in \mathfrak{C}$ are different. Clearly, φ is injective when restricted to \mathfrak{C}. (To define \mathfrak{C}, consider the sets $\{q \in \mathbb{Q}: q<\eta\}$, where $\eta \in \mathbb{R}$, and use the equipotency of \mathbb{Q} and \mathbb{N}; cf. also [12, the passage preceding Theorem 5.4].)

The implication (iii) \Longrightarrow (i) of Theorem 1 below generalizes [10, Proposition 6]. This is due to the equivalence of properties (G) and (G) ${ }^{\prime}$ under the assumption that A be σ-complete (see Section 2 above).

Theorem 1. For a quasi-measure ν on A the following three conditions are equivalent:
(i) ν has property (G);
(ii) There exist an Abelian normed group G and $\psi \in a(A, G)$ with $|\psi|=\nu$;
(iii) There exists $\varphi \in a(A, \mathbb{R})$ with $|\varphi|=\nu$.

Proof. Clearly, (iii) implies (ii), and so it is enough to show that (i) implies (iii) and (ii) implies (i).

Suppose (i) holds. We first consider the special case where $\nu(A)=$ $\{0, \infty\}$. Due to property (G), the quotient Boolean algebra A / I_{ν} is nonatomic. Denote by h the canonical homomorphism of A onto A / I_{ν}. In view
of Lemma 3, there exists $\tilde{\varphi} \in a\left(A / I_{\nu}, \mathbb{Q}\right)$ with $|\tilde{\varphi}|(h(a))=\infty$ for every a in $A \backslash I_{\nu}$. Setting $\varphi=\tilde{\varphi} \circ h$, we have $|\varphi|=|\tilde{\varphi}| \circ h$, which yields (iii). The general case follows from the special case with the help of Propositions 1 and 2 and Lemma 2.

Let ψ be as in (ii). We shall show that $|\psi|$ has property (G). Fix $a \in A$ with $|\psi|(a)=\infty$ and $\eta>0$. Set

$$
\vartheta=\sup \left\{\|\psi(b)\|: b \in C_{a}\right\} .
$$

We consider two cases.

1. $\vartheta<\infty$. Then there exist pairwise disjoint b_{1}, \ldots, b_{n} in A with

$$
\bigvee_{i=1}^{n} b_{i}=a \quad \text { and } \quad \sum_{i=1}^{n}\left\|\psi\left(b_{i}\right)\right\|>\vartheta+\eta
$$

Consequently,

$$
\sum_{i \neq j}\left\|\psi\left(b_{i}\right)\right\|>\eta, \quad \text { and so } \quad|\psi|\left(\bigvee_{i \neq j} b_{i}\right)>\eta
$$

whenever $1 \leq j \leq n$. On the other hand, $|\psi|\left(b_{j}\right)=\infty$ for some j.
2. $\vartheta=\infty$. Then there exists $a_{1} \in C_{a}$ with

$$
\left\|\psi\left(a_{1}\right)\right\|>\|\psi(a)\|+\eta
$$

It follows that

$$
\left\|\psi\left(a \backslash a_{1}\right)\right\|=\left\|\psi(a)-\psi\left(a_{1}\right)\right\| \geq\left\|\psi\left(a_{1}\right)\right\|-\|\psi(a)\|>\eta
$$

Hence $|\psi|\left(a_{1}\right),|\psi|\left(a \backslash a_{1}\right)>\eta$.
From Theorem 1 we get immediately the following corollary.
Corollary 1. If G is an Abelian normed group and $\psi \in a(A, G)$, then there exists $\varphi \in a(A, \mathbb{R})$ with $|\varphi|=|\psi|$.

5. The variation of a bounded additive function

We start with two lemmas which are analogues, in the bounded case, of Lemmas 2 and 3 of Section 4.

Lemma 4. If a semifinite quasi-measure ν on A has property (F), then there exist $E \subset A$ and $\varphi \in b a\left(A, l_{\infty}(E)\right)$ with $|\varphi|=\nu$.

Proof. Set $E=\{a \in A: \nu(A) \leq M\}$, where M is given by property (F), and

$$
\varphi(a)(e)=\nu(a \wedge e) \quad \text { for all } a \in A \text { and } e \in E
$$

Clearly, $\varphi \in a\left(A, l_{\infty}(E)\right)$ and $\|\varphi\| \leq M$. Moreover, $\|\varphi(a)\|_{\infty} \leq \nu(a)$ for all $a \in A$, whence $|\varphi| \leq \nu$. To prove the other inequality, fix $a \in I_{\nu}$. According to property (F), we choose pairwise disjoint e_{1}, \ldots, e_{n} in E with $\bigvee_{i=1}^{n} e_{i}=a$. We then have

$$
|\varphi|(a) \geq \sum_{i=1}^{n}\left\|\varphi\left(e_{i}\right)\right\|_{\infty}=\sum_{i=1}^{n} \nu\left(e_{i}\right)=\nu(a)
$$

Since ν is semifinite, this implies $|\varphi| \geq \nu$, completing the proof.
The following lemma will be given two proofs. The first is, in some sense, more explicit, while the second is more economical in the choice of Γ and slightly more elementary.

Lemma 5. If A is nonatomic, then there exist a set Γ and $\varphi \in$ $b a\left(A, l_{\infty}(\gamma)\right)$ with $|\varphi|(a)=\infty$ for all nonzero $a \in A$.

Proof. It is enough to find Γ and $\varphi \in b a\left(A, l_{\infty}(\Gamma)\right)$ with $\|\varphi(a)\|_{\infty}=1$ for all nonzero $a \in A$. This will be done in two different ways.

1. By the Stone representation theorem, we may assume that A is an algebra of subsets of some set Γ. Put $\varphi(a)=1_{a}$ for every $a \in A$.
2. Set $\Gamma=A \backslash\{0\}$ and choose for every $c \in \Gamma$ a probability quasimeasure ν_{c} on A with $\nu_{c}(c)=1$. Put $\varphi(a)(c)=\nu(a \wedge c)$ for all $a \in A$ and $c \in \Gamma$.

In connection with Proposition 3 below note that the variation of φ of Lemma 5 does not change if we replace the original norm of $l_{\infty}(\Gamma)$ by an equivalent one.

Lemma 6. Let G be an Abelian normed group, let $\varphi \in b a(A, G)$ and let $|\varphi|(1)<\infty$. If μ is a two-valued quasi-measure on A with $\mu \leq|\varphi|$, then $\mu(1) \leq\|\varphi\|$.

Proof. Fix $\varepsilon>0$ and choose pairwise disjoint a_{1}, \ldots, a_{n} in A with

$$
\bigvee_{i=1}^{n} a_{i}=1 \quad \text { and } \quad|\varphi|(1) \leq \sum_{i=1}^{n}\left\|\varphi\left(a_{i}\right)\right\|+\varepsilon
$$

For each $j=1, \ldots, n$ we then have

$$
|\varphi|(1) \leq\left\|\varphi\left(a_{j}\right)\right\|+\sum_{i \neq j}|\varphi|\left(a_{i}\right)+\varepsilon
$$

whence $|\varphi|\left(a_{j}\right) \leq\left\|\varphi\left(a_{j}\right)\right\|+\varepsilon$. Since $\mu(1)=\mu\left(a_{j}\right)$ for some j, it follows that $\mu(1) \leq\|\varphi\|+\varepsilon$. This yields the assertion.

Theorem 2. For a quasi-measure ν on A the following three conditions are equivalent:
(i) ν has properties (F) and (G);
(ii) There exist an Abelian normed group G and $\psi \in b a(A, G)$ with $|\psi|=\nu ;$
(iii) There exist a set Γ and $\varphi \in b a\left(A, l_{\infty}(\Gamma)\right)$ with $|\varphi|=\nu$.

Proof. Clearly, (iii) implies (ii). To see that (i) implies (iii), we only have to modify the proof of the corresponding implication of Theorem 1. The modification consists in appealing to Lemmas 4 and 5 in place of Lemmas 2 and 3. Moreover, we have to note that, given abstract sets Γ_{1} and Γ_{2} with $\left|\Gamma_{1}\right| \leq\left|\Gamma_{2}\right|$, we can treat $l_{\infty}\left(\Gamma_{1}\right)$ as a subspace of $l_{\infty}\left(\Gamma_{2}\right)$.

We shall complete the proof by showing that (ii) implies (i). To this end, let ψ be as in (ii). In view of Theorem $1,(i i) \Longrightarrow(i),|\psi|$ has property (G). We shall check that $|\psi|$ has property (F) with arbitrary $M>\|\psi\|$. We may restrict ourselves to the case where $|\psi|(1)<\infty$ and consider only $a=1$ 。

By the Sobczyk-Hammer decomposition theorem (see [2, Theorem 5.2.7]), there exist quasi-measures μ_{0}, μ_{1}, \ldots on A such that

$$
\sum_{i=0}^{\infty} \mu_{i}=|\psi|
$$

μ_{0} is strongly continuous (i.e., given $\varepsilon>0$, there exists c_{1}, \ldots, c_{n} in A with $\bigvee_{k=1}^{n} c_{k}=1$ and $\mu_{0}\left(c_{k}\right)<\varepsilon$ for each k) while $\mu_{i}, i=1,2, \ldots$, takes at most two values and μ_{i} and μ_{j} are linearly independent whenever $i \neq j$ and $\mu_{i}, \mu_{j} \neq 0$. Fix m with

$$
\sum_{i=m+1}^{\infty} \mu_{i}(1)<M-\|\psi\| .
$$

By [2, Proposition 5.2.2], there exist pairwise disjoint b_{1}, \ldots, b_{m} in A such that

$$
\bigvee_{j=1}^{m} b_{j}=1 \quad \text { and } \quad \mu_{j}\left(b_{j}\right)=\mu_{j}(1) \text { for each } j
$$

In view of Lemma 6, it follows that

$$
\sum_{i=1}^{\infty} \mu_{i}\left(b_{j}\right)<\mu_{j}(1)+M-\|\psi\| \leq M \text { for each } j .
$$

Set

$$
\varepsilon=M-\max \left\{\sum_{i=1}^{\infty} \mu_{i}\left(b_{j}\right): j=1, \ldots, m\right\} .
$$

Let c_{1}, \ldots, c_{n} be given according to the strong continuity of μ_{0}. We then have

$$
\bigvee_{j=1}^{m} \bigvee_{k=1}^{n} b_{j} \wedge c_{k}=1 \quad \text { and } \quad|\psi|\left(b_{j} \wedge c_{k}\right)<M \text { for all } j, k .
$$

Thus, $|\psi|$ has property (F).
From Theorem 2 we get immediately the following corollary.
Corollary 2. If G is an Abelian normed group and $\psi \in b a(A, G)$, then there exist a set Γ and $\varphi \in b a\left(A, l_{\infty}(\Gamma)\right)$ with $|\varphi|=|\psi|$.

Remark 6. Condition (iii) of Theorem 2 can be reformulated as follows:
(iii)' There exist a normed space X and $\varphi \in b a(A, X)$ with $|\varphi|=\nu$.

Indeed, given a normed space X, there exist a set Γ and a linear isometric embedding of X into $l_{\infty}(\Gamma)$ (see, e.g., [1, Proposition II.1.3]).

The appearance of $l_{\infty}(\Gamma)$ in Lemma 4 and Theorem 2 is, to some extent, necessary. Moreover, no global restriction on the cardinality of Γ in condition (iii) of Theorem 2 is possible, which is in sharp contrast with both Theorem 1 above and Theorem 2 of [11]. This is seen from our final result.

Proposition 3. Let X be a Banach space and let Γ be an infinite set. If there exists $\varphi \in b a\left(2^{\Gamma}, X\right)$ with $|\varphi|(\{\gamma\})=1$ for all $\gamma \in \Gamma$, then X contains an isomorphic copy of $l_{\infty}(\Gamma)$.

Proof. There exists a (unique) bounded linear operator $\Phi: l_{\infty}(\Gamma) \rightarrow$ X such that

$$
\Phi\left(1_{M}\right)=\varphi(M) \quad \text { for all } M \in 2^{\Gamma}
$$

(see [4, pp. 5-6]). Clearly, we have

$$
\left\|\Phi\left(1_{\{\gamma\}}\right)\right\|=\|\varphi(\{\gamma\})\|=|\varphi|(\{\gamma\})=1 \quad \text { for all } \gamma \in \Gamma .
$$

A result of Rosenthal ([13, Proposition 1.2 and Remark 1 following it $]$; see also [5, théorème]) yields a subset Γ^{\prime} of Γ such that $\left|\Gamma^{\prime}\right|=|\Gamma|$ and Φ when restricted to the closed subspace

$$
\left\{x \in l_{\infty}(\Gamma): x(\gamma)=0 \text { for all } \gamma \in \Gamma \backslash \Gamma^{\prime}\right\}
$$

of $l_{\infty}(\Gamma)$ is an isomorphism. Thus, the assertion holds.
Added in Proof. A result closely related to Theorem 1, (ii) \Longrightarrow (i), is contained in H. Weber [FN-toplogies and group-valued measures, in: Handbook of Measure Theory (E. Pap, ed.), Vol. 1, North-Holland, Amsterdam, 2002, 703-743, Proposition 2.12].

References

[1] C. Bessaga and A. Peeczyński, Selected Topics in Infinite-Dimensional Topology, PWN - Polish Scientific Publishers, Warszawa, 1975.
[2] K. P. S. Bhashara Rao and M. Bhashara Rao, Theory of Charges, A Study of Finitely Additive Measures, Academic Press, London, 1983.
[3] T. Carlson and K. Prikry, Ranges of signed measures, Period. Math. Hungar. 13 (1982), 151-155.
[4] J. Diestel and J. J. Uhl, Jr., Vector Measures, American Mathematical Society, Providence, Rhode Island, 1977.
[5] L. Drewnowski, Un théorème sur les opérateurs de $l_{\infty}(\Gamma)$, C. R. Acad. Sci. Paris Sér. A-B 281 (1975), A967-A969.
[6] L. Drewnowski and Z. Lipecki, On some dense subspaces of topological linear spaces, II, Comment. Math. Prace Mat. 28 (1989), 175-188.
[7] G. Godefroy and M. Talagrand, Filtres et mesures simplement additives sur N, Bull. Sci. Math. (2) 101 (1977), 283-286.
[8] S. Koppelberg, Handbook of Boolean Algebras, Vol. 1, North-Holland, Amsterdam, 1989.
[9] J. Lembcke and H. Weber, Decomposition of group-valued and [$0, \infty$]-valued measures on Boolean rings, in: Measure Theory, Proc. Conf. Oberwolfach, 1990, Rend. Circ. Mat. Palermo (2) Suppl. No. 28 (1992)(cf. MR 1993, Author Index A-L, p. 707), 87-116.
[10] Z. Lipecki, Sequences of generous and nonatomic quasi-measures on Boolean algebras, Acta Math. Hungar. 92 (2001), 299-310.
[11] Z. Lipecki, Characteristic properties of the variation of a vector measure, Acta Sci. Math. (Szeged) 69 (2003), 57-66.
[12] J. D. Monk, Cardinal Functions on Boolean Algebras, Birkhäuser Verlag, Basel, 1990.
[13] H. P. Rosenthal, On relatively disjoint families of measures, with some applications to Banach space theory, Studia Math. 37 (1970), 13-36.

ZBIGNIEW LIPECKI
INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES
WROCEAW BRANCH
KOPERNIKA 18
51-617 WROCEAW
POLAND
E-mail: lipecki@impan.pan.wroc.pl
(Received August 12, 2002; revised November 27, 2002)

[^0]: Mathematics Subject Classification: 28A10, 28A12, 28B10.

