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Locally conformal manifolds endowed
with a skew-symmetric vector field

By FILIP DEFEVER (Oostende) and RADU ROSCA (Paris)

Abstract. Geometrical and structural properties are proved for locally con-
formal almost cosymplectic manifolds which are structured by the presence of a
skew-symmetric conformal vector field.

1. Introduction

Let M(Ω, φ, η, ξ, g) be a (2m + 1)-dimensional generalised Kenmotsu
manifold (or K-manifold) [15]. A general discussion of the geometrical
structures which appear here and in the sequel can be found in the stan-
dard references [17] and [22] which also contain more background informa-
tion; for more specific reading and additional references, see in particular
also [12]. For the convenience of the reader, we remind in an appendix the
complete list of axioms for the generalised Kenmotsu manifolds we con-
sider, together with some properties which will be called upon throughout
the paper.

In the case under consideration, the tensor fields satisfy the following
relations:

φ2 = − Id+η ⊗ ξ, φξ = 0, η ◦ φ = 0, η(ξ) = 1. (1)
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We also assume that the Reeb vector field ξ satisfies the equations:

∇ξ = −dp + η ⊗ ξ, ∇2ξ = η ∧ dp, (2)

where dp stands for the soldering form dp =
∑2m

A=0 ωA ⊗ eA, which is the
canonical vector valued 1-form of M . Moreover, we also note the following
relation

g(φZ, φZ ′) = g(Z, Z ′)− η(Z)η(Z ′), Z, Z ′ ∈ Ξ(M). (3)

By (2) one has that
∇Zξ = −Z + η(Z)ξ, (4)

and one finds that
div ξ = −2m = const. (5)

In general, if O = vect{ ξ, eA | A = 1, . . . , 2m} is an adapted vectorial
frame over M and O∗ = covect{ η, ωA | A = 1, . . . , 2m} its associated
coframe, we recall the general definition

div Z = Tr (∇Z) =
2m∑

A=1

ωA(∇eAZ) + η(∇ξZ).

Hence, by (5) one may say that the Reeb vector field ξ defines a homothetie.
Next, denote by θA

B (A,B ∈ {0, 1, . . . , 2m}) the connection forms. One
finds

ωA = θ0
A, (1 ≤ A ≤ 2m), (6)

and, consequently,

dη = 0, ∇ξξ = 0, Lξη = 0. (7)

This shows that M is endowed with an almost contact structure and from
the third equation of (7), it follows according to [10] that η is a Pfaffian
transformation [6]. Moreover, one further finds that

∇2ξ = η ∧ dp =⇒ − 1
2m

Ric(ξ) = 1, (8)

and
Lξ∇ξ = 0. (9)
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This proves that ξ is both an exterior concurrent vector field and an affine
vector field. Since by virtue of (4) one also has that

〈∇Zξ, Z ′〉 = 〈∇Z′ξ, Z〉, Z, Z ′ ∈ Ξ(M),

one sees that ξ is an Okumura gradient [14].
It is well known that various special types of vector fields play a dis-

tinguished role in differential geometry, as they often induce remarkable
geometric properties on the base manifold. The skew symmetric confor-
mal vector fields [19] are one kind of such peculiar vector fields. Skew
symmetric conformal vector fields have been studied and their geomet-
ric consequences investigated for several special manifolds, e.g. on some
almost cosymplectic, para Sasakian, and para co-Kaehlerian manifolds,
amongst others. In the present paper we continue this line of investigation
and study the geometrical and structural consequences of the presence of
a skew symmetric conformal vector field on a generalised Kenmotsu man-
ifold.

For a comprehensive survey of related results in this context, and a
summary of the general theory of skew symmetric conformal vector fields,
we refer to [12]. In particular, [12] also contains a discussion of the exis-
tence theory for skew symmetric conformal vector fields, where it is argued
that the existence of such a vector field is determined by an exterior dif-
ferential system in involution, depending on 2 arbitrary functions of one
argument.

Thus, in Section 3 we consider a skew symmetric conformal vector
field C having −ξ as generative vector field, therefore satisfying

∇C = fdp + ξ ∧ C, f ∈ Λ0M. (10)

In the sequel we agree to call C and f the principal vector field and the
principal scalar respectively. We show that C, φC, and ξ define an almost
commutative triple. It is proved that C is a 2-exterior concurrent vector
and C, φC, and ξ define a 3-foliation. Various properties involving the Lie
derivatives of the fundamental 2-form Ω and of C, φC, and ξ are discussed.
Finally we also derive some properties of the hypersurface Mξ normal to ξ.
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2. Preliminaries

Let (M, g) be a Riemannian C∞-manifold and let ∇ be the covari-
ant differential operator defined with respect to the metric tensor g. We
assume in the sequel that M is oriented and that ∇ is the Levi–Civita con-
nection. Let ΓTM = Ξ(M) be the set of sections of the tangent bundle
TM , and

[ : TM
[→ T ∗M and ] : TM

]← T ∗M

the classical isomorphisms defined by g (i.e. [ is the index lowering oper-
ator, and ] is the index raising operator).

Following [17], we denote by

Aq(M, TM) = Γ Hom(ΛqTM,TM),

the set of vector valued q-forms (q < dimM), and we write for the covariant
derivative operator with respect to ∇

d∇ : Aq(M, TM) → Aq+1(M,TM). (11)

It should be noticed that in general d∇2
= d∇◦d∇ 6= 0, unlike d2 = d◦d = 0.

We also note that througout the paper the term∇2Z is defined as d∇(∇Z),
for any vector field Z ∈ Ξ(M), thus in particular also for the vector fields
C and ξ. We denote by dp ∈ A1(M, TM) the canonical vector valued
1-form of M , which is also called the soldering form of M [6]. Since ∇ is
symmetric one has that d∇(dp) = 0.

Let O = vect{eA | A = 0, . . . , 2m} be a local field of adapted vectorial
frames over M and let O∗ = covect{ωA | A = 0, . . . , 2m} be its associated
coframe. If we put e0 = ξ and ω0 = η, then the soldering form dp is
expressed by

dp =
2m∑

A=0

ωA ⊗ eA = η ⊗ ξ +
2m∑

A=1

ωA ⊗ eA,

and we recall that E. Cartan’s structure equations can be written as

∇eA =
2m∑

B=0

θB
A ⊗ eB = ωA ⊗ ξ +

2m∑

B=1

θB
A ⊗ eB, (12)
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dωA = −
2m∑

B=0

θA
B ∧ ωB = −η ∧ ωA −

2m∑

B=1

θA
B ∧ ωB, (13)

dθA
B = −

2m∑

C=0

θC
B ∧ θA

C + ΘA
B. (14)

In the above equations θ (respectively Θ) are the local connection forms
in the tangent bundle TM (respectively the curvature 2-forms on M).

3. The principal vector field

First, one calculates from (10), and making use of (2) and (12)–(14),
that 




dCA +
2m∑

B=1

CBθA
B = (f + C0)ωA − CAη,

dC0 = (f + C0)η − C0η.

(15)

Consequently, one has that

dC0 = fη = LCη, (16)

Now, in general, a vector field V satisfying

∇V = λdp− v ⊗ V, (17)

for some λ ∈ C∞M , and with v = V [, is called a torse forming vactor field
[21]. Under these conditions, a vector field T whose covariant derivative
satisfies

∇T = fdp + T ∧ V, (18)

for some f ∈ C∞M , is called a skew symmetric conformal Killing vector
field [12].

In the case under consideration, we observe that the first equation of
(2) realizes (17) for V = −ξ and λ = −1, and equation (10) agrees with
(18) for T = C and V = −ξ.
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In general, having a torse forming vector field V and a skew symmetric
conformal Killing vector field T with generative V , it can be calculated
[12] that

∇2V = d∇(∇V ) = (dλ + λv) ∧ dp, (19)

∇2T = d∇(∇T ) = (df − fv + λα) ∧ dp, (20)

where α = T [. This shows that both T and V are exterior concurrent
vector fields [16]. In the general theory of exterior recurrent vector fields,
it is shown [16] that the relations (19) and (20) imply that

dλ + λv = cv, (21)

df − fv + λα = cα, (22)

for some constant c.
In the present case, where λ = −1, it follows from (21) that c = λ.

Consequently, (22) reduces to

df − fv = 0. (23)

For v = (−ξ)[ = −η, (23) turns into

df + fη = 0, (24)

where η is exact.
Setting ‖C‖2 := 2l, one derives from (15) and (24) that

dl = (f + C0)C[ − 2lη, (25)

and by exterior differentiation, one gets also that

dC[ = −2η ∧ C[. (26)

This shows that the Pfaffian C[ is exterior recurrent by exterior differen-
tiation, or also d2ηC[ = 0 (see [4]).

Next, one finds by (1) that

∇φC = (f + C0)φdp− ξ ∧ φC, (27)
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and by the Lie bracket one gets by (2), (10) and (27) that

[C, ξ] = −fξ, [φC, ξ] = 0, [φC, C] = 0. (28)

It is well known [3] that the first commutator proves that ξ admits an infin-
itesimal transformation with generator C. Since moreover φC commutes
with C and ξ, the 3 expressions in (28) together may be abbreviated by
saying that ξ, C, and φC define an almost commutative triple (see e.g. [5]
[11] [20]). Denoting by DC = {ξ, C, φC} the 3-distribution defined by ξ,
C, and φC, it follows from the above that, if the vector fields are linearly
independent, DC defines a 3-foliation.

Remark 3.1. By (16) and (24) one has that

LCη = d(iCη) = dC0 = fη = −df,

which shows that η is a relatively integral invariant of C [1].

By (10) one now calculates that

〈∇ZC, Z ′〉+ 〈∇Z′C,Z〉 = 2f〈Z, Z ′〉, (29)

which expresses that C is a conformal vector field. Operating now on (10)
by the exterior covariant operator d∇, and taking into account (26) and
(24), one gets

∇2C = C[ ∧ dp. (30)

This shows that C is an exterior concurrent vector field [18] (see also [16]).
Accordingly one has

∇2C = d∇(∇C) = − 1
2m

RicC[ ∧ dp =⇒ Ric(C) = −2m. (31)

Next we agree to call Cf = fC the associated vector field of C. Operating
successively by the operator d∇ and taking into account (24) and (26),
yields

∇3Cf = (η ∧ C[) ∧ dp. (32)

Then by reference to [16] one may say that the vector field Cf is 2-exterior
concurrent.

We have thus proved the following
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Theorem 3.1. Let M(Ω, φ, η, ξ, g) be a (2m + 1)-dimensional gener-

alised Kenmotsu manifold with Reeb vector field ξ (resp. covector ξ[ = η)

and let C be the principal vector field on M . One then has the following

properties:

(i) η is a relatively integral invariant of C;

(ii) ξ, C, and φC define an almost commutative triple;

(iii) the Pfaffian C[ is exterior recurrent and has −2η as recurrence form;

(iv) the associated vector field Cf is 2-exterior concurrent and satisfies

∇3Cf = (η ∧ C[) ∧ dp.

4. The fundamental 2-form

In this section we discuss some properties of the local cosymplectic
form Ω, therefore using the Lie derivative LZ = iZd + diZ , Z ∈ Ξ(M).

The fundamental 2-form Ω on M can be expressed as,

Ω =
m∑

i=1

ωi ∧ ωi∗ , i∗ = i + m. (33)

Exterior derivation of (33), and replacing dωi end dωi∗ using (13), yields

dΩ =
m∑

i=1

(
− η ∧ ωi −

2m∑

B=1

θi
B ∧ ωB

)
∧ ωi∗

−
m∑

i=1

ωi ∧
(
− η ∧ ωi∗ −

2m∑

B=1

θi∗
B ∧ ωB

)
.

(34)

Taking into account the Kähler relations

θi
j = θi∗

j∗ , θi∗
j = θj∗

i , (35)

it follows from (34) that
dΩ = −2η ∧ Ω. (36)

This shows that the pairing (Ω, η) defines a locally conformal cosymplectic
structure.
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Taking the Lie derivative of (33) w.r.t. ξ gives

LξΩ =
m∑

i=1

(
− ωi −

2m∑

B=1

θi
B(ξ)ωB

)
∧ ωi∗

+
m∑

i=1

ωi ∧
(
− ωi∗ −

2m∑

B=1

θi∗
B (ξ)ωB

)
.

(37)

Invoking again de Kähler relations (35), one finds from (37) that

LξΩ = −2Ω, (38)

which shows that ξ defines an infinitesimal conformal transformation of Ω.
On the other hand, for (φC)[ one finds after some calculation

d(φC)[ = (f + C0)Ω− 2η ∧ (φC)[, (39)

and by (39) one gets that

LCΩ = (f − C0)Ω. (40)

Hence, similar as ξ, the principal vector field C also defines an infinitesimal
conformal transformation of Ω.

Finally, one derives by (26) that

LφCΩ = 0, (41)

which proves that Ω is an invariant of φC (see also [9] and [1]).
Moreover, denote by L Weyl’s operator of type (1.1) on forms

(see e.g. [7])
Lu = u ∧ Ω, u ∈ Λ1M.

Then, setting
(C[)q = C[ ∧ Ωq,

a calculation on basis of (36) and (26) yields

d(C[)q = 2(1 + q)η ∧ (C[)q.

Summarizing, we can formulate the following

Theorem 4.1. Regarding the cosymplectic structure defined by Ω we

have the following properties:
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(i) ξ defines an infinitesimal conformal transformation of Ω, i.e.

LξΩ = −2Ω;

(ii) C defines an infinitesimal conformal transformation of Ω, i.e.

LCΩ = (f − C0)Ω;

(iii) Ω is an invariant of φC, i.e.

LφCΩ = 0.

Moreover, in the case under consideration, also the following expression

holds

d(C[)q = 2(1 + q)η ∧ (C[)q.

5. Normal hypersurfaces

In view of (7) and (2), the 1-codimensional foliation Mξ (perpendicular
to ξ) is totally umbilical (with principal curvature 1) and the 1-dimensional
foliation in the direction of ξ is totally geodesic. As the mean curvature
vector ξ of the foliation Mξ is parallel automatically, the two foliations
induce locally a warped product structure on M . Since

dη = 0, (42)

we discuss in the present section some properties of the hypersurface M> =
Mξ defined by (42).

Recall that the Weingarten map

A : Tp(Mξ) → Tp(Mξ), (∀p ∈ Mξ),

is a linear and self-adjoint application. Then, if Z> is any horizontal vector
field, one gets by (42) that

AZ> = ∇Z>ξ = −Z>. (43)

This shows that Z> is a principal vector field of Mξ.



Locally conformal manifolds endowed. . . 533

Recall that II = 〈dp,∇ξ〉 and III = 〈∇ξ,∇ξ〉 denote the second and
the third fundamental forms associated with the immersion

x : Mξ → M.

By (2) one finds that

II = g>, and III = g>, (44)

where g> means the horizontal component of g. Hence we may conclude
that the immersion x : Mξ → M is horizontally umbilical and has 2m
principal curvatures equal to 1.

By reference to [13] the expression for III proves that the Gauss map
is conformal, and it can also be seen that Mξ is Einsteinian. On the other
hand, since obviously the mean curvature field ξ is nowhere zero, then
by reference to [2], it follows that the product submanifold Mξ × Mξ in
M × M is a U-submanifold, which is a submanifold on which the allied
mean curvature vanishes.

We may summarize the above in the following

Theorem 5.1. Let x : Mξ → M be the immersion of the hypersurface

normal to ξ, then

(i) the Gauss map associated with the immersion x : Mξ → M is confor-

mal,

(ii) the product submanifold Mξ ×Mξ in M ×M is a U-submanifold.
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Appendix: Kenmotsu manifolds

In the present paper (2m+1)-dimensional generalised Kenmotsu man-
ifolds M(φ,Ω, η, ξ, g) or K-manifolds [8] [15] are considered, for which the
quintuple of structure tensor fields satisfy the following set of axioms:





φ2 = − Id+η ⊗ ξ, η(ξ) = 1, φξ = 0, η ◦ φ = 0,

g(φZ, φZ ′) = g(Z, Z ′)− η(Z)η(Z ′),

η(Z) = g(ξ, Z), Z, Z ′ ∈ Ξ(M),

Ω(Z,Z ′) = g(φZ, Z ′), with iξΩ = 0, and Ωm ∧ η 6= 0,

(∇φ)Z = η(Z)φdp + (φZ)[ ⊗ ξ, ⇐⇒
(∇Z′φ)Z = η(Z)φZ ′ + g(φZ, Z ′)ξ,

∇ξ = −dp + η ⊗ ξ, ⇐⇒ ∇Zξ = −Z + η(Z)ξ,

(45)

together with
dη = 0, and dΩ = −2η ∧ Ω. (46)

One may remark that the equations (46) show that the pairing (η, Ω) of
the covector of Reeb η and the structure 2-form Ω of rank 2m defines a
conformal cosymplectic structure on M . We also observe that the structure
tensor field φ is skew-symmetric and provides a field of endomorphisms of
the tangent spaces of M .

We recall that it has been proved [16] that the Reeb vector field ξ

is always exterior concurrent with +1 as conformal scalar, and therefore
satisfies

∇2ξ = d∇(∇ξ) = η ∧ dp, (47)
which implies that

R(ξ, Z) = −2mη(Z), =⇒ Ric(ξ) = −2m. (48)
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