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Property (β) and orthogonal convexities in some class
of Köthe sequence spaces

By PAWEÃL KOLWICZ (Poznań)

Abstract. First we show that property (β) of Rolewicz ([27]) is equiva-
lent to orthogonal uniform convexity (UC⊥) ([15]) in symmetric Köthe sequence
spaces. To discover precisely the non-symmetric case, we prove criteria for prop-
erty (β), strict and uniform orthogonal convexity (

(
SC⊥

)
,
(
UC⊥

)
) in Musielak–

Orlicz sequence spaces, which essentially extend results from [5], [16] and cor-
respond to respective criteria for strict and uniform convexity ([12], [13]). As a
corollary we conclude that in non-symmetric Köthe sequence spaces the property(
UC⊥

)
is really stronger than three properties

(
SC⊥

)
, (β) and uniform mono-

tonicity considered together. The case of Nakano spaces is also discussed.

1. Introduction

Throughout this paper (X, ‖ · ‖X) is a real Banach space. As usual,
S(X) and B(X) stand for the unit sphere and the unit ball of X, respec-
tively. For any subset A of X, we denote by conv(A) the convex hull
of A.

The Banach space (X, ‖ ·‖X) is strictly convex (X ∈ (SC)) if for every
x, y ∈ X with x 6= y and ‖x‖X = ‖y‖X = 1 we have ‖x + y‖X < 2. X is
said to be uniformly convex (X ∈ (UC) for short), if for each ε > 0 there
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property (β), orthogonal uniform convexity, orthogonal strict convexity, uniform mono-
tonicity, order continuity.



588 PaweÃl Kolwicz

is δ > 0 such that for any x, y ∈ S(X) the inequality ‖x− y‖X ≥ ε implies
‖x + y‖X ≤ 2(1− δ) (see [3]).

Define for any x /∈ B(X) the drop D(x,B(X)) determined by x by
D(x,B(X)) = conv({x} ∪B(X)).

Recall that for any subset C of X, the Kuratowski measure of non-
compactness of C is the infimum α(C) of those ε > 0 for which there is a
covering of C by a finite number of sets of diameter less then ε.

Rolewicz in [26] has proved that X ∈ (UC) iff for any ε > 0 there
exists δ > 0 such that 1 < ‖x‖X < 1 + δ implies diam(D(x,B(X)) \
B(X)) < ε. In connection with this he has introduced in [27] the following
property.

A Banach space X has the property (β) (X ∈ (β)) if for any ε > 0
there exists δ > 0 such that α(D(x,B(X)) \ B(X)) < ε whenever 1 <

‖x‖X < 1 + δ.
We say that a sequence {xn} ⊂ X is ε-separated for some ε > 0 if

sep{xn} = inf{‖xn − xm‖X : n 6= m} > ε.

Although the primary definition of property (β) uses the Kuratowski mea-
sure of noncompactness, more convenient in our considerations is the fol-
lowing equivalent condition proved by Kutzarova in [21].

Theorem 1. A Banach space X has property (β) if and only if for

every ε > 0 there exists δ > 0 such that for each element x ∈ B(X) and

each sequence (xn) in B(X) with sep{xn} ≥ ε there is an index k for which

‖x + xk‖X ≤ 2(1− δ).

A Banach space is nearly uniformly convex (X ∈ (NUC)) if for every
ε > 0 there exists δ > 0 such that for every sequence {xn} in B(X) with
sep{xn} > ε, we have conv({xn})∩ (1− δ)B(X) 6= φ. Rolewicz proved the
following implications (UC) ⇒ (β) ⇒ (NUC) (see [27]). Moreover, the
class of Banach spaces with an equivalent norm with property (β) coincides
neither with that of superreflexive spaces (see [20] and [23]) nor with the
class of nearly uniformly convexifiable spaces (see [19]).

Denote by N , R and R+ the sets of natural, real and non-negative
real numbers, respectively. Let (N , 2N ,m) be the counting measure space
and l0 = l0(m) the linear space of all real sequences.
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Let E = (E,≤, ‖ · ‖E) be a Banach sequence lattice over the measure
space (N , 2N ,m), that is E is a Banach space being a subspace of l0 en-
dowed with the natural coordinatewise semi-order relation, and E satisfies
the conditions:

(i) if x ∈ E, y ∈ l0, |y| ≤ |x|, i.e. |y(i)| ≤ |x(i)| for every i ∈ N , then
y ∈ E and ‖y‖E ≤ ‖x‖E ,

(ii) there exists a sequence x in E that is positive on the whole N (see
[14] and [22]).
Banach sequence lattices are often called Köthe sequence spaces. More
generally, if we consider a Banach function lattice E over the measure
space (T, Σ, µ) with µ being σ-finite and complete, then we will say
that E is a Köthe space. If we assume additionally that µ is non-
atomic, then E will be called the Köthe function space.

A Köthe space E is said to be strictly monotone (E ∈ (SM)) if for
every 0 ≤ y ≤ x with y 6= x we have ‖y‖E < ‖x‖E . We say that a Köthe
space E is uniformly monotone (E ∈ (UM)) if for every q ∈ (0, 1) there
exists p ∈ (0, 1) such that for all 0 ≤ y ≤ x satisfying ‖x‖E = 1 and
‖y‖E ≥ q we have ‖x− y‖E ≤ 1− p (see [1], [9]).

A Köthe space E is called order continuous (E ∈ (OC)) if for every
x ∈ E and each sequence (xm) ∈ E such that 0 ← xm ≤ |x| we have
‖xm‖E → 0 (see [14] and [22]).

The notation r∧ s = min{r, s}, r∨ s = max{r, s} for any r, s ∈ R and
A÷B = (A \B) ∪ (B \A) for every A,B ∈ Σ will be used.

It appears that a geometric property called orthogonal uniform convex-
ity is strictly connected with property (β), uniform convexity and uniform
monotonicity. It was introduced in [15].

Definition 1. A Köthe space (E, ‖ · ‖E) is orthogonally uniformly con-
vex (E ∈ (UC⊥)), if for each ε > 0 there is δ = δ(ε) > 0 such that
for any x, y ∈ B(E) the inequality ‖xχAxy‖E ∨ ‖yχAxy‖E ≥ ε implies
‖x + y‖E ≤ 2(1− δ), where Axy = suppx÷ supp y.

Obviously, if E ∈ (UC), then E ∈ (
UC⊥)

. It is known that uniformly
convex Köthe space is uniformly monotone (see [9]). Moreover,

Lemma 1 (Lemma 3 in [15]). Let E be a Köthe space. If E ∈ (
UC⊥)

,

then E ∈ (UM) and the converse is not true.
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In the sequel we will need the following notion.

Definition 2. A Köthe space (E, ‖ · ‖E) is orthogonally strictly con-
vex

(
E ∈ (

SC⊥))
, if for any x, y ∈ B(E) the inequality ‖xχAxy‖E ∨

‖yχAxy‖E > 0 implies ‖(x + y)/2‖E < 1, where Axy = suppx÷ supp y.

It is clear that if E ∈ (SC), then E ∈ (
SC⊥)

. On the other hand,
every strictly convex Köthe space is strictly monotone (see [9]). Further-
more,

Lemma 2. Let E be a Köthe space. If E ∈ (
SC⊥)

, then E ∈ (SM).

The proof is analogous as that of Lemma 1, but we apply Theorem 8
from [9] instead of Theorem 6(iii) from [9].

It is known that in the case of Köthe sequence spaces the implications

(UC) ⇒
(
UC⊥

)
⇒ (β) (1)

hold and the converse of any of them is not true in general (see [16]).
Furthermore, the implications

(UC) ⇒ (β) ⇒
(
UC⊥

)
(2)

are true in every Köthe function space and the second can not be reversed
(see [15], [16] and [27]). Notice that property (β) and orthogonal uniform
convexity change places in implications (1) and (2).

It is known that the second of implications (1) can be reversed in Orlicz
sequence spaces (see [16]). We extend that result to the case of symmet-
ric Köthe sequence spaces (Theorem 3). On the other hand, property
(β) does not even imply strict monotonicity in a non-symmetric Köthe
sequence space (Example 1). Note that we have three natural geometric
properties weaker than orthogonal uniform convexity in Köthe sequence
spaces, namely: property (β), uniform monotonicity and orthogonal strict
convexity. Then, it is natural to ask the following question

Question: Does uniformly monotone, orthogonally strictly convex non-
symmetric Köthe sequence space with property (β) need to be ortho-
gonally uniformly convex?

We prove that the answer is negative in general by finding criteria for
property (β), orthogonal strict convexity and orthogonal uniform convexity
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in Musielak–Orlicz sequence spaces. However, applying in particular these
results for Nakano spaces we will see that the answer may be positive.

We say that properties (P1) and (P2) are not comparable, if the sets of
spaces having properties (P1) and (P2) are not included one into another.
Notice that property (β) and uniform monotonicity are not comparable
in general (it is enough to take l1 and the space Y from Example 1).
However, it follows from the results given in [11], [27], [28] that property
(β) implies uniform monotonicity in symmetric Köthe sequence spaces (see
also Corollary 1). Furthermore, from our results we conclude that each two
of three properties (β), (UM),

(
SC⊥)

are not comparable in Musielak–
Orlicz sequence spaces.

It is worth mentioning that orthogonal uniform convexity plays an
important role in studying property (β) in Köthe–Bochner spaces (see [10]
and [17]).

2. Results

2.1. Köthe sequence spaces

Theorem 2 (Theorem 2 in [16]). Every orthogonally uniformly con-

vex Köthe sequence space has property (β).

Remark 1. Note that if dimE < ∞, then E ∈ (β). Hence the thesis of
Theorem 2 is non-trivial for infinite dimensional Köthe sequence spaces.
Moreover, the converse of Theorem 2 is not true as the following example
shows.

Example 1. The following example is due to Day (see [6]). For i =
1, 2, . . . , let Xi denote Ri with the norm ‖(x1, x2, . . . , xi)‖i = sup1≤j≤i |xj |.
Then define

Y =

{
y = (yi) : yi ∈ Xi for every i = 1, 2, . . . and

∞∑

i=1

‖yi‖2
i < ∞

}

equipped with the norm ‖y‖ =
(∑∞

i=1 ‖yi‖2
i

)1/2. By Proposition 1 from
[20] we conclude that Y ∈ (β). However, Y /∈ (SM), whence Y /∈ (

UC⊥)
,

by Lemma 1.
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It follows from Theorem 2 and Example 1 that property
(
UC⊥)

is
essentially stronger than property (β) in Köthe sequence spaces. Notice
that the space Y in Example 1 is not symmetric. However, orthogonal
uniform convexity and property (β) coincide in Orlicz sequence spaces
(see [16]). It appears that this equivalence can be extended to the case of
symmetric Köthe sequence spaces.

Recall that E is a symmetric Köthe sequence space if for any permu-
tation (nk) of the set N we have x̃ = {x(nk)}∞k=1 ∈ E and ‖x‖E = ‖x̃‖E .

Theorem 3. Let E be a symmetric Köthe sequence space. Then E

is orthogonally uniformly convex if and only if E has property (β).

Proof. The necessity is clear by Theorem 2. Suppose that E ∈
(β). Let ε > 0. Take x, y ∈ B(E) such that ‖xχA‖E ∨ ‖yχA‖E ≥ ε,
where A = suppx÷ supp y. Applying Theorem 1 take δ1 = δ(ε/2). Since
(β) ⇒ (NUC) (see [27]), (NUC) ⇒ (KK) (see [11], also for the de-
finition of the Kadec–Klee property (KK)) and (KK) ⇒ (OC) in any
Banach function lattice (see [8]), we get (β) ⇒ (OC). It is known that
a Köthe sequence space is order continuous iff it is absolutely continuous,
i.e. for every x ∈ E we have limn→∞ ‖x − x(n)‖E = 0, where x(n) =
(x(1), x(2), . . . , x(n), 0, 0, . . . ) (see [4]). Consequently there exist subsets
B1, B2 of N with cardBi < ∞ for i = 1, 2 such that

‖xχN\B1
‖E ∨ ‖yχN\B2

‖E < ε/2 ∧ δ1/2. (3)

Define x1 = xχB1 and y1 = yχB2 . Let A1 = suppx1 ÷ supp y1. We claim
that

‖x1χA1‖E ∨ ‖y1χA1‖E ≥ ε/2. (4)

Indeed, if ‖xχA‖E ≥ ε, then, by inequality (3), we get

ε ≤ ‖xχA‖E ≤ ‖xχA∩B1‖E + ‖xχA\B1
‖E

≤ ‖xχA∩B1‖E + ε/2 ≤ ‖x1χA1‖E + ε/2.

If ‖yχA‖E ≥ ε, then, analogously, we get ‖y1χA1‖E ≥ ε/2. Thus the claim
is proved. Without loss of generality we assume that ‖x1χA1‖E ≥ ε/2,
since otherwise the proof is analogous. Then

‖x1χA11‖E ≥ ε/2, (5)
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where A11 = suppx1\ supp y1. Denote N1 = N\(suppx1 ∪ supp y1). Then
cardN1 = ∞. Hence there exists a sequence (En)∞n=1 in N1 of pairwise
disjoint sets such that cardEn = cardA11 for every n ∈ N . Denote

A11 = {i1, i2, . . . , il} and En = {jn
1 , jn

2 , . . . , jn
l } for every n ∈ N ,

where l = cardA11. For every n ∈ N define

un(i) =





x1(ik) if i ∈ En, i = jn
k , k = 1, 2, . . . , l

0 if i /∈ En

and

zn = x1χB1\A11
+ un.

Since E is symmetric, so ‖zn‖E = ‖x1‖E for each n ∈ N . Then zn ∈ B(E)
for every n ∈ N . Similarly, ‖un‖E ≥ ε/2 for every n ∈ N , by (5). Hence
sep{zn}E ≥ ε/2. Thus, by Theorem 1, it follows that ‖y1 + zn0‖E ≤
2(1 − δ1) for some n0 ∈ N . Applying again the symmetry of E we note
‖x1 + y1‖E = ‖y1 + zn‖E for any n ∈ N . Thus, by inequality (3), we get

‖x + y‖E ≤ ‖x1 + y1‖E + δ1 = ‖y1 + zn0‖E + δ1 ≤ 2− δ1. ¤

Remark 2. Note that Theorem 3 gives a very useful tool to check
whether a symmetric Köthe sequence space has property (β). Indeed, it is
much easier to check if a Köthe sequence space is orthogonally uniformly
convex than if it has property (β). It is enough to see Definition 1 and
Theorem 1. We realize also this fact if we compare the proofs of Theorem 1
from [5] (on property (β)) and Theorem 3 from [16] (on property

(
UC⊥)

)
concerning Orlicz sequence spaces (the second proof is much simpler and
shorter).

As an immediate consequence of Theorem 3 and Lemma 1 we get the
following corollary (see also Example 1 above to compare the symmetric
and non-symmetric case).

Corollary 1. Let E be a symmetric Köthe sequence space. If E has

property (β), then E is uniformly monotone.

Looking at Example 1, Theorems 2 and 3 we may point out a natural
question concerning non-symmetric Köthe sequence spaces. Namely, what
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property must be added to property (β) to assure orthogonal uniform
convexity. We consider three natural weaker notions than

(
UC⊥)

such
that property (β), (UM) and

(
SC⊥)

in Musielak–Orlicz sequence spaces,
which are obviously non-symmetric. We prove that each pair of three
properties (

(
β), (UM) and

(
SC⊥))

are not comparable and even these
three properties together do not imply orthogonal uniform convexity.

2.2. Musielak–Orlicz sequence spaces

A function Φ is called an Orlicz function, if Φ : R −→ [0,∞) is
convex, even, Φ(0) = 0 and Φ is not identically equal to zero. A sequence
ϕ = (ϕi)∞i=1 of Orlicz functions ϕi is called a Musielak–Orlicz function. We
will write ϕ > 0 if ϕi(u) = 0 iff u = 0 for every i ∈ N . Define on l0 a
convex modular Iϕ by

Iϕ(x) =
∞∑

i=1

ϕi(x(i))

for every x = (x(i))∞i=1 ∈ l0. By the Musielak–Orlicz space lϕ we mean

lϕ = {x ∈ l0 : Iϕ(cx) < ∞ for some c > 0}.

We endow this space with the Luxemburg norm

‖x‖ϕ = inf{ε > 0 : Iϕ(x/ε) ≤ 1}.

For every Musielak–Orlicz function ϕ we will denote by ϕ∗ the sequence
(ϕ∗i )

∞
i=1 of functions ϕ∗i : R −→ [0,∞) that are complementary to ϕi in

the sense of Young, i.e. ϕ∗i (v) = supu≥0{u|v| −ϕi(u)} for every v ∈ R and
i ∈ N .

We say that a Musielak–Orlicz function ϕ satisfies δ2-condition (ϕ ∈
δ2) if there are constants k0, a0 > 0 and a sequence (c0

i )
∞
i=1 of positive reals

with
∑∞

i=1 c0
i < ∞ such that ϕi(2u) ≤ k0ϕi(u) + c0

i for each i ∈ N and
u ∈ R satisfying ϕi(u) ≤ a0.

Moreover, we can assume without loss of generality that ϕi(1) = 1 for
all i ∈ N . Otherwise we define a new Musielak–Orlicz function ψ = (ψi)∞i=1

by the formula

ψi(u) =





ϕi(biu) for |u| ≤ 1

u2 for |u| > 1,
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where ϕi(bi) = 1. The spaces lϕ and lψ are isometric (see [13]). Under
this assumption we should remember that every function ϕi (i ∈ N ) is
non decreasing on R + and it is convex on the interval [0, 1], but not ne-
cessarily convex on the whole R+. Then this modified function ϕ satisfies
δ2-condition iff there are constant k > 0 and a nonnegative sequence (ci)∞i=1

such that ∞∑

i=1

ϕi(ci) < ∞ and ϕi(2u) ≤ kϕi(u) (6)

for each i ∈ N and u ∈ [ci, 1] (see [7] and [13]).
We say that ϕ satisfies condition (∗) (ϕ ∈ (∗)) if for every ε ∈ (0, 1)

there exists δ > 0 such that ϕi(u) < 1− ε implies ϕi((1 + δ)u) ≤ 1 for all
u ∈ R and i ∈ N (see [13]).

Lemma 3. Let ϕ satisfy δ2-condition. The following assertions are

true:

([12]) (a) ‖x‖ϕ = 1 if and only if Iϕ(x) = 1.
(Lemma 9 in [13]) (b) The function ϕ satisfies condition (∗) if and

only if for every p ∈ (0, 1) there exists q ∈ (0, 1) such that the inequality

Iϕ(x) ≤ 1− p implies ‖x‖ϕ ≤ 1− q.

Combining some ideas from Lemma 3 in [7] it is not difficult to show
the following two lemmas.

Lemma 4. Assume that ϕ∗ satisfy δ2-condition. Then there exists a

number γ ∈ (0, 1) and a sequence β = (βi) with Iϕ(β) < ∞ such that the

inequality

ϕi(u/2) ≤ (1− γ)ϕi(u)/2 (7)

is true for every i ∈ N and u ∈ [βi, 1].

Lemma 5. Let N be a subset of N . Assume that ϕ∗ satisfy δ2-

condition and ϕi is linear in no neighbourhood of zero for every i ∈ N .

Then for every ε > 0 there exists a number γ = γ(ε) ∈ (0, 1) and a

sequence β = (βi) such that
∑

i∈N

ϕi(βi) < ε and ϕi(u/2) ≤ (1− γ)ϕi(u)/2 (8)

for each i ∈ N and u ∈ [βi, 1].
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Lemma 6 (Theorem 0.1 in [13]). The following conditions are equiv-

alent:

(i) ‖xn‖ϕ → 0 if and only if Iϕ(xn) → 0

(ii) ϕ satisfies δ2-condition and ϕ > 0.

Now we find criteria for property (β) in Musielak–Orlicz sequence
spaces. But first we need to prove the following modification of Lemma 6.

Lemma 7. The following statements are equivalent:

(i) ‖xn‖ϕ → 0 if and only if Iϕ(xn) → 0 for every sequence (xn) in lϕ
with elements xn having pairwise disjoint supports.

(ii) ϕ ∈ δ2.

Proof. (i) =⇒ (ii): If ϕ /∈ δ2, the sequence (xn) constructed in the
proof of Lemma 6 has elements with pairwise disjoint supports such that
‖xn‖ϕ = 1 and Iϕ(xn) → 0.

(ii) =⇒ (i): Take a sequence (xn) in lϕ with elements xn hav-
ing pairwise disjoint supports such that Iϕ(xn) → 0. We need to prove
that Iϕ(2xn) → 0 (see [24]). Denoting ϕ ◦ xn = (ϕi(xn(i)))∞i=1 we have
‖ϕ ◦ xn‖l1 = Iϕ(xn) → 0. Then there exist y ∈ l1+ and a subsequence
(xnk

)∞k=1 of (xn)∞n=1 such that |ϕ ◦ xnk
| ≤ y (see Lemma 2 in [14], p. 138).

Since ϕ ∈ δ2, there are constants k0, a0 > 0 and a sequence c0 =(c0
i )
∞
i=1 ∈ l1

of positive reals such that ϕi(2u) ≤ k0ϕi(u)+ c0
i for each i ∈ N and u ∈ R

satisfying ϕi(u) ≤ a0. Moreover, we can find a number k1 ∈ N such that
Iϕ(xnk

) < a0 for every k ≥ k1, by Iϕ(xn) → 0. Then |ϕ ◦ (2xnk
)| ≤

k0y + c0 ∈ l1+ for every k ≥ k1. Furthermore, functions ϕ ◦ (2xnk
) for

k = 1, 2, . . . , have pairwise disjoint supports, so ϕ◦(2xnk
) → 0 pointwisely

as k → ∞. Since l1 ∈ (OC), so ‖ϕ ◦ 2xnk
‖l1 = Iϕ(2xnk

) → 0 as k → ∞.
In virtue of the double extract subsequence theorem, we get Iϕ(2xn) → 0
as n →∞. ¤

From Lemma 7 we conclude immediately

Corollary 2. If ϕ ∈ δ2, then for every ε > 0 there exists σ = σ(ε) > 0
such that for every sequence (xn) in lϕ with elements xn having pairwise

disjoint supports and satisfying ‖xn‖ϕ ≥ ε for every n ∈ N the inequality

Iϕ(xn) ≥ σ holds for almost every n ∈ N .
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Theorem 4. Suppose that ϕ is a Musielak–Orlicz function satisfying

the condition (∗). Then the following statement are equivalent:

(i) lϕ has property (β).

(ii) lϕ is nearly uniformly convex.

(iii) functions ϕ and ϕ∗ satisfy δ2-condition, i.e. lϕ is reflexive.

Proof. The implication (i) =⇒ (ii) was proved by Rolewicz in [27].
Moreover, every nearly uniformly convex Banach space is reflexive (see
[11]), so (ii) =⇒ (iii).

(iii) =⇒ (i). Let ε > 0. Take x, xn ∈ B(lϕ), n = 1, 2, . . . , such that
sep{xn} ≥ ε. Take numbers σ = σ(ε/8) and γ ∈ (0, 1) from Corollary 2
and Lemma 4, respectively. Let q = q(γσ/4) be from Lemma 3b. Notice
that under our assumptions lϕ ∈ (OC). Then, analogously as in the proof
of Theorem 3, we conclude that there exists set A ⊂ N with cardA < ∞
such that

‖xχN\A‖ϕ < q. (9)

Since xn ∈ B(lϕ), n = 1, 2, . . . , so for each i the sequence (xn(i))∞n=1 in R
has a convergent subsequence. Then (xnχA)∞n=1 has a norm convergent
subsequence in lϕ, by cardA < ∞. Thus, passing to a subsequence, if
necessary, we may assume that sep{xnχN\A}∞n=N1

≥ ε/2 for some N1, by
sep{xn} ≥ ε. Hence, by the triangle inequality, ‖xn1χN\A‖ϕ ≥ ε/4 for
some n1 ≥ N1. Moreover, by lϕ ∈ (OC), there exists set A1 ⊂ N\A with
cardA1 < ∞ such that ‖xn1χA1‖ϕ ≥ ε/8. Similarly as above, there exists
n2 ∈ N such that ‖xn2χN\(A∪A1)‖ϕ ≥ ε/4. Furthermore, there exists
set A2 ⊂ N\(A ∪ A1) with cardA2 < ∞ such that ‖xn2χA2‖ϕ ≥ ε/8.
Proceeding in such a way infinitely many times and denoting yk = xnk

χAk
,

k = 1, 2, . . . , we get that the sequence (yk)∞k=1 has elements with pairwise
disjoint supports and ‖yk‖ϕ ≥ ε/8 for every k ∈ N . Applying Corollary 2
we conclude that

Iϕ(xnk
χAk

) = Iϕ(yk) ≥ σ (10)

for almost every k ∈ N . Without loss of generality we may assume that
the inequality (10) is true for each k ∈ N . Put xk in place of xnk

, for
simplicity. Denote

A1
k = {i ∈ Ak : |xk(i)| ≥ βi} and A2

k = {i ∈ Ak : |xk(i)| < βi},
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where (βi) is from Lemma 4. We claim that Iϕ(xk0χA1
k0

) ≥ σ/2 for some
k0 ∈ N . Suppose conversely that

Iϕ(xkχA1
k
) < σ/2 for every k ∈ N . (11)

We have Iϕ(xkχA2
k
)≤∑

i∈A2
k
ϕi(βi)→ 0 as k→∞, because

∑∞
i=1 ϕi(βi)<∞

and Ak ∩ Al = ∅ for any k 6= l. Then Iϕ(xkχA2
k
) < σ/2 for sufficiently

large k. Then, in view of (10) and (11), we get a contradiction, which
proves the claim. Note that Ak ∩ A = ∅ for any k. Consequently, by
Lemma 4,

Iϕ((xχA + xk0)/2) ≤ 1
2
(Iϕ(xχA) + Iϕ(xk0))−

γ

2
Iϕ

(
xk0χA1

k0

) ≤ 1− γσ

4
.

Thus Lemma 3b yields ‖(xχA + xk0)/2‖ϕ ≤ 1− q. Finally, by (9), we get
‖(x + xk0)/2‖ϕ ≤ 1− q/2. ¤

Remark 3. Let Φ be an Orlicz function and lΦ the Orlicz sequence
space. Obviously, lΦ is symmetric. Recall that Φ ∈ δ2 if there are u0 > 0
with Φ(u0) > 0 and k > 2 such that Φ(2u) ≤ kΦ(u) for every |u| ≤ u0.
Applying Theorem 4 for Orlicz sequence space we get that lΦ ∈ (β) iff
Φ ∈ δ2 and Φ∗ ∈ δ2 (notice that every Orlicz function satisfies the condition
(∗)). That fact was proved directly in [5] and it was extended in [16]).
Note that if Φ ∈ δ2, then Φ > 0. However, for a Musielak–Orlicz function
ϕ = (ϕi)∞i=1, the condition ϕ ∈ δ2 not guarantee that ϕ > 0. Let

ϕi(u) =





0 if 0 ≤ u ≤ 2−i

u2 − 2−2i if u > 2−i.

Then a simple computation gets ϕi(2u) ≤ 3 · 2−2i for every 0 ≤ u ≤ 2−i

and i ∈ N . Moreover, ϕi(2u) ≤ 4ϕi(u) + 3 · 2−2i for every u > 2−i and
i ∈ N . Then ϕi(2u) ≤ 4ϕi(u) + 3 · 2−2i for each u ≥ 0 and i ∈ N . Since
3

∑∞
i=1 2−2i = 3/2, so ϕ ∈ δ2. Furthermore,

ϕ∗i (v) =





2−iv if 0 ≤ v ≤ 2−i+1

1
4
v2 + 2−2i if v > 2−i+1.

It is easy to calculate that ϕ∗i (2v) < 17ϕ∗i (v) for every v ≥ 0 and i ∈ N .
Hence ϕ∗ ∈ δ2. One can check also that ϕ ∈ (∗). Then lϕ has property
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(β), by Theorem 4. On the other hand, lϕ /∈ (SM), because ϕi vanishes
outside zero for every i ∈ N (Lemma 2.1 in [18]). Hence lϕ /∈ (

UC⊥)
.

We thank Professor Henryk Hudzik for the above example, which was
an inspiration for these investigations of Musielak–Orlicz spaces.

Now we find criteria for strict and uniform orthogonal convexity in
Musielak–Orlicz sequence spaces. But first we must recall some necessary
terminology.

We say that an Orlicz function Φ is strictly convex on an interval [a, b]
if Φ(u+v

2 ) < (Φ(u) + Φ(v))/2 for all u, v ∈ [a, b], u 6= v.
Given a Musielak–Orlicz function ϕ = (ϕi)∞i=1 we define the function

hi : R×R → [0,∞) by

hi(u, v) =





2ϕi(u+v
2 )

ϕi(u) + ϕi(v)
if ϕi(u) ∨ ϕi(v) > 0,

0 if ϕi(u) ∨ ϕi(v) = 0

for every i ∈ N .
Let c > 0. It is said that a Musielak–Orlicz function ϕ = (ϕi)∞i=1

is uniformly convex in the c-neighbourhood of zero if for every a ∈ [0, 1)
there exist δ ∈ (0, 1) and a nonnegative sequence d = (di) with Iϕ(d) < ∞
and ϕi(di) ≤ c for every i ∈ N such that

hi(u, au) ≤ 1− δ

for all u ∈ (di, ϕ−1
i (c)], i ∈ N . Let N be a subset of N . We say that a

family (ϕi)i∈N is uniformly convex in the c-neighbourhood of zero if the
function ψ = (ψi)∞i=1 has this property, where ψi = ϕi for i ∈ N and ψi = 0
for i /∈ N .

Lemma 8 (Lemma 5 in [13]). If the function ϕ is uniformly convex in

the c-neighbourhood of zero and each ϕi is strictly convex on the interval

[0, ϕ−1
i (c)], respectively, then for each ε ∈ (0, 1) there exists p ∈ (0, 1) and

a nonnegative sequence (di) with
∑∞

i=1 ϕi(di) < ε such that

hi(u, v) ≤ 1− p

if |u− v| ≥ ε(u ∨ v) and u ∨ v ∈ (di, ϕ
−1
i (c)], i ∈ N .

In the sequel we use the symbol en = (0, . . . , 0︸ ︷︷ ︸
n−1

, 1, 0, . . . ).
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Theorem 5. Let ϕ be a Musielak–Orlicz function. Then lϕ is ortho-

gonally strictly convex if and only if:

(i) each function ϕi vanishes only at zero and the function ϕ fulfills the

δ2-condition.

(ii) ϕi can be linear in a neighborhood of zero for at most one i ∈ N .

(iii) if ϕi0 is linear in a neighborhood of zero for some i0 ∈ N , then ϕi is

strictly convex on the interval [0, 1] for every i 6= i0.

Proof. Necessity. If lϕ ∈ (
SC⊥)

, then lϕ ∈ (SM), by Lemma 2.
Consequently ϕ ∈ δ2 and ϕ > 0 (Lemma 2.1 in [18]). We will show the
necessity of condition (ii). Suppose conversely that there exist i1, i2 ∈ N
and α1, α2 > 0 such that ϕi is linear on the interval [0, αi] for i ∈ {i1, i2}.
Take 0 < ai < αi for i ∈ {i1, i2} with ϕi1(ai1) = ϕi2(ai2) < 1. Let b > 0
and i3 /∈ {i1, i2} be such that ϕi1(ai1) + ϕi3(b) = 1. Define

x = ai1ei1 + bei3 and y = ai2ei2 + bei3 .

Then Iϕ(x) = Iϕ(y) = 1. Hence x, y ∈ S(lϕ). Denote A = suppx÷ supp y.
Then ‖xχA‖ϕ = ‖ai1ei1‖ϕ > 0. Moreover

Iϕ((x + y)/2) = ϕi1(ai1)/2 + ϕi2(ai2)/2 + ϕi3(b) = 1.

Hence ‖(x + y)/2‖ϕ = 1. Thus lϕ /∈ (
SC⊥)

.
Assume now that the condition (iii) is not satisfied, i.e. there exist

i0, i1 ∈ N , i0 6= i1, such that ϕi0 is linear on an interval [0, αi0 ] for some
αi0 > 0 and ϕi1 is affine on an interval [ai1 , bi1 ] for some 0 ≤ ai1 < bi1 ≤ 1.
Take α ∈ (0, αi0) and c ∈ (ai1 , bi1) such that ϕi1(ai1) + ϕi0(α) = ϕi1(c).
Let i2 /∈ {i0, i1} and d > 0 be such that ϕi1(c) + ϕi2(d) = 1. Define

x = αei0 + ai1ei1 + dei2 and y = cei1 + dei2 .

Then it is easy to conclude that lϕ /∈ (
SC⊥)

similarly as in the above proof
of the necessity of condition (ii).

Sufficiency. Take any x, y ∈ S(lϕ) such that ‖xχAxy‖ϕ∨‖yχAxy‖ϕ > 0,
where Axy = suppx÷ supp y. We divide the proof into three parts.

I. Suppose that ‖xχAxy‖ϕ∧‖yχAxy‖ϕ > 0. Then cardAxy > 1. Conse-
quently, by the assumption (ii), there is j0 ∈ Axy such that ϕj0 is linear in
no neighborhood of zero. Hence ϕj0(u/2) < ϕj0(u)/2 for every u > 0. Thus
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ϕj0((x(j0)+ y(j0))/2) < (ϕj0(x(j0))+ϕj0(y(j0)))/2. So Iϕ((x+ y)/2) < 1.
This implies ‖(x + y)/2‖ϕ < 1, since ϕ ∈ δ2.

II. Assume that ‖xχAxy‖ϕ > 0 and ‖yχAxy‖ϕ = 0. If there is i ∈ Axy

such that ϕi is linear in no neighborhood of zero, then we proceed as in
Case I. Otherwise, in view of assumption (ii), we get cardAxy = 1. Put
Axy = {i0}. Denote Bxy = suppx ∩ supp y. By (i), we get lϕ ∈ (SM)
(see [18]). Then , since x ∈ S(lϕ) and ‖xχAxy‖ϕ > 0, so ‖xχBxy‖ϕ < 1
(Theorem 8 from [9]). However ‖yχBxy‖ϕ = 1, by ‖yχAxy‖ϕ = 0. Thus
we conclude that there exists i1 ∈ Bxy such that y(i1) > x(i1). Moreover,
since ϕi0 is linear in a neighborhood of zero, so ϕi1 is strictly convex on
the interval [0, 1], by (iii). Then we get that ‖(x + y)/2‖ϕ < 1 similarly as
in Case I.

III. If ‖xχAxy‖ϕ = 0 and ‖yχAxy‖ϕ > 0, the proof is analogous as in
Case II. ¤

Theorem 6. Let ϕ be a Musielak–Orlicz function. Then lϕ is orthog-

onally uniformly convex if and only if

(i) each function ϕi vanishes only at zero, functions ϕ and ϕ∗ fulfill the

δ2-condition and ϕ satisfies the condition (∗).
(ii) ϕi can be linear in a neighborhood of zero for at most one i ∈ N .

(iii) if ϕi0 is linear in a neighborhood of zero for some i0 ∈ N , then

(1) ϕi is strictly convex on the interval [0, 1] for every i 6= i0 and

(2) (ϕi)i6=i0 is uniformly convex in 1-neighbourhood of zero.

Proof. Necessity. It is known that lϕ ∈ (UM) iff ϕ ∈ δ2, ϕ > 0 and
ϕ ∈ (∗) (see [18]). Then the necessity of conditions ϕ ∈ δ2, ϕ > 0 and
ϕ ∈ (∗) follows immediately from Lemma 1. Moreover, if lϕ ∈ (

UC⊥)
,

then lϕ ∈ (β), by Theorem 2, and consequently lϕ is reflexive, so ϕ ∈ δ2

and ϕ∗ ∈ δ2. The necessity of condition (ii) follows from Theorem 5.
We prove the necessity of condition (iii). We will apply some technics

from the proof of necessity of Theorem 1 in [13]. First note that uniform
convexity of ϕ in the c-neighbourhood of zero is equivalent to the following
condition.

For every a ∈ (0, 1) there exists δ ∈ (0, 1) such that
∞∑
i=1

ϕi(ui(δ, a))<∞,
where ui(δ, a)= sup{u∈ [0, ϕ−1

i (c)] :hi(u, au)≥ 1− δ}.



602 PaweÃl Kolwicz

It follows from Theorem 5 that if ϕi0 is linear in some neighborhood
of zero, then ϕi is strictly convex on [0, 1] for every i 6= i0. Consequently,
assuming for the contrary that the condition (iii) is not satisfied, we may
suppose that ϕi0 is linear on the interval [0, αi0 ] for some i0 ∈ N , αi0 > 0
and (ϕi)i6=i0 is not uniformly convex in 1-neighbourhood of zero. Denote
N0 = N\{i0}. Hence there exist a ∈ (0, 1) and a sequence (δk) included
in (0, 1) and δk ↓ 0 such that

∑

i∈N0

ϕi(uik) = ∞, (12)

for every k ∈ N , where uik = ui(δk, a) ∈ [0, ϕ−1
i (1)]. By the definition of

the sequence ui(δ, a) we get

hi(uik, auik) ≥ 1− δk (13)

for each k ∈ N and i ∈ N0. We divide the proof into two parts.

I. There exists b ∈ (0, 1) such that limk→∞ supi≥m ϕi(uik) > b for
every m ∈ N0. Then there exist increasing subsequences (kj) of N and
(ij) of N0 such that ϕij (uijkj ) ∈ (b, 1] for every j ∈ N . We denote j and
vj in place of ij and uijkj

, for simplicity. We consider two subcases.
a. Suppose that

ϕj(vj)− ϕj(avj) ∈ (0, ϕi0(αi0)] (14)

for infinitely many j ∈ N0. Without loss of generality we may assume that
the condition (14) holds for every j > i0. Then there exists a sequence
(αj) in (0, αi0 ] such that

ϕi0(αj) = ϕj(vj)− ϕj(avj) (15)

for every j > i0. Let bj ≥ 0 be such that

ϕj(vj) + ϕj+1(bj) = 1 (16)

for every j > i0. Define

xj = αjei0 + avjej + bjej+1 and yj = vjej + bjej+1.

Then, by (15) and (16), Iϕ(xj) = Iϕ(yj) = 1 for every j > i0. Hence
‖xj‖ϕ = ‖yj‖ϕ = 1 for every j > i0. Moreover, by (15),

ϕi0(αj) = ϕj(vj)− ϕj(avj) ≥ (1− a)ϕj(vj) ≥ (1− a)b
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for every j > i0. Hence, denoting Aj = suppxj ÷ supp yj , we get
Iϕ( xj

(1−a)bχAj ) ≥ 1, so ‖xjχAj‖ϕ ≥ (1− a)b for every j > i0. On the other
hand, by (13) and by linearity of ϕi0 on the interval [0, αi0 ], we get

Iϕ

(
xj + yj

2

)
≥ 1

2
ϕi0(αj) + (1− δkj )

ϕj(vj) + ϕj(avj)
2

+ ϕj+1(bj).

Since δkj → 0, so Iϕ(xj+yj

2 ) → 1, by (15) and (16). Hence ‖xj+yj

2 ‖ϕ → 1,
because we have Iϕ(z) ≤ ‖z‖ϕ for every z ∈ B(lϕ). Thus lϕ /∈ (

UC⊥)
.

b. Suppose that

ϕj(vj)− ϕj(avj) > ϕi0(αi0) (17)

for almost every j ∈ N0. We may assume without loss of generality that
the last inequality holds for every j > i0. Then there exists a sequence
(aj) in (a, 1) such that ϕi0(αi0) = ϕj(vj)− ϕj(ajvj) for every j > i0. Let
bj ≥ 0 be such that ϕj(vj) + ϕj+1(bj) = 1. Define

xj = αi0ei0 + ajvjej + bjej+1 and yj = vjej + bjej+1.

Similarly, as in case a, we get xj , yj ∈ S(lϕ) and ‖xjχAj‖ϕ = ‖αi0ei0‖ϕ

for every j > i0. The function hj(u, au) is nondecreasing function of a.
Hence, by (13), hj(vj , ajvj) > 1− δkj for every j > i0. Then the proof can
finished the same way as in case a.

II. Contrary to I, suppose that for every b ∈ (0, 1) there exists m ∈ N0

such that limk→∞ supi≥m ϕi(uik) ≤ b. Then we find subsequences (mj) of
N0 and (kj) of N , which is increasing such that ϕi(uikj ) ≤ 1

2j+1 for every
j ∈ N and i ≥ mj , i 6= i0. Then, by (12), we conclude that for each j there
exists a set Nj of N0 such that

1− 1
2j−1

≤
∑

i∈Nj

ϕi(uikj ) ≤ 1− 1
2j

. (18)

In the remaining part of the proof we will consider three cases.
a. Suppose that

ϕi0(αi0) +
∑

i∈Nj

ϕi(auikj ) < 1− 1
2j−1
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for infinitely many j. Without loss of generality we may assume that the
last inequality holds for every j. Hence, by (18), there exists a sequence
(aj) such that aj ∈ [a, 1] for each j and ϕi0(αi0) =

∑
i∈Nj

(ϕj(uikj ) −
ϕj(ajuikj )) for every j. Define

xj = αi0ei0 +
∑

i∈Nj

ajuikjei and yj =
∑

i∈Nj

uikjei.

Then xj , yj ∈ B(lϕ), by (18). The function hj(u, au) is nondecreasing
function of a. Hence, the same way as in case Ib, applying inequality (18)
we conclude that lϕ /∈ (

UC⊥)
.

b. Suppose that

ϕi0(αi0) +
∑

i∈Nj

ϕi(auikj ) > 1− 1
2j

for infinitely many j. Without loss of generality we may suppose that the
above inequality is true for each j. Then, by (18), there exists a sequence
(αj) in (0, αi0 ] such that

ϕi0(αj) +
∑

i∈Nj

ϕi(auikj ) =
∑

i∈Nj

ϕi(uikj ) (19)

for every j. Define

xj = αjei0 +
∑

i∈Nj

auikj
ei and yj =

∑

i∈Nj

uikj
ei.

Then xj , yj ∈ B(lϕ), by (18) and (19). Moreover, again by (18) and (19),

ϕi0(αj) =
∑

i∈Nj

ϕi(uikj )− ϕi(auikj ) ≥ (1− a)
∑

i∈Nj

ϕi(uikj ) ≥ (1− a)/2.

for every j. Hence, denoting Aj = suppxj ÷ supp yj , we get
Iϕ( xj

(1−a)/2χAj ) ≥ 1, so ‖xjχAj‖ϕ ≥ (1− a)/2 for every j. Then, similarly
as in previous cases, one can conclude that lϕ /∈ (

UC⊥)
.

c. If
1− 1

2j−1
≤ ϕi0(αi0) +

∑

i∈Nj

ϕi(auikj ) ≤ 1− 1
2j
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for infinitely many j, then, in order to show that lϕ /∈ (
UC⊥)

, it is enough
to define

xj = αi0ei0 +
∑

i∈Nj

auikjei and yj =
∑

i∈Nj

uikjei.

Sufficiency. Let ε > 0. Take x, y ∈ S(lϕ) such that ‖xχA‖ϕ∨‖yχA‖ϕ ≥
ε, where A = suppx ÷ supp y. Applying Lemma 6 take number σ1 > 0
such that

if ‖z‖ϕ ≥ ε/2, then Iϕ(z) ≥ σ1. (20)

Applying Lemma 5 with the number σ1/2 we conclude that there exists
γ ∈ (0, 1) and a sequence β = (βi) such that

∑

i6=i0

ϕi(βi) < σ1/2 and ϕi(u/2) ≤ (1− γ)ϕi(u)/2 (21)

holds true for each i ∈ N\{i0} and u ∈ [βi, 1], where i0 is from condition
(iii). Let q1 = q(γσ1/4) be from Lemma 3b. Hereafter we assume that

‖xχA‖ϕ ≥ ε,

because otherwise the proof is analogous. We consider two cases.

I. Suppose that ‖xχA\{i0}‖ϕ ≥ ε/2. Then

Iϕ(xχA\{i0}) ≥ σ1, (22)

by (20). Denote

A1 = {i ∈ A\{i0} : |x(i)| ≥ βi} and A2 = {i ∈ A\{i0} : |x(i)| < βi}.

Then Iϕ(xχA2) < σ1/2, by (21). Hence Iϕ(xχA1) ≥ σ1/2, by (22). Conse-
quently, applying (21), we get Iϕ((x+y)/2) ≤ 1−γIϕ(xχA1)/2 ≤ 1−γσ1/4.
Thus ‖(x + y)/2‖ϕ ≤ 1− q1, where q1 = q(γσ1/4) is from Lemma 3b.

II. Assume that ‖xχA∩{i0}‖ϕ ≥ ε/2. Hence ‖xχ{i0}‖ϕ ≥ ε/2. Note
that, by the assumptions, lϕ is a uniformly monotone Köthe space (see
[18]). Moreover, a Köthe space E ∈ (UM) iff for any ν ∈ (0, 1) there is
η(ν) > 0 such that for any u ∈ E+ with ‖u‖E = 1 and for any A ∈ Σ

if ‖uχA‖E ≥ ν then ‖uχT\A‖E ≤ 1− η(ν) (Theorem 6 in [9]). (23)
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Consequently, applying (23) with p1 = η(ε/2), we get ‖xχN\{i0}‖ϕ ≤ 1−p1.
Take ξ > 1 with ξ(1 − p1) < 1 and a ∈ (0, 1) such that ξ(1 − p1) < a.
Applying again Lemma 6 take number σ2 > 0 such that

if ‖z‖ϕ ≥ 1− a, then Iϕ(z) ≥ σ2. (24)

Let N0 = (suppx ∪ supp y)\{i0} and

B1 =
{

i ∈ N0 :
|x(i)| ∧ |y(i)|
|x(i)| ∨ |y(i)| <

1
ξ

}
and

B2 =
{

i ∈ N0 :
|x(i)| ∧ |y(i)|
|x(i)| ∨ |y(i)| ≥

1
ξ

}
.

First note that ‖yχB2‖ϕ < a, because otherwise we get a contradiction
a ≤ ‖yχB2‖ϕ ≤ ξ‖xχB2‖ϕ ≤ ξ(1 − p1). Consequently ‖yχB1‖ϕ ≥ 1 − a,
because i0 ∈ suppx\ supp y, whence supp y ⊂ B1 ∪ B2 and ‖yχN0‖ϕ = 1.
Thus, by (24)

Iϕ(yχB1) ≥ σ2. (25)

We apply Lemma 8 with ε̃ = (1 − 1/ξ) ∧ σ2/2 for the Musielak–Orlicz
function (ϕi)i 6=i0 . Then there exists p ∈ (0, 1) and a nonnegative sequence
(di) with

∑
i6=i0

ϕi(di) < ε̃ such that

hi(u, v) ≤ 1− p (26)

if |u − v| ≥ ε̃(u ∨ v) and u ∨ v ∈ (di, 1], i ∈ N\{i0}. First note that
|x(i) − y(i)| ≥ ε̃(|x(i)| ∨ |y(i)|) for every i ∈ B1, because |x(i)| ∧ |y(i)| <

(|x(i)| ∨ |y(i)|)1
ξ . Moreover, denoting B11 = {i ∈ B1 : |y(i)| ≥ di}, we get

Iϕ(yχB1\B11
) < σ2/2. Then Iϕ(yχB11) ≥ σ2/2, by (25). Then, applying

(26), we get

Iϕ((x + y)/2) ≤ 1− pIϕ(yχB11)/2 ≤ 1− pσ2/4.

Thus ‖(x + y)/2‖ϕ ≤ 1− q2, where q2 = q(pσ2/4) is from Lemma 3b. ¤

Taking into account Theorems 5, 6 and Theorems 0.2, 1 in [13] we can
exactly compare the difference between (UC), (SC) and

(
UC⊥)

,
(
SC⊥)

,
respectively, in Musielak–Orlicz sequence spaces.

Now we are able to answer the question which has been pointed out
in the introduction. Namely, applying Theorems 4, 5, 6 and Theorem 2.5
from [18] we get the following
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Corollary 3. There exists uniformly monotone, orthogonally strictly

convex Musielak–Orlicz sequence space with property (β) which is not

orthogonally uniformly convex.

Recall that a Nakano space l(pi) is the Musielak–Orlicz space lϕ where
ϕi(u) = |u|pi , 1 ≤ pi < ∞, i = 1, 2, . . . (see [25]). This space can be
isometrically transformed in such a way that ϕi(u) = upi if u ∈ [0, 1] and
ϕi(u) = u if u > 1 (see [13]). Notice that ϕ ∈ δ2 iff limi→∞ pi < ∞ and
ϕ∗ ∈ δ2 iff limi→∞ pi > 1. Moreover ϕ ∈ (∗) whenever limi→∞ pi < ∞
and limi→∞ pi > 1 (see the proof of Theorem 2 in [13]). Then, applying
Theorems 4, 5, 6, Theorems 0.2 and 2 from [13], we get

Corollary 4. (a) l(pi) has property (β) iff limi→∞ pi < ∞ and

limi→∞ pi > 1.

(b) Thefollowing statements are equivalent:

(i) l(pi) is strictly convex.

(ii) l(pi) is orthogonally strictly convex.

(iii) limi→∞ pi < ∞ and pi = 1 for at most one i.

(c) The following statements are equivalent:

(i) l(pi) is uniformly convex.

(ii) l(pi) is orthogonally uniformly convex.

(iii) limi→∞ pi < ∞, limi→∞ pi > 1 and pi = 1 for at most one i.

Note that orthogonally uniformly convex Orlicz sequence space need
not be strictly convex (see [16]). We also conclude that, for Nakano spaces,
the answer for the question pointed out in the introduction is positive
in contrast to the general case of Musielak–Orlicz sequence spaces (see
Corollary 3).

Corollary 5. l(pi) is orthogonally uniformly convex if and only if l(pi)

is orthogonally strictly convex and it has property (β).

Applying Theorem 5 to the case of Orlicz sequence spaces we get

Corollary 6. The Orlicz sequence space lΦ is orthogonally strictly

convex if and only if Φ fulfills the δ2-condition and Φ is linear in no neigh-

borhood of zero.
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Similarly, applying Theorem 6 or Theorems 3 and 4 we get the fol-
lowing criteria for orthogonal uniform convexity in Orlicz sequence spaces
proved in [16].

Corollary 7. The Orlicz sequence space lΦ is orthogonally uniformly

convex if and only if Φ ∈ δ2 and Φ∗ ∈ δ2.
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