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Property () and orthogonal convexities in some class
of Kothe sequence spaces

By PAWEL KOLWICZ (Pozna)

Abstract. First we show that property (8) of RoLEWICZ ([27]) is equiva-
lent to orthogonal uniform convexity (UC*) ([15]) in symmetric Kéthe sequence
spaces. To discover precisely the non-symmetric case, we prove criteria for prop-
erty (f), strict and uniform orthogonal convexity ((SC*), (UC*)) in Musielak—
Orlicz sequence spaces, which essentially extend results from [5], [16] and cor-
respond to respective criteria for strict and uniform convexity ([12], [13]). As a
corollary we conclude that in non-symmetric Kéthe sequence spaces the property
(UCL) is really stronger than three properties (SCL), (8) and uniform mono-
tonicity considered together. The case of Nakano spaces is also discussed.

1. Introduction

Throughout this paper (X, || - ||x) is a real Banach space. As usual,
S(X) and B(X) stand for the unit sphere and the unit ball of X, respec-
tively. For any subset A of X, we denote by conv(A) the convex hull
of A.

The Banach space (X, || || x) is strictly convex (X € (SC)) if for every
z,y € X with z # y and ||z]|x = |lyllx = 1 we have ||z +y[|x < 2. X is
said to be uniformly conver (X € (UC) for short), if for each € > 0 there
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is § > 0 such that for any z,y € S(X) the inequality ||z — y||x > ¢ implies
o+ yllx < 2(1 - 8) (see [3]).

Define for any = ¢ B(X) the drop D(z, B(X)) determined by x by
D(xz,B(X)) = conv({z} U B(X)).

Recall that for any subset C' of X, the Kuratowski measure of non-
compactness of C' is the infimum «(C) of those € > 0 for which there is a
covering of C' by a finite number of sets of diameter less then ¢.

ROLEWICZ in [26] has proved that X € (UC) iff for any € > 0 there
exists § > 0 such that 1 < [jz||x < 14 ¢ implies diam(D(z, B(X)) \
B(X)) < e. In connection with this he has introduced in [27] the following
property.

A Banach space X has the property () (X € (f)) if for any € > 0
there exists § > 0 such that a(D(z, B(X)) \ B(X)) < ¢ whenever 1 <
zflx <1+0.

We say that a sequence {x,} C X is e-separated for some ¢ > 0 if

sep{zp} = inf{||z, — zp|x :n#m} >e.

Although the primary definition of property (/3) uses the Kuratowski mea-
sure of noncompactness, more convenient in our considerations is the fol-
lowing equivalent condition proved by KUTZAROVA in [21].

Theorem 1. A Banach space X has property ((3) if and only if for
every € > 0 there exists 6 > 0 such that for each element x € B(X) and
each sequence (z,,) in B(X) with sep{x,} > € there is an index k for which

||a; —l—l’kHX < 2(1 — 5).

A Banach space is nearly uniformly conver (X € (NUCQC)) if for every
e > 0 there exists 0 > 0 such that for every sequence {z,} in B(X) with
sep{x,} > €, we have conv({z,})N(1—0)B(X) # ¢. Rolewicz proved the
following implications (UC) = (8) = (NUC) (see [27]). Moreover, the
class of Banach spaces with an equivalent norm with property (3) coincides
neither with that of superreflexive spaces (see [20] and [23]) nor with the
class of nearly uniformly convexifiable spaces (see [19]).

Denote by A/, R and Ry the sets of natural, real and non-negative
real numbers, respectively. Let (A, 2V, m) be the counting measure space
and ly = lp(m) the linear space of all real sequences.
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Let E = (E,<,| - ||lg) be a Banach sequence lattice over the measure
space (N, oN ,m), that is E is a Banach space being a subspace of [y en-
dowed with the natural coordinatewise semi-order relation, and E satisfies
the conditions:

(i) if z € E,y € lo, |y| < |z|, ie. |y(i)| < |z(i)| for every i € N, then

yeEand lyls < o,

(ii) there exists a sequence x in E that is positive on the whole N (see

[14] and [22]).

Banach sequence lattices are often called Kothe sequence spaces. More

generally, if we consider a Banach function lattice £/ over the measure

space (T, %, u) with p being o-finite and complete, then we will say
that F is a Kdithe space. If we assume additionally that g is non-
atomic, then E will be called the Kdthe function space.

A Kothe space E is said to be strictly monotone (E € (SM)) if for
every 0 < y < z with y # = we have ||y||g < ||z||g. We say that a Kéthe
space E is uniformly monotone (E € (UM)) if for every g € (0,1) there
exists p € (0,1) such that for all 0 < y < =z satisfying ||z||g = 1 and
Iyl > g we have |l — ylls < 1 - p (see [1], [9]).

A Kothe space E is called order continuous (E € (OC)) if for every
x € E and each sequence (z,,) € E such that 0 «— z,,, < |z| we have
|zm ||z — O (see [14] and [22]).

The notation r A s = min{r, s}, r Vs = max{r, s} for any r, s € R and
A+B=(A\B)U(B\ A) for every A, B € ¥ will be used.

It appears that a geometric property called orthogonal uniform convez-
ity is strictly connected with property (), uniform convexity and uniform
monotonicity. It was introduced in [15].

Definition 1. A Kothe space (E, || - || g) is orthogonally uniformly con-
vex (E € (UCY)), if for each ¢ > 0 there is 6 = d(¢) > 0 such that
for any x,y € B(FE) the inequality |zxa,,||r V [lyxa,,|lE > € implies
|lz+yl|p <2(1 —0), where Ay, = suppx + suppy.

Obviously, if E € (UC), then E € (UC*). It is known that uniformly
convex Kothe space is uniformly monotone (see [9]). Moreover,

Lemma 1 (Lemma 3 in [15]). Let E be a Kéthe space. IfE € (UCY),
then E € (UM) and the converse is not true.
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In the sequel we will need the following notion.

Definition 2. A Kothe space (E, || - ||g) is orthogonally strictly con-
vex (E € (SCH)), if for any z,y € B(E) the inequality |[zxa,,|lr V
lyxA,, ||z > 0 implies |(z +y)/2||g < 1, where A;, = suppz + suppy.

It is clear that if E € (SC), then E € (SC*). On the other hand,
every strictly convex Kothe space is strictly monotone (see [9]). Further-
more,

Lemma 2. Let E be a Kithe space. If E € (SC™), then E € (SM).

The proof is analogous as that of Lemma 1, but we apply Theorem 8
from [9] instead of Theorem 6(iii) from [9].
It is known that in the case of Kothe sequence spaces the implications

ve) = (vet) = (9) (1)

hold and the converse of any of them is not true in general (see [16]).
Furthermore, the implications

ve) = (8) = (ve) 2)

are true in every Kothe function space and the second can not be reversed
(see [15], [16] and [27]). Notice that property (3) and orthogonal uniform
convexity change places in implications (1) and (2).

It is known that the second of implications (1) can be reversed in Orlicz
sequence spaces (see [16]). We extend that result to the case of symmet-
ric Kothe sequence spaces (Theorem 3). On the other hand, property
(8) does not even imply strict monotonicity in a non-symmetric Kéthe
sequence space (Example 1). Note that we have three natural geometric
properties weaker than orthogonal uniform convexity in Kéthe sequence
spaces, namely: property (/3), uniform monotonicity and orthogonal strict
convexity. Then, it is natural to ask the following question

Question: Does uniformly monotone, orthogonally strictly convex non-
symmetric Kothe sequence space with property (/) need to be ortho-
gonally uniformly convex?

We prove that the answer is negative in general by finding criteria for
property (), orthogonal strict convexity and orthogonal uniform convexity
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in Musielak—Orlicz sequence spaces. However, applying in particular these
results for Nakano spaces we will see that the answer may be positive.

We say that properties (P;) and (P») are not comparable, if the sets of
spaces having properties (P;) and (P;) are not included one into another.
Notice that property (£) and uniform monotonicity are not comparable
in general (it is enough to take I' and the space Y from Example 1).
However, it follows from the results given in [11], [27], [28] that property
(8) implies uniform monotonicity in symmetric Kéthe sequence spaces (see
also Corollary 1). Furthermore, from our results we conclude that each two
of three properties (3), (UM), (SC*) are not comparable in Musielak—
Orlicz sequence spaces.

It is worth mentioning that orthogonal uniform convexity plays an
important role in studying property () in Kéthe-Bochner spaces (see [10]
and [17]).

2. Results

2.1. Kothe sequence spaces

Theorem 2 (Theorem 2 in [16]). Every orthogonally uniformly con-
vex Kothe sequence space has property ([3).

Remark 1. Note that if dim £ < oo, then E € (3). Hence the thesis of
Theorem 2 is non-trivial for infinite dimensional Kothe sequence spaces.
Moreover, the converse of Theorem 2 is not true as the following example
shows.

Ezample 1. The following example is due to Day (see [6]). For i =
1,2,...,let X; denote R; with the norm [[(z1,x2,...,2:)|i = supy<;<; |7;].
Then define

o
Y = {y = (y;) :yi € X; for every i =1,2,... and Z lyill? < oo}
i=1

equipped with the norm ||y|| = (372, HyiH%)I/z. By Proposition 1 from
[20] we conclude that Y € (3). However, Y ¢ (SM), whence Y ¢ (UC™),
by Lemma 1.
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It follows from Theorem 2 and Example 1 that property (U C’l) is
essentially stronger than property () in Kothe sequence spaces. Notice
that the space Y in Example 1 is not symmetric. However, orthogonal
uniform convexity and property () coincide in Orlicz sequence spaces
(see [16]). It appears that this equivalence can be extended to the case of
symmetric Kothe sequence spaces.

Recall that E is a symmetric Kothe sequence space if for any permu-
tation (ny) of the set N” we have T = {z(n;)}32, € E and ||z||p = ||Z||&-

Theorem 3. Let E be a symmetric Kothe sequence space. Then E
is orthogonally uniformly convex if and only if E has property (f3).

PROOF. The necessity is clear by Theorem 2. Suppose that E €
(8). Let e > 0. Take z,y € B(F) such that ||[zxallg V llyxalle > e,
where A = suppx + suppy. Applying Theorem 1 take d; = d(g/2). Since
(B) = (NUC) (see [27]), (NUC) = (KK) (see [11], also for the de-
finition of the Kadec—Klee property (KK)) and (KK) = (OC) in any
Banach function lattice (see [8]), we get () = (OC). It is known that
a Kothe sequence space is order continuous iff it is absolutely continuous,
ie. for every z € E we have lim, .o |z — 2|z = 0, where 2" =
(x(1),2(2),...,2(n),0,0,...) (see [4]). Consequently there exist subsets
B1, By of N with card B; < oo for i = 1,2 such that

lzxans, |2 V lyxans, lE < €/2 A 61/2. (3)

Define x; = zxp, and y1 = yxB,. Let A1 = suppz; + suppy;. We claim
that
lz1xa, eV llyixalle = e/2. (4)

Indeed, if ||xxal/g > €, then, by inequality (3), we get
e < llexale < llexans e + llexas e
< llzxans e +/2 < lzixalle +¢/2.

If |lyxalle > €, then, analogously, we get ||y1x4, ||z > €/2. Thus the claim
is proved. Without loss of generality we assume that ||z1x4,|z > /2,
since otherwise the proof is analogous. Then

HxIXAnHE > 5/27 (5)
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where Aj; = supp 1\ suppy1. Denote N1 = N\ (supp z1 Usuppy;). Then
card N; = oo. Hence there exists a sequence (E,)2; in N; of pairwise
disjoint sets such that card E,, = card Ay, for every n € N. Denote

Ay = {ir,ia,..., 4} and E, = {41, J5,...,j]'} for every n € N,
where [ = card A;;. For every n € N define

wr(iy) i€ B i=g0 k=1,2,...,1
up (i) = and
0 itidE,

Zn = L1XB1\A11 + Un.

Since E is symmetric, so ||2,||g = ||z1||g for each n € N'. Then z, € B(E)
for every n € N. Similarly, ||u,|/g > €/2 for every n € N, by (5). Hence
sep{zn}r > €/2. Thus, by Theorem 1, it follows that |y1 + zp.||E <
2(1 — 61) for some ng € N. Applying again the symmetry of E we note
|lz1 + yille = |ly1 + 2nllE for any n € N. Thus, by inequality (3), we get

lz+ylle < |lz1 +yille + 01 = |ly1 + 2nollg + 01 <2 — 01 0

Remark 2. Note that Theorem 3 gives a very useful tool to check
whether a symmetric Kéthe sequence space has property (). Indeed, it is
much easier to check if a Kothe sequence space is orthogonally uniformly
convex than if it has property (3). It is enough to see Definition 1 and
Theorem 1. We realize also this fact if we compare the proofs of Theorem 1
from [5] (on property (3)) and Theorem 3 from [16] (on property (UC™))
concerning Orlicz sequence spaces (the second proof is much simpler and
shorter).

As an immediate consequence of Theorem 3 and Lemma 1 we get the
following corollary (see also Example 1 above to compare the symmetric
and non-symmetric case).

Corollary 1. Let E be a symmetric Kéthe sequence space. If E has
property ((3), then E is uniformly monotone.

Looking at Example 1, Theorems 2 and 3 we may point out a natural
question concerning non-symmetric Kéthe sequence spaces. Namely, what
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property must be added to property (3) to assure orthogonal uniform
convexity. We consider three natural weaker notions than (U CL) such
that property (3), (UM) and (SCL) in Musielak—Orlicz sequence spaces,
which are obviously non-symmetric. We prove that each pair of three
properties ( (ﬁ), (UM) and (SCJ-)) are not comparable and even these
three properties together do not imply orthogonal uniform convexity.

2.2. Musielak—Orlicz sequence spaces

A function @ is called an Orlicz function, if & : R — [0,00) is
convex, even, ®(0) = 0 and P is not identically equal to zero. A sequence
@ = (i), of Orlicz functions ¢; is called a Musielak—Orlicz function. We
will write ¢ > 0 if ¢;(u) = 0 iff w = 0 for every i € N. Define on [y a
convex modular I, by

Iofa) = 3 eila()

for every x = (x(7))52, € lp. By the Musielak-Orlicz space |, we mean
lo ={x €lp:I,(cx) < oo for some ¢ > 0}.
We endow this space with the Luzemburg norm
|z||, = inf{e > 0: I (x/e) < 1}

For every Musielak—Orlicz function ¢ we will denote by ¢* the sequence
(p7)22, of functions ¢} : R — [0,00) that are complementary to ¢; in
the sense of Young, i.e. ¢} (v) = sup,>o{ulv| — @;(u)} for every v € R and
ieN.

We say that a Musielak—Orlicz function ¢ satisfies da-condition (¢ €
82) if there are constants ko, ag > 0 and a sequence ()22, of positive reals
with 22 ¢ < oo such that ¢;(2u) < kopi(u) + ¢ for each i € N and
u € R satisfying ¢;(u) < ag.

Moreover, we can assume without loss of generality that ¢;(1) =1 for
all i € V. Otherwise we define a new Musielak—Orlicz function ¢ = (1);)°,
by the formula

wi(bju) for Ju| <1
Yiu) =

u? for |u| > 1,
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where ¢;(b;) = 1. The spaces [, and Iy are isometric (see [13]). Under
this assumption we should remember that every function ¢; (i € N) is
non decreasing on R 4 and it is convex on the interval [0, 1], but not ne-
cessarily convex on the whole R. Then this modified function ¢ satisfies
d2-condition iff there are constant £ > 0 and a nonnegative sequence (¢;)5°,
such that -
Z%(Ci) <oo and ¢;(2u) < kp;(u) (6)
i=1
for each i € N and u € [¢;, 1] (see [7] and [13]).
We say that ¢ satisfies condition (%) (¢ € (x)) if for every € € (0,1)
there exists 0 > 0 such that ¢;(u) < 1 — e implies ¢;((1 + d)u) <1 for all
ue R and i € N (see [13]).

Lemma 3. Let ¢ satisfy ds-condition. The following assertions are
true:

(12]) (a) ||z||, = 1 if and only if I,(z) = 1.

(Lemma 9 in [13]) (b) The function ¢ satisfies condition (x) if and
only if for every p € (0,1) there exists q € (0,1) such that the inequality
I (x) <1—p implies ||z|, <1—gq.

Combining some ideas from Lemma 3 in [7] it is not difficult to show
the following two lemmas.

Lemma 4. Assume that ¢* satisfy do-condition. Then there exists a
number y € (0,1) and a sequence 3 = (f3;) with I,(3) < oo such that the
inequality

pi(u/2) < (1 —7)pi(u)/2 (7)

is true for every i € N and u € [§3;,1].

Lemma 5. Let N be a subset of N. Assume that ©* satisfy da-
condition and ; is linear in no neighbourhood of zero for every i € N.
Then for every ¢ > 0 there exists a number v = ~(¢) € (0,1) and a
sequence 3 = (f3;) such that

Y ¢ilB) <e and @i(u/2) < (1-7)pi(u)/2 (8)

1EN

for each i € N and u € [3;, 1].
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Lemma 6 (Theorem 0.1 in [13]). The following conditions are equiv-
alent:

(i) ||znll, — 0 if and only if I,(x,) — O
(ii) ¢ satisfies do-condition and ¢ > 0.

Now we find criteria for property () in Musielak—Orlicz sequence
spaces. But first we need to prove the following modification of Lemma 6.

Lemma 7. The following statements are equivalent:

(i) ||znll, — 0 if and only if I,(x,) — 0 for every sequence (x,) in I,
with elements x,, having pairwise disjoint supports.

(11) p e do.

PROOF. (i) = (ii): If ¢ ¢ J2, the sequence (x,) constructed in the
proof of Lemma 6 has elements with pairwise disjoint supports such that
|lznll, =1 and I,(x,) — 0.

(ii) = (i): Take a sequence (x) in I, with elements x, hav-
ing pairwise disjoint supports such that I,(x,) — 0. We need to prove
that I,(2z,) — 0 (see [24]). Denoting ¢ o z, = (pi(xn(i)));2; we have
l¢ o zy|lp = Iy(zn) — 0. Then there exist y € I1 and a subsequence
(@n, )72, of (xp)pe; such that [poxy,, | <y (see Lemma 2 in [14], p. 138).
Since ¢ € do, there are constants kg, ag > 0 and a sequence c? = (c?)fil elt
of positive reals such that ¢;(2u) < kop;(u) + ¢ for each i € N and u € R
satisfying ¢;(u) < ag. Moreover, we can find a number k; € A such that
I (xp,) < ag for every k > ki, by I (x,) — 0. Then |po (2z,,)] <
koy + @ € l_1~_ for every k > ki. Furthermore, functions ¢ o (2z,,) for
k=1,2,..., have pairwise disjoint supports, so ¢ o (2z,,) — 0 pointwisely
as k — oo. Since I! € (OC), so ||p 02z, ||n = I,(27,,) — 0 as k — oc.
In virtue of the double extract subsequence theorem, we get I,(2z,) — 0
as n — oo. Il

From Lemma 7 we conclude immediately

Corollary 2. If ¢ € §y, then for every € > 0 there exists 0 = () > 0
such that for every sequence (x,,) in l, with elements x,, having pairwise
disjoint supports and satisfying ||z,||, > ¢ for every n € N the inequality
I (xy,) > o holds for almost every n € N.
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Theorem 4. Suppose that ¢ is a Musielak—Orlicz function satisfying
the condition (x). Then the following statement are equivalent:

(i) I, has property (/3).
(ii) I, is nearly uniformly convex.

(iii) functions ¢ and * satisfy d2-condition, i.e. l, is reflexive.

PROOF. The implication (i) = (ii) was proved by ROLEWICZ in [27].
Moreover, every nearly uniformly convex Banach space is reflexive (see
[11]), so (ii)) = (iii).

(ii) = (i). Let € > 0. Take z,2,, € B(l,), n = 1,2,..., such that
sep{z,} > €. Take numbers ¢ = o(¢/8) and v € (0,1) from Corollary 2
and Lemma 4, respectively. Let ¢ = q(yo/4) be from Lemma 3b. Notice
that under our assumptions [, € (OC). Then, analogously as in the proof
of Theorem 3, we conclude that there exists set A C N with card A < co
such that

[zxanalle < g (9)

Since x,, € B(l,), n =1,2,..., so for each i the sequence (z,(7))32; in R
has a convergent subsequence. Then (z,x4)52; has a norm convergent
subsequence in [y, by card A < oo. Thus, passing to a subsequence, if
necessary, we may assume that sep{z,yx A\ A0 Ny 2 /2 for some Ny, by
sep{z,} > €. Hence, by the triangle inequality, ||zn, xanall, > €/4 for
some n; > Ni. Moreover, by I, € (OC), there exists set A1 C M\ A with
card Ay < oo such that |z, x4, ||, > €/8. Similarly as above, there exists
ng € N such that [|2n,xan(aualle > €/4. Furthermore, there exists
set Ay C N\(AU A;) with card Ay < oo such that ||zn,x4,]l, > €/8.
Proceeding in such a way infinitely many times and denoting y, = =n, x4, ,
k=1,2,..., we get that the sequence (y;)72, has elements with pairwise
disjoint supports and ||yx||, > €/8 for every k € N. Applying Corollary 2
we conclude that

Lp(xnkXAk) = Igo(yk:) >0 (10)

for almost every k € N'. Without loss of generality we may assume that
the inequality (10) is true for each k € N. Put zy in place of z,,, for
simplicity. Denote

A,lC = {Z S Ak . \xk(z)\ > ﬂz} and A2 = {Z c Ak . \xk(z)\ < ,BZ},
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where (f3;) is from Lemma 4. We claim that I, (zx,x A1 ) > o/2 for some
0
ko € N. Suppose conversely that

Io(zexar) < o/2 for every k € N. (11)

We have Lp(kaAi) < ZieAi ©i(Bi) — 0 as k—o0, because 7 ¢;(3;) <o
and Ay N A; = 0 for any k # [. Then Lp(a:kXA%) < o0/2 for sufficiently
large k. Then, in view of (10) and (11), we get a contradiction, which
proves the claim. Note that Ay N A = () for any k. Consequently, by
Lemma 4,

1 ’y f}/o’

Igo((erA + xko)/2) < 5(1@(1‘“) + Lp(xko)) - §I¢(xk0XAzlfo) <1- Vi
Thus Lemma 3b yields [[(xxa + %k,)/2|l, < 1 — ¢. Finally, by (9), we get
(@ + 2ry) /2l <1 = q/2. 0

Remark 3. Let ® be an Orlicz function and lg the Orlicz sequence
space. Obviously, I is symmetric. Recall that ® € Jo if there are ug > 0
with ®(up) > 0 and k& > 2 such that ®(2u) < k®(u) for every |u| < wp.
Applying Theorem 4 for Orlicz sequence space we get that lp € (3) iff
® € §3 and P* € J, (notice that every Orlicz function satisfies the condition
(x)). That fact was proved directly in [5] and it was extended in [16]).
Note that if & € d9, then & > 0. However, for a Musielak—Orlicz function
¢ = ()2, the condition ¢ € d2 not guarantee that ¢ > 0. Let

0 if0<u<2™
pi(u) = . .
w?—27% ifu>270
Then a simple computation gets ¢;(2u) < 3-272 for every 0 < u < 27¢
and i € N. Moreover, ¢;(2u) < 4p;(u) + 3 - 272 for every u > 2% and
i € N. Then ¢;(2u) < 4¢;(u) + 3 - 272 for each u > 0 and i € N. Since
33.5°,27% =3/2, s0 p € 5. Furthermore,

27 if 0 <o <27t

¢i(v) = 1 ) )
1’02 +272% jf > 27

It is easy to calculate that ¢f(2v) < 17¢f(v) for every v > 0 and i € N
Hence ¢* € 2. One can check also that ¢ € (x). Then [, has property
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(8), by Theorem 4. On the other hand, I, ¢ (SM), because ¢; vanishes
outside zero for every i € N (Lemma 2.1 in [18]). Hence I, ¢ (UC*).

We thank Professor Henryk Hudzik for the above example, which was
an inspiration for these investigations of Musielak—Orlicz spaces.

Now we find criteria for strict and uniform orthogonal convexity in
Musielak—Orlicz sequence spaces. But first we must recall some necessary
terminology.

We say that an Orlicz function ® is strictly convex on an interval [a, ]
if &%) < (®(u) + ®(v))/2 for all u,v € [a,b], u # v.

Given a Musielak-Orlicz function ¢ = (¢;)72; we define the function
hi: R xR — [0,00) by

20; ()
hi(u,v) = { @i(u) + @i(v)
0 if @i(u) V ¢i(v) =0

if p;(u) V ¢i(v) >0,

for every i € N.

Let ¢ > 0. It is said that a Musielak-Orlicz function ¢ = (¢;)52,
is uniformly convex in the c-neighbourhood of zero if for every a € [0,1)
there exist § € (0,1) and a nonnegative sequence d = (d;) with I,(d) < oo
and ¢;(d;) < ¢ for every i € N such that

hi(u,au) <1 -9

for all u € (d;, ¢; *(c)], i € N. Let N be a subset of N'. We say that a
family (¢;)ien is uniformly convex in the c-neighbourhood of zero if the
function ¢ = (v;)72, has this property, where ¢; = ¢; for i € N and ¢); =0
for i ¢ N.

Lemma 8 (Lemma 5 in [13]). If the function ¢ is uniformly convex in
the c-neighbourhood of zero and each y; is strictly convex on the interval
[0, ;5 (c)], respectively, then for each e € (0,1) there exists p € (0,1) and
a nonnegative sequence (d;) with Y >2, p;(d;) < e such that

hi (u7 U) <1- p
if lu—v|>e(uVwv)anduVoe (di,gpi_l(c)], 1eN.
In the sequel we use the symbol e, = (0,...,0,1,0,...).
———

n—1
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Theorem 5. Let ¢ be a Musielak—Orlicz function. Then [, is ortho-
gonally strictly convex if and only if:

(i) each function ; vanishes only at zero and the function ¢ fulfills the
do-condition.

(ii) ¢; can be linear in a neighborhood of zero for at most one i € N.

(iii) if @y, is linear in a neighborhood of zero for some iy € N, then ¢; is
strictly convex on the interval [0, 1] for every i # iy.

PROOF. Necessity. If I, € (SC*), then I, € (SM), by Lemma 2.
Consequently ¢ € d2 and ¢ > 0 (Lemma 2.1 in [18]). We will show the
necessity of condition (ii). Suppose conversely that there exist i1,i2 € N
and o, ap > 0 such that ¢; is linear on the interval [0, o] for i € {i1,i2}.
Take 0 < a; < «y for ¢ € {il,ig} with gpil(ail) = gDiQ(CLZ'Q) <1. Let b >0
and i3 ¢ {i1,i2} be such that ¢;, (a;,) + @is(b) = 1. Define

T = aj, €, + bejy; and y = aj,ei, + bey,.

Then I,(x) = I,(y) = 1. Hence z,y € S(l,). Denote A = supp = +suppy.
Then ||zxalle = |las, e, |l > 0. Moreover

Io((x +y)/2) = pir (@) /2 + ¢ir(ain) /2 + i5 (b) = 1.

Hence ||(z +y)/2|lp = 1. Thus I, ¢ (SC*).

Assume now that the condition (iii) is not satisfied, i.e. there exist
io,i1 € N, iy # i1, such that ¢;, is linear on an interval [0, o;,] for some
a;, > 0 and ¢;, is affine on an interval [a;,, b;,] for some 0 < a;; < b;; < 1.
Take o € (0,,) and ¢ € (ai;, b;,) such that ¢;, (a;,) + i, (@) = ¢4, (c).
Let i2 ¢ {io,i1} and d > 0 be such that ¢;, (¢) + i, (d) = 1. Define

T = e, + a;, e, +de;, and  y = ce; + deg,.

Then it is easy to conclude that I, ¢ (SC*) similarly as in the above proof
of the necessity of condition (ii).

Sufficiency. Take any x,y € S(I,,) such that [[xxa,, |,V |yxA.,lle > 0,
where A, = suppz + suppy. We divide the proof into three parts.

L. Suppose that |[zx,, llo A lyxa,, lle > 0. Then card Ay > 1. Conse-
quently, by the assumption (ii), there is jo € Az, such that ¢ ; is linear in
no neighborhood of zero. Hence ¢j,(u/2) < ¢j,(u)/2 for every v > 0. Thus
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jo ((2(d0) +4(40))/2) < (#4o(2(j0)) + 4o (4(j0)))/2- So L,((x+y)/2) <1.
This implies ||(z 4+ y)/2|, < 1, since ¢ € 0.

II. Assume that ||zx4,,ll, > 0 and ||yxa,,|l, = 0. If there is i € Ay,
such that ¢; is linear in no neighborhood of zero, then we proceed as in
Case I. Otherwise, in view of assumption (ii), we get card A, = 1. Put
Ay = {io}. Denote B,y = suppz Nsuppy. By (i), we get I, € (SM)
(see [18]). Then , since x € S(l,) and [|zxa,,ll, > 0, so [[zxB,,[l, <1
(Theorem 8 from [9]). However ||yxs,,ll, = 1, by |lyxa,,lle = 0. Thus
we conclude that there exists i1 € By, such that y(i1) > x(i1). Moreover,
since ¢, is linear in a neighborhood of zero, so ¢;, is strictly convex on
the interval [0, 1], by (iii). Then we get that ||(x +v)/2||, < 1 similarly as
in Case .

L If [[zxa,,lle = 0 and [|yxa,,ll, > 0, the proof is analogous as in
Case 1L N

Theorem 6. Let ¢ be a Musielak—Orlicz function. Then [, is orthog-
onally uniformly convex if and only if

(i) each function y; vanishes only at zero, functions ¢ and ¢* fulfill the
do-condition and ¢ satisfies the condition (x).

(ii) ¢; can be linear in a neighborhood of zero for at most one i € N .
(iil) if ¢;, is linear in a neighborhood of zero for some ig € N, then
(1) ¢ is strictly convex on the interval [0, 1] for every i # iy and

(2) (¢i)izti, Is uniformly convex in 1-neighbourhood of zero.

PROOF. Necessity. It is known that I, € (UM) iff ¢ € 62, ¢ > 0 and
@ € (%) (see [18]). Then the necessity of conditions ¢ € d2, ¢ > 0 and
¢ € () follows immediately from Lemma 1. Moreover, if I, € (U C’J‘),
then I, € (), by Theorem 2, and consequently [, is reflexive, so ¢ € 2
and ¢* € d3. The necessity of condition (ii) follows from Theorem 5.

We prove the necessity of condition (iii). We will apply some technics
from the proof of necessity of Theorem 1 in [13]. First note that uniform
convexity of ¢ in the c-neighbourhood of zero is equivalent to the following
condition. o

For every a € (0, 1) there exists 6 € (0, 1) such that ) ¢;(u;(d, a))<oo,
where u; (8, a) = sup{u € [0, ; '(c)] : hi(u, au) > 1 —§}. =1
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It follows from Theorem 5 that if ¢;, is linear in some neighborhood
of zero, then (; is strictly convex on [0, 1] for every i # ig. Consequently,
assuming for the contrary that the condition (iii) is not satisfied, we may
suppose that ¢;, is linear on the interval [0, o;,] for some ig € N, i, > 0
and (¢;)izi, is not uniformly convex in 1-neighbourhood of zero. Denote
No = M\{io}. Hence there exist a € (0,1) and a sequence (d;,) included
in (0,1) and dy | 0 such that

> i) = oo, (12)
i€ N
for every k € N, where u;x = u;(dy,a) € [0,¢; ' (1)]. By the definition of
the sequence u;(0,a) we get
hi(uik, auig) > 1 — 6y, (13)

for each k € N and i € Ny. We divide the proof into two parts.

I. There exists b € (0,1) such that limy_, o SUp;>,, @i(ui) > b for
every m € Np. Then there exist increasing subsequeﬁces (k;) of N and
(ij) of No such that ¢;; (ui,) € (b,1] for every j € N. We denote j and
v; in place of 7; and wu;,;, for simplicity. We consider two subcases.

a. Suppose that

SOJ'(UJ') - ng(an) € (O> Pig (aio)] (14)

for infinitely many j € Ng. Without loss of generality we may assume that
the condition (14) holds for every j > ip. Then there exists a sequence
() in (0, oy, ] such that

Pig () = ¢ (vs) — pj(av;) (15)
for every j > ig. Let b; > 0 be such that
0 (V) + @jr1(bj) =1 (16)

for every j > ig. Define
Tj = aje;, +avje; + bjejq and y; = vje; +bjejy.

Then, by (15) and (16), I (z;) = I,(y;) = 1 for every j > ip. Hence
llzjlle = lly;ll, =1 for every j > ig. Moreover, by (15),

vio () = @j(vs) — @j(avy) > (1 —a)p;(v;) > (1 —a)b
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for every j > ig. Hence, denoting A; = supp z; + supp y;, we get
Iw(ﬁxij) > 1, s0 [|[zjxa,lle > (1 — a)b for every j > ip. On the other
hand, by (13) and by linearity of ¢;, on the interval [0, o, ], we get

+ ©j11(by).

i+ Yj 1 w;(vj) + pjlav;
Lp <J2]> > 2%0(%)_1_(1_51%) J( J) 5 ]( ])

Since 8y, — 0, s0 I,(“5%) — 1, by (15) and (16). Hence |“5% |, — 1,
because we have I,(z) < ||z[|, for every z € B(l,). Thus I, ¢ (UC).
b. Suppose that

p;(vs) — pjlavy) > i (ay) (17)

for almost every j € Ny. We may assume without loss of generality that
the last inequality holds for every j > i9. Then there exists a sequence
(a;) in (a,1) such that ¢ () = @;(vj) — @j(ajv;) for every j > ig. Let
b; > 0 be such that ¢;(v;) + ¢;+1(bj) = 1. Define

Tj = Qyy€ + ajvie; + bj€j+1 and Yj = V€5 + bj6j+1.

Similarly, as in case a, we get zj,y; € S(l,) and [|z;x4;|l, = lligeiolly
for every j > iy. The function h;(u,au) is nondecreasing function of a.
Hence, by (13), h;(vj, ajv;) > 1— 9y, for every j > ip. Then the proof can
finished the same way as in case a.

II. Contrary to I, suppose that for every b € (0, 1) there exists m € Ny
such that limy_, o SUpP;>,, @i(ui) < b. Then we find subsequences (mj) of
Np and (k;) of N, which is increasing such that pi(uir;) < 5 Ao for every

j € Nand ¢ > mj,i # ig. Then, by (12), we conclude that for each j there
exists a set N; of Ny such that

1
1_ﬁ_2(pzuzk 1_27 (18)
1EN;

In the remaining part of the proof we will consider three cases.
a. Suppose that

1
i (Cig) + D pilau,;) < 1— 1
iGNj
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for infinitely many j. Without loss of generality we may assume that the
last inequality holds for every j. Hence, by (18), there exists a sequence
(a;) such that a; € [a,1] for each j and ¢;,(,) = EieNj(‘Pj(uikj) —
pj(aju;)) for every j. Define

a:j:aioei0+g Uik, € and y; = E Wik €5
iGNj iGNj

Then z;,y; € B(ly), by (18). The function hj(u,au) is nondecreasing
function of a. Hence, the same way as in case Ib, applying inequality (18)
we conclude that I, ¢ (UCt).

b. Suppose that

1
i (vig) + Z pilaui;) > 1 - %
iENj

for infinitely many j. Without loss of generality we may suppose that the
above inequality is true for each j. Then, by (18), there exists a sequence
() in (0, a4, ] such that

iolay) + Y pilauir,) = > pi(ui,) (19)

’iGNj ’iGNj

for every j. Define

Tj = aje; + E auik; €; and y; = E Wik €5
’iGNj ’iGNj

Then z;,y; € B(l,), by (18) and (19). Moreover, again by (18) and (19),

Pip () = Z wi(ui;) — pilaug;) > (1 —a) Z pi(up;) > (1 —a)/2.

€N, 1EN;

for every j. Hence, denoting A; = supp x; < suppy;, we get
I@((lfﬁx@) > 1, s0 [[zjxa,lle = (1 —a)/2 for every j. Then, similarly
as in previous cases, one can conclude that [, ¢ (UCL).

c. If
1 1
1= 551 < wiolaio) + > pilaui) <1—

27
iGNj
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for infinitely many j, then, in order to show that [, ¢ (U CL), it is enough
to define

:Ej:aioeio—i—g AUk, € and y; = g Wik €
iENj iENj

Sufficiency. Let € > 0. Take z,y € S(l,) such that ||zxall,V|yxall, >

€, where A = suppz = suppy. Applying Lemma 6 take number o1 > 0
such that

if ||2]|, > €/2, then I,(2) > o7. (20)

Applying Lemma 5 with the number o1/2 we conclude that there exists
~v € (0,1) and a sequence 3 = (3;) such that

D @i(B) <o1/2 and  @i(u/2) < (1-7y)pi(u)/2 (21)
i#io
holds true for each i € M\{ip} and u € [§;, 1], where i is from condition
(iii). Let g1 = g(yo1/4) be from Lemma 3b. Hereafter we assume that

lexalle > &,

because otherwise the proof is analogous. We consider two cases.

L. Suppose that [|zx 4\ fig}llo > €/2. Then

Io(zXA\{ig}) = 01, (22)

by (20). Denote
Ay ={ie A\{io}: |z(@)| > B} and Ay ={i e A\{io} : |z(3)] < Bi}

Then I,(xxa,) < 01/2, by (21). Hence I,(xxa,) > 01/2, by (22). Conse-
quently, applying (21), we get I, ((x+y)/2) < 1—vI,(xx4a,)/2 < 1—v01/4.
Thus [[(z +vy)/2||, < 1 — q1, where ¢ = ¢(yo1/4) is from Lemma 3b.

II. Assume that [[zxangio}lle > €/2. Hence |lzx gl > €/2. Note
that, by the assumptions, [, is a uniformly monotone Kothe space (see
[18]). Moreover, a Kéthe space E € (UM) iff for any v € (0,1) there is
n(v) > 0 such that for any u € Ey with ||ul|[z = 1 and for any A € ¥

if [luxalle > v then [[uxpalle <1—-n(v) (Theorem 6 in [9]). (23)
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Consequently, applying (23) with p1 = 1(e/2), we get |zxan fip} lo < 1—p1.
Take & > 1 with £(1 —p;) < 1 and a € (0,1) such that £(1 — p1) < a.
Applying again Lemma 6 take number o2 > 0 such that

if ||z, > 1 —a, then I (z) > o9. (24)

Let Ny = (supp z Usuppy)\{io} and

&‘{EM*mmwww } d
i

e OGO
&_{EN“M@WWUIE}'

First note that [|yxg,|l, < a, because otherwise we get a contradiction
a < [lyxslle < &Elzxs,lly < £(1 = p1). Consequently |lyxs, |, = 1 - a,
because iy € supp x\ supp y, whence suppy C By U By and [|yxn,lle =
Thus, by (24)

I;(yxB,) = o2 (25)

We apply Lemma 8 with € = (1 — 1/£) A 02/2 for the Musielak—Orlicz
function (¢;)izi,. Then there exists p € (0,1) and a nonnegative sequence
(di) with >, ,; ¢i(d;) < € such that

hi(u7 U) <1l- p (26)

if lu—ov| > &uVo)and uVv e (d,l], i € N\{ip}. First note that
|x(i) — y(i)| > E(Jz(2)| V |y(7)]) for every i € By, because |z(i)| A |y(i)] <
(lx(@)| v ]y(z)\)% Moreover, denoting By = {i € By : |y(i)| > d;}, we get
Isp(yXBl\Bu) < 02/2. Then I,(yxB,,) = 02/2, by (25). Then, applying
(26), we get

Io((x +y)/2) < 1= plp(yxs,,)/2 < 1= pos/4.
Thus ||(z +y)/2|l, < 1 — g2, where g2 = g(po2/4) is from Lemma 3b. O

Taking into account Theorems 5, 6 and Theorems 0.2, 1 in [13] we can
exactly compare the difference between (UC), (SC) and (UC*), (SC),
respectively, in Musielak—Orlicz sequence spaces.

Now we are able to answer the question which has been pointed out
in the introduction. Namely, applying Theorems 4, 5, 6 and Theorem 2.5
from [18] we get the following
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Corollary 3. There exists uniformly monotone, orthogonally strictly
convex Musielak—Orlicz sequence space with property (/) which is not
orthogonally uniformly convex.

Recall that a Nakano space [(,,) is the Musielak-Orlicz space [, where
wi(u) = JulPi, 1 < p; < oo, i = 1,2,... (see [25]). This space can be
isometrically transformed in such a way that @;(u) = wPi if u € [0,1] and
wi(u) = wif u > 1 (see [13]). Notice that ¢ € d9 iff lim; oo p; < 00 and
©* € 69 iff lim; . p; > 1. Moreover ¢ € (*) whenever lim; . p; < 00
and lim, . p; > 1 (see the proof of Theorem 2 in [13]). Then, applying
Theorems 4, 5, 6, Theorems 0.2 and 2 from [13], we get

Corollary 4. (a) [y, has property (3) iff lim; oo p; < oo and

> 1.

Pi)
himi_,oo bi
(b) Thefollowing statements are equivalent:
(1) l(p,) is strictly convex.
(ii) I(p,) is orthogonally strictly convex.
(iii) lim; 0o p; < 00 and p; = 1 for at most one i.
(c) The following statements are equivalent:
(i) I(p,) is uniformly convex.
(ii) I(p,) is orthogonally uniformly convex.

(iii) lim;—eo pi < 00, lim; __p; > 1 and p; = 1 for at most one i.

Note that orthogonally uniformly convex Orlicz sequence space need
not be strictly convex (see [16]). We also conclude that, for Nakano spaces,
the answer for the question pointed out in the introduction is positive
in contrast to the general case of Musielak-Orlicz sequence spaces (see
Corollary 3).

Corollary 5. [(,,) is orthogonally uniformly convex if and only if 1,
is orthogonally strictly convex and it has property ([3).

Applying Theorem 5 to the case of Orlicz sequence spaces we get

Corollary 6. The Orlicz sequence space lg is orthogonally strictly
convex if and only if ® fulfills the ds-condition and ® is linear in no neigh-
borhood of zero.
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Similarly, applying Theorem 6 or Theorems 3 and 4 we get the fol-
lowing criteria for orthogonal uniform convexity in Orlicz sequence spaces
proved in [16].

Corollary 7. The Orlicz sequence space lg is orthogonally uniformly
convex if and only if ® € § and ®* € d,.
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