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Approximate derivations and isomorphisms
in algebras of unbounded operators

By W. TIMMERMANN (Dresden)

Abstract. There are considered mappings between unbounded standard op-
erator algebras. If these mappings are approximate isomorphisms or derivations,
then they are actually isomorphisms or derivations. The proofs are quite similar
to those of S̆emrl for corresponding results for algebras of bounded operators.

1. Introduction and statement of the results

In recent years there can be observed some interest in the following
kind of questions. Given an algebraic structure A (usually a ring or an
algebra) and a mapping G : A → A, what conditions are sufficient to
identify G as an isomorphism/automorphism or a derivation?

Quite different kinds of algebras are considered: function algebras,
Banach- or C∗-algebras, operator algebras etc. However, there are only few
papers investigating such questions for algebras of unbounded operators
(e.g. [5] [6]).

One type of conditions is connected with the notion of locality. An-
other type of conditions is obtained if one drops or weakens the defining
properties of a derivation or isomorphism to get in some sense approxi-
mate derivations or isomorphisms. This issue is well-known as stability of
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functional equations for some kind of mappings of algebraic structures; see
for example [2] and the references therein.

There two papers by P. S̆emrl [7], [8] discussing these questions in
the context of operator algebras. To formulate the results let us collect
some notions and notation.

Let A ⊂ B be two algebras (over C, for simplicity). A mapping D :
A → B is called a linear derivation (or simply a derivation) if

i) D(λA) = λD(A) for all λ ∈ C, A ∈ A
ii) D(A + B) = D(A) + D(B) for all A,B ∈ A
iii) D(AB) = AD(B) + D(A)B for all A,B ∈ A.

If one drops i) D is called an additive derivation or ring derivation; if only
iii) is fulfilled, D is a multiplicative derivation.

For a Banach space X let us denote by B(X ) the Banach algebra of
all bounded operators on X and let F(X ) ⊂ B(X ) be the ideal of all finite
rank operators. An algebra A ⊂ B(X ) is said to be a standard operator
algebra if it contains F(X ). The results of S̆emrl read as follows:

Theorem A ([7]). Let X be an infinite-dimensional Banach space

and A a standard operator algebra on X . Assume that f : R+ → R+ is a

function satisfying

lim
t→∞

f(t)
t

= 0.

Suppose that D : A → B(X ) is a mapping such that

‖D(AB)−AD(B)−D(A)B‖ < f(‖A‖ · ‖B‖)

for all A, B ∈ A. Then there exists T ∈ B(X ) such that D(A) = AT −TA

for all A ∈ A, i.e. D is a spatial derivation.

Theorem B ([8]). Let X and Y be Banach spaces, dim X = ∞,

and let A and B be standard operator algebras on X and Y respectively.

Let ε > 0, and assume that Φ : A → B is a bijective mapping satisfying

‖Φ(AB) − Φ(A)Φ(B)‖ ≤ ε for all A,B ∈ A. Then Φ is of the form

Φ(A) = TAT−1, A ∈ A, where T : X → Y is either a bounded linear

bijective operator or a bounded conjugate linear bijective operator (i.e. Φ
is a so-called spatial isomorphism in case T is linear).
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Let us emphasize that neither in Theorem A nor in Theorem B the
mappings are assumed to be linear or additive! The mapping D in Theorem
A could be called an approximate multiplicative derivation.

Now we turn to algebras of unbounded operators and start with the
necessary notation (a standard reference for algebras of unbounded oper-
ators is [4]).

Let D be a dense linear manifold in a Hilbert space H with scalar
product 〈 , 〉 (which is supposed to be conjugate linear in the first and
linear in the second component). The set of linear operators L+(D) =
{A : AD ⊂ D, A∗D ⊂ D} is a ∗-algebra with respect to the natural
operations and the involution A → A+ = A∗ | D. The graph topology t

on D induced by L+(D) is generated by the directed family of seminorms
φ → ‖φ‖A = ‖Aφ‖, ∀ A ∈ L+(D), φ ∈ D. D is called an (F)-domain, if
(D, t) is an (F)-space. Remark that in this case the graph topology t can
be given by a system of seminorms {‖ · ‖n = ‖An · ‖, n ∈ N, An ∈ L+(D)}
with:

A1 = I, An = A+
n , ‖Anφ‖ ≤ ‖An+1φ‖ for all φ ∈ D, n ∈ N.

A standard operator algebra is a ∗-subalgebra A(D) ⊂ L+(D) containing
the ideal F(D) ⊂ L+(D) of all finite rank operators on D.

In what follows we consider domains D with additional properties.
One of those will be the following:

(B)

There exists an infinite orthonormal system (φn) in D with the
following two properties:
i) there is a sequence (tn), tn 6= 0, tn ∈ C such that

∑
tnφn ∈ D,

ii) for all (sn), sn ∈ C and |sn| ≤ |tn|,
∑

snφn belongs also to D.

Let us remark that this property is clearly fulfilled in the case when D = H
is an infinite dimensional Hilbert space. In a Banach space (φn) must be
replaced by an appropriate basic sequence. In our context of algebras
of unbounded operators this property holds if (D, t) is an (F)-space or a
(QF)-space (for this notion see [4]) which contains at least one bounded
set M which spans an infinite dimensional (F)-subspace of (D, t).

The proofs of the main results in the next two sections are adaptions
of those given by S̆emrl for algebras of bounded operators. Nevertheless,
it seems worthwhile to carry out the proofs for algebras of unbounded
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operators in detail. While the algebraic part of the original proofs cause
no problems, we must be careful when we are concerned with domain
questions. Here several modifications of the assumptions or the proofs are
necessary.

2. Approximate derivations

To prove the main result of this section we need the following two
results concerning derivations. For this let A(D) be a standard operator
algebra.

i) Let D : A(D) → L+(D) be a derivation. Then D is spatial, i.e. there
is a T ∈ L+(D) such that D(A) = [T,A] = TA − TA for all A ∈ A(D),
(see [4]).

ii) Let D fulfil condition (B) (see Section 1) and let D : A(D) → L+(D)
be an additive derivation. Then D is spatial (see [6]).

Theorem 2.1. Let A ⊂ L+(D) be a standard operator algebra on D
with property (B). Assume that f : R+ → R+ is a function satisfying

f(0) = 0 and lim
t→∞

f(t)
t

= 0.

Suppose D : A → L+(D) is a mapping with

|〈φ, (D(AB)−AD(B)−D(A)B)ψ〉| ≤ r(A,B;φ, ψ) ∀φ, ψ ∈ D;A, B ∈ A

where r(A, B; φ, ψ) denotes one of the following three expressions: f(‖Aφ‖·
‖Bψ‖), f(|〈Aφ,Bψ〉|) or f(|〈A+φ,Bψ〉|). Then D is a spatial derivation,

i.e. there is an S ∈ L+(D) such that D(A) = [A,S] = AS − SA.

Proof. The idea consists in proving that D is a multiplicative deriva-
tion on A mapping F(D) into itself. Then a result of Daif [1] implies that
D is an additive derivation and by [6] the proof will be completed. Define
F : A → L(D ⊕D) by

F (A) =
(

A D(A)
0 A

)
.
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Put Φ =
(
φ
0

)
,Ψ =

(
0
ψ

) ∈ D ⊕D with φ, ψ ∈ D. Then

|〈Φ, (F (AB)− F (A)F (B))Ψ〉|

=
∣∣∣∣
〈(

φ

0

)
,

(
AB D(AB)
0 AB

)(
0
ψ

)
−

(
A D(A)
0 A

)(
B D(B)
0 B

)(
0
ψ

)〉∣∣∣∣

= |〈φ, (D(AB)−AD(B) + D(A)B)ψ〉| ≤ r(A,B; φ, ψ). (1)

Let A,B, C ∈ A be arbitrary. A simple computation shows

〈φ, (D(AB)−AD(B)−D(A)B)Cψ〉

=
〈(

φ

0

)
,

(
0 (D(AB)−AD(B)−D(A)B)C
0 0

)(
0
ψ

)〉

= 〈Φ, (F (AB)− F (A)F (B))F (C)Ψ〉.

(2)

Now let us estimate the right-hand side of (2) using (1).

|〈Φ, (F (AB)− F (A)F (B))F (C)Ψ〉|
= |〈Φ, (F (AB)F (C)− F (ABC))Ψ + (F (ABC)− F (A)F (BC))Ψ

+ F (A)(F (BC)− F (B)F (C))Ψ〉|
≤ |〈Φ, (F (AB)F (C)− F (ABC))Ψ〉|+ |〈Φ, (F (ABC)− F (A)F (BC))Ψ〉|

+ |〈F (A)+Φ, (F (BC)− F (B)F (C))Ψ〉|
≤ r(AB, C; φ, ψ) + r(A,BC; φ, ψ) + r(B,C; A+φ, ψ).

Replace C by tC, t ∈ R+ and let t go to infinity. Using the properties
of f and the possible expressions for r we get 〈φ, (D(AB) − AD(B) −
D(A)B)Cψ〉 = 0 for all φ, ψ ∈ D, i.e. (D(AB)− AD(B)−D(A)B)C = 0
for all C ∈ A, hence D(AB) − AD(B) − D(A)B = 0. That means, D

is a multiplicative derivation. We show that D maps F(D) into itself.
Let F ∈ F(D), and choose a projection P ∈ F(D) with PF = F . Then
D(PF ) = D(F ) = D(P )F +PD(F ) implies D(F ) ∈ F(D). But F(D) has
the following properties:

AF(D) = 0 implies A = 0; there is a nontrivial idempotent P ∈ F(D)
such that PF(D)A = 0 implies A = 0, PAPF(D)(I − P ) = 0 implies
PAP = 0. Therefore the assumptions of a theorem of Daif [1] are satisfied
and D is a ring derivation on F(D). By [6] D is a spatial derivation, i.e.
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there is an S ∈ L+(D) with D(A) = AS − SA for all A ∈ F(D). Now let
B ∈ L+(D), A ∈ F(D) be arbitrary, then

|〈φ, (A(BS − SB −D(B))ψ〉|
= |〈φ, (ABS − SAB −AD(B)−ASB + SAB)ψ〉|
= |〈φ, (D(AB)−AD(B)−D(A)B)ψ〉| ≤ r(A,B; φ, ψ).

Now the same argument as above works. Replace A by tA, divide by t and
let t tend to infinity. This implies the desired relation: D(B) = BS − SB

for all B ∈ L+(D). The proof is complete. ¤

Remark 2.2. In contrast to Theorem A we (must) suppose that f(0)=0,
because it may happen that one of the arguments of f indicated in Theo-
rem 2.1 is zero but A or B is not the zero operator. This cannot happen
in Theorem A, because there the arguments are ‖A‖, ‖B‖ resp.

3. Approximate isomorphisms

In this section we prove a variant of Theorem B above for algebras of
unbounded operators in Hilbert space.

Theorem 3.1. Let A,B ⊂ L+(D) be standard operator algebras on

an (F )-domain D. Suppose Φ : A → B is a bijective mapping such that

for every ψ ∈ D there is a δψ > 0 with

‖(Φ(AB)− Φ(A)Φ(B))ψ‖ ≤ δψ ∀A,B ∈ A.

Then there exists a T : D → D, bijective, linear or bijective, conjugate

linear such that

Φ(A) = TAT−1 ∀A ∈ A.

Proof. The proof is an adaption of [8] and is divided into four steps.

Step 1: Φ is a ring isomorphism.
Let A, B ∈ A, φ, ψ ∈ D, C ∈ F(D) ⊂ B. Then there is a D ∈ A such

that Φ(D) = C. Next

|〈φ, (Φ(AB)− Φ(A)Φ(B))Φ(D)ψ〉|
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= |〈φ, (Φ(AB)Φ(D)− Φ(ABD) + Φ(ABD)− Φ(A)Φ(BD)

+ Φ(A)Φ(BD)− Φ(A)Φ(B)Φ(D))ψ〉|
≤ ‖φ‖ · ‖(Φ(AB)Φ(D)− Φ(ABD))ψ‖

+ ‖φ‖ · ‖(Φ(ABD)− Φ(A)Φ(BD))ψ‖
+ ‖Φ(A)+φ‖ · ‖(Φ(BD)− Φ(B)Φ(D))ψ‖ ≤ δψ(2‖φ‖+ ‖Φ(A)+φ‖).

As in the proof of Theorem 2.1, replace C by tC, divide by t and let t →∞.
Then the left-hand side of the estimation above is equal to zero. Since
φ, ψ ∈ D, C ∈ F(D) are arbitrary, it follows that Φ(AB) = Φ(A)Φ(B), i.e.
Φ is multiplicative. Using the fact that every standard operator algebra
is a prime ring, a result by Martindale [3] implies that Φ is a ring
isomorphism.

Step 2: Φ maps rank one projections onto rank one projections.
Let φ0, ψ0 ∈ D such that 〈ψ0, φ0〉 = 1, i.e. 〈ψ0, ·〉φ0 is a rank one

projection. Notice that we will use these ψ0, φ0 in the next step, too.
Φ(〈ψ0, ·〉φ0) is a projection. Suppose it is not of rank one. Then there are
projections Q1, Q2 such that Φ(〈ψ0, ·〉φ0) = Q1 + Q2, Q1 is of rank one
and in F(D) ⊂ B, hence Q2 = Φ(〈ψ0, ·〉φ0) − Q1 ∈ B. Since Φ is a ring
isomorphism there are non-zero projections P1, P2 ∈ A such that Φ(Pi) =
Qi. This implies 〈ψ0, ·〉φ0 = P1 + P2, a contradiction. Hence Φ(〈ψ0, ·〉φ0)
is one-dimensional, i.e. equal to 〈ψ1, ·〉φ1 with φ1, ψ1 ∈ D, 〈ψ1, φ1〉 = 1.
These vectors φ1, ψ1 will also be used in the next step.

Step 3: Define an additive operator T : D → D by

Tφ = Φ(〈ψ0, ·〉φ)φ1

with φ1, ψ0 as above. Then for all φ ∈ D, A ∈ A it follows that TAφ =
Φ(A〈ψ0, ·〉φ)φ1 = Φ(A) · Φ(〈ψ0, ·〉φ)φ1 = Φ(A)Tφ. Hence

TA = Φ(A)T on D (3)

It remains to prove that T is bijective and homogenous, which is the more
complicated part.

i) T is injective: Let Tθ = 0 for some θ ∈ D. Choose χ ∈ D with
〈θ, χ〉 = 〈χ, θ〉 = 1. Then
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0 = Φ(〈χ, ·〉φ0)Tθ = Φ(〈χ, ·〉φ0) · Φ(〈ψ0, ·〉θ)φ1 = Φ(〈χ, ·〉φ0 · 〈ψ0, ·〉θ)φ1 =
Φ(〈ψ0, ·〉φ0)φ1 = 〈ψ1, φ1〉φ1 = φ1.

This is in contradiction with φ1 6= 0.
ii) T is surjective: Let ρ ∈ D. It must be shown that there is χ ∈ D

such that Tχ = ρ. Choose a nonzero σ ∈ D. Since Tσ 6= o there is a φ ∈ D
with 〈φ, Tσ〉 = 1. Moreover, the surjectivity of Φ implies the existence of
an A ∈ A such that Φ(A) = 〈φ, ·〉ρ. Equation (3) gives the desired result:
TAσ = Φ(A)Tσ = 〈φ, Tσ〉ρ = ρ.

Hence χ = Aσ is the desired vector from D.

Step 4: T is homogeneous.
This tricky step uses property (B) of the domain D.
Let φ, ψ ∈ D with 〈ψ, φ〉 = 1, i.e. 〈ψ, ·〉φ is a projection. From Step 2,

Φ(〈ψ, ·〉φ) = 〈ρ, ·〉χ for appropriate χ, ρ ∈ D. Use equation (3) with A =
〈ψ, ·〉φ, then on the one hand Tφ = (T · 〈ψ, ·〉φ)φ = Φ(〈ψ, ·〉φ)Tφ = 〈ρ, ·〉χ ·
Tφ = 〈ρ, Tφ〉χ. On the other hand, for arbitrary nonzero λ ∈ C:
0 6= T (λφ) = T · (〈ψ, ·〉φ)(λφ) = Φ(〈ψ, ·〉φ) T (λφ) = 〈ρ, ·〉χ · T (λφ) =
〈ρ, T (λφ)〉χ.

This means that T (λφ) is in the span of Tφ for all λ ∈ C, φ ∈ D.
Hence for any nonzero φ ∈ D there is an additive mapping τφ : C → C
such that

T (λφ) = τφ(λ)Tφ for all λ ∈ C.

It is quite standard (cf. e.g. [8]) to prove that τφ is actually independent
of φ. Hence there is an additive mapping τ : C → C such that T (λφ) =
τ(λ)Tφ for all φ ∈ D, λ ∈ C.

From τ(λµ)Tφ = T (λµφ) = τ(λ)T (µφ) = τ(λ)τ(µ)Tφ it is seen that
τ is a ring homomorphism of C. Since τ(1) = 1, τ(0) = 0, the range of τ

contains the rationals Q and also Q+ i Q, i.e. the range of τ is dense in C.
Moreover

T−1(pφ) = pT−1φ for all p ∈ Q, φ ∈ D. (4)

We prove that τ is continuous. Suppose this is not the case, then τ is
unbounded on every neighbourhood of zero. Now we will construct two
sequences (φn), (ψn) ⊂ D with the properties:

(i) ‖Akψk‖ < 2−k for all k ∈ N;
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(ii) ‖φk‖ < 2−k for all k ∈ N;

(iii) 〈ψi, T
−1φk〉 = 0 for all i 6= k;

(iv) |τ(〈ψn, T−1φn〉)| > n +
∑n−1

i=1 |τ(〈ψi, T
−1φi〉)|.

The operators Ak are supposed to define the topology t as described in
Section 1.

Let φ1, ψ1 ∈ D be arbitrary with ‖φ1‖ < 2−1, ‖ψ1‖ < 2−1. Suppose
the vectors φ1, · · · , φn, ψ1, · · · , ψn are already chosen with properties (i)–
(iv). Form the following spaces: Kn = lin{T−1φi, ψi : 1 ≤ i≤n}⊂D,
Dn = K⊥n ∩ D. Let Pn be the orthoprojector on Kn. Since Kn is finite-
dimensional, Pn, I−Pn ∈ L+(D), hence (I−Pn)D ⊂ Dn, that means Dn 6=
{0}. Using the surjectivity of T and equation (4) there exists φn+1 ∈ D
such that T−1φn+1 ∈ Dn with ‖φn+1‖ < 2−n−1. Next choose ψ̂n+1 ∈
lin{T−1φ1, · · · , T−1φn}⊥ ∩ D such that

〈ψ̂n+1, T
−1φn+1〉 6= 0, ‖An+1ψ̂n+1‖ < 2−n−1.

As τ is unbounded on the neighbourhood of zero {λ〈ψ̂n+1, T
−1φn+1〉:|λ|<1,

λ ∈ C}, there is ψn+1 = λψ̂n+1, |λ| < 1 such that |τ(〈ψn+1, T
−1φn+1〉)|

fulfils condition (iv). Moreover, by construction (iii) is also fulfilled. The
sequence (χn) with χn =

∑n
i=1 φi is ‖ ‖-bounded and as a consequence of

(i) ψ =
∑∞

i=1 ψi belongs to D. Choose φ ∈ D such that 〈φ, ψ〉 = 1, i.e.
〈ψ, · 〉φ is a projection in L+(D) and so T (〈ψ, · 〉φ)T−1 = Φ(〈ψ, · 〉φ) is
also a projection in L+(D), hence a bounded operator. But

‖Φ(〈ψ, · 〉φ)χn‖=
∥∥∥∥∥T (〈ψ, · 〉φ)T−1

(
n∑

i=1

φi

)∥∥∥∥∥ =

∥∥∥∥∥T

(〈
ψ, T−1

n∑

i=1

φi

〉)
φ

∥∥∥∥∥

=

∣∣∣∣∣τ
(〈

ψ, T−1
n∑

i=1

φi

〉)∣∣∣∣∣ ‖Tφ‖ =

∣∣∣∣∣
n∑

i=1

τ(〈ψ, T−1φi〉)
∣∣∣∣∣ ‖Tφ‖

=

∣∣∣∣∣
n∑

i=1

τ(〈ψi, T
−1φi〉)

∣∣∣∣∣ ‖Tφ‖

≥
(
|τ(〈ψn, T−1φn〉)| −

n∑

i=1

|τ(〈ψi, T
−1φi〉)|

)
‖Tφ‖ ≥ n‖Tφ‖.

This contradiction implies that τ is continuous. Consequently τ(λ) = λ or
τ(λ) = λ̄. Therefore, T is linear or conjugate linear. Now we proved among
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other things that Φ preserves rank one projections into both directions (i.e.
Φ(P ) is of rank one if and only if P is of rank one). In case T is linear this
implies that T belongs to L+(D) [5]. This completes the proof. ¤
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