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Note on a Jensen type functional equation

By WILHELMINA SMAJDOR (Kraków)

Abstract. We look for solutions f : M → S and examine the stability of
the functional equation
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(
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)
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2

)]
,

where M is an Abelian semigroup in which the division by 2 and 3 is performable
and S is an abstract convex cone. Some applications to a multivalued version of
this equation are given.

1. Introduction

Let (S, +) be an Abelian semigroup, written additively. Suppose that
S contains the identity element 0 and for each λ ≥ 0 and s ∈ S, an element
λs in S is defined, for which the following axioms hold

1s = s, λ(µs) = (λµ)s, λ(s + t) = λs + λt, (λ + µ)s = λs + µs,

where s, t ∈ S and λ, µ ≥ 0. Then S is said to be an abstract convex cone.
If s, t, t′ ∈ S, t + s = t′+ s always implies that t = t′, then S is said to

satisfy the cancellation law.
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Suppose that an invariant with respect to translations and positively
homogeneous metric % is given in S, i.e.,

%(t + s, t′ + s) = %(t, t′)

and
%(λs, λt) = λ%(s, t)

for λ > 0 and s, t, t′ ∈ S.
It is easy to see that the mappings [0,∞)× S 3 (λ, s) 7−→ λs ∈ S and

S × S 3 (s, t) 7−→ s + t ∈ S are continuous in the metric topology.
Let (M, +) be an Abelian semigroup with the identity element 0 in

which the division by 2 and 3 is performable.
We are going to look for all solutions f : M → S of the functional

equation

3f

(
x + y + z

3

)
+ f(x) + f(y) + f(z)

= 2
[
f
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x + y
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+ f
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)
+ f

(
z + x

2

)]
.

(1)

The inequality

3f

(
x + y + z

3

)
+ f(x) + f(y) + f(z)

≥ 2
[
f

(
x + y

2

)
+ f

(
y + z

2

)
+ f

(
z + x

2

)]

appeared in T. Popoviciu’s paper [3] in connection with the following
theorem: The real continuous function f defined on an interval I is convex
(i.e. the second divided differences of f are non-negative) if and only if the
above inequality holds true for every triples x, y, z in I.

Tiberiu Trif [7] solved equation (1) in the class of functions f :
X → Y , where X, Y are real vector spaces. His considerationes cannot be
applied in our reality as subtraction in vector spaces was used.

The main objective of this note is to find all solutions f : M → S

of (1) and to examine its stability. The natural range of equation (1) is
a commutative semigroup. If we consider its stability then the semigroup
ought to be endowed with a metric. Restrictions of the second part of
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the paper (the range of f is an abstract convex cone with the cancellation
law and endowed with a complete metric invariant under translations and
positive homogeneous) enable us to prove Theorem 1. The family clb(X)
of all non-empty convex closed and bounded subsets of a real Banach space
fulfils these conditions and we can apply Theorem 1 to study equation (1)
in the multivalued case. The similar results associated with the Jensen
and Pexider functional equations were obtained in [5].

2. Solutions and Hyers–Ulam stability of (1)

We shall assume that

(i) M is a commutative semigroup with zero in which the division by 2
and 3 is performable;

(ii) S is an abstract cone satisfying the cancellation law;

(iii) (S, ρ) is a complete metric space and ρ is invariant with respect to
translations and positively homogeneous.

Let a : M → S be an additive function which means a(x + y) =
a(x) + a(y) for all x, y ∈ M . It is easily seen that for every b ∈ S, the
function f(x) = a(x) + b, x ∈ M , satisfies (1). The converse follows from
the following

Theorem 1. Assume that conditions (i)–(iii) are fulfilled. If ε ≥ 0
and if f : M → S satisfies

%

(
3f

(
x + y + z

3

)
+ f(x) + f(y) + f(z),

2
[
f

(
x + y

2

)
+ f

(
y + z

2

)
+ f

(
z + x

2

)])
≤ ε

(2)

for all x, y, z ∈ M , then there exists a unique additive function a : M → S

such that

% (f(x), a(x) + f(0)) ≤ ε (3)
for x ∈ M .

Proof. Setting in (2) y = x and z = 0 we obtain

%

(
3f

(
2
3
x

)
+ 2f(x) + f(0), 2f(x) + 4f

(
1
2
x

))
≤ ε.
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Since the metric % is invariant with respect to translation and positively
homogeneous, we have

%

(
3
4
f

(
4
3
x

)
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1
4
f(0), f(x)

)
≤ 1

4
ε. (4)

Replacing x by 4
3x, multiplying by 3

4 both the sides of (4) we infer
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3
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f(0),
3
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x
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%
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Hence in virtue of (4) follows

%
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3
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4
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x
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1
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3
4
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By induction we can show that for every positive integer n the inequality
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(5)

holds. Write

fn(x) :=
(

3
4

)n

f

((
4
3

)n

x

)
, x ∈ M, n ∈ N. (6)

It follows by (5) that for arbitrary n,m ∈ N, and x ∈ M we have
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%
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3
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Thus for every x ∈ M , (fn(x))n∈N is a Cauchy sequence. Let

a(x) = lim
n→∞ fn(x), x ∈ M. (7)

Letting n →∞, we obtain by (5)

% (a(x) + f(0), f(x)) ≤ ε.

We have by (2)
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i.e.,

%

(
3fn

(
x + y + z

3

)
+ fn(x) + fn(y) + fn(z),

2
[
fn

(
x + y

2

)
+ fn

(
y + z

2

)
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(
z + x

2

)])
≤

(
3
4

)n

ε.

Passing to the limit as n →∞ we get

3a

(
x + y + z

3

)
+ a(x) + a(y) + a(z)

= 2
[
a

(
x + y

2

)
+ a

(
y + z

2

)
+ a

(
z + x

2

)] (8)

for x, y, z ∈ M , which means that a satisfies equation (1). Since a(0) =
limn→∞(3/4)nf(0) by (7) and (6), we have a(0) = 0. Now we shall prove
that a is an additive function. Putting in (8) y = x we get

3a

(
2x + z

3

)
+ a(z) = 4a

(
x + z

2

)
. (9)

If we put u = 2x+z
3 , (9) turns into

3a(u) + a(z) = 4a

(
3u + z

4

)
, u, z ∈ M. (10)

Substitute z = 0 in (10). Then a
(

3
4u

)
= 3

4a(u) or

a(3u) =
3
4
a(4u). (11)

Setting u = 0 in (10) we obtain a(z) = 4a
(

1
4z

)
or a(4z) = 4a(z). Hence

and by (11), a(3u) = 3a(u). Now formula (10) may be rewritten in the
form a(3u) + a(z) = a(3u + z), whence the additivity of a follows.

To end the proof we have to show the uniqueness of a.
Suppose that (3) holds with an additive function ã : M → S. We have

for arbitrary n ∈ N
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(

3
4
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%
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3
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(

4
3

)n

ã(x)
)



Note on a Jensen type functional equation 709
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(
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)
+ f(0), f
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+
(
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%

(
f
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, ã
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4
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)
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(
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4
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whence a(x) = ã(x), x ∈ M . ¤

Taking ε = 0 in Theorem 1 we obtain the following

Theorem 2. Assume that conditions (i)–(iii) are fulfilled. If f :M→S

satisfies (1), then there exists an additive function a : M → S and b ∈ S

such that f(x) = a(x) + b, x ∈ M .

3. Multivalued solutions of (1)

Let X be a real Banach space and let clb(X) denote the set of all
non-empty convex closed and bounded subsets of X. Introduce a binary
operation

∗
+ in clb(X) by the formula

A
∗
+ B = cl(A + B) = cl(clA + clB),

where A + B denotes the usual Minkowski sum of A and B while clA
denotes the closedness of the set A. The second operation in clb(X) is
given by

λA = {λa : a ∈ A}

for all λ ≥ 0 and A ∈ clb(X). It is easily seen that clb(X) is an abstract
convex cone with the identity element 0 := {0}.

The proof of the following generalization of the Rådström lemma
(cf. [4]) can be found in [6].

Lemma 1. If a set B ⊂ X is a non-empty and bounded and C ⊂ X

is convex and closed, then for every A ⊂ X,

A + B ⊂ C
∗
+ B =⇒ A ⊂ C.
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From Lemma 1, we derive that the cancellation law holds in the ab-
stract convex cone clb(X).

The set clb(X) is a metric space with the Hausdorff distance h defined
as follows

h(A, B) = max
{

sup{d(a,B) : a ∈ A}, sup{d(b, A) : b ∈ B}},

where d(a,B) = inf{‖a − b‖ : b ∈ B}. The metric space (clb(X), h) is
complete (cf. e.g. [1]).

Lemma 2. If A, B,C ∈ clb(X) and λ ≥ 0, then

h(A
∗
+ B, C

∗
+ B) = h(A + B, C + B) = h(A,C), (12)

and

h(λA, λB) = λh(A,B). (13)

The first equality in (12) is easy to verify, the proof of the second one
can be found in [2]. Formula (13) is well known. Thus the abstract cone
clb(X) satisfy assumptions (ii) and (iii).

A multifunction F0 : M → clb(X) is said to be (∗)-additive if

F0(x + y) = F0(x)
∗
+ F0(y)

for all x, y ∈ M .
From Theorem 1 we derive the following result.

Theorem 3. Let (M, +) satisfy condition (i) and let X be a real

Banach space. We assume that ε ≥ 0 and that F : M → clb(X) satisfies

the inequality

h

(
3F

(
x + y + z

3

)
∗
+ F (x)

∗
+ F (y)

∗
+ F (z),

2
[
F

(
x + y

2

)
∗
+ F

(
y + z

2

)
∗
+ F

(
z + x

2

)])
≤ ε,

then there exists a unique (∗)-additive multifunction F0 : M → clb(X)
such that

h
(
F (x), F0(x)

∗
+ F (0)

)
≤ ε

for all x, y ∈ M .



Note on a Jensen type functional equation 711

In particular, putting ε = 0, we have the following result.

Theorem 4. Let (M, +) satisfy assumption (i) and let X be a real

Banach space. If F : M → clb(X) satisfies the functional equation

3F

(
x + y + z

3

)
∗
+ F (x)

∗
+ F (y)

∗
+ F (z)

= 2
[
F

(
x + y

2

)
∗
+ F

(
y + z

2

)
∗
+ F

(
z + x

2

)]
,

(14)

then there exists a (∗)-additive multifunction F0 : M → clb(X) such that

F (x) = F0(x)
∗
+ F (0)

for all x ∈ M. Conversely, every multifunction F (x) = F0(x)
∗
+ B, where

F0 : M → clb(X) is a (∗)-additive multifunction and B ∈ clb(X) is an

arbitrary set, actually satisfies (14).

Remark 1. Every additive multifunction F0 : M → clb(X) which
means

F0(x + y) = F0(x) + F0(y) for all x, y ∈ M (15)

is (∗)-additive. In fact by (15), F0(x + y) = cl(F0(x + y)) = cl(F0(x) +

F0(y)) = F0(x)
∗
+ F0(y).

Remark 2. A (∗)-additive multifunction F0 : M → clb(X) does not
have to be additive. To see that take A,B ∈ clb(X) such that cl(A+B) 6=
A+B. The authoress believes that an example such sets A,B is known but
we will construct one below for convenience of a reader. The multifunction
F : [0,∞)2 → clb(X) given by the formula

F (t1, t2) = cl(t1A + t2B)

is (∗)-additive. Indeed,

F ((t1, t2) + (s1, s2)) = F (t1 + s1, t2 + s2) = cl [(t1 + s1)A + (t2 + s2)B]

= cl [t1A + t2B + s1A + s2B] = cl [cl(t1A + t2B) + cl(s1A + s2B)]

= F (t1, t2)
∗
+ F (s1, s2)
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for all t1, t2, s1, s2 ∈ [0,∞). However, F is not additive, as

F (1, 0) + F (0, 1) = clA + clB = A + B

and

F ((1, 0) + (0, 1)) = F (1, 1) = cl(A + B) 6= A + B = F (1, 0) + F (0, 1).

The following example has been suggested by Dr Anna Kucia (Ka-
towice), the authoress wish to thank her for that in this place. Let X = l1
denote the space of all summable sequences real numbers. For each i ∈ N,
let ei be the vector in l1 with zeros in all its coordinates except the ith

coordinate which is equal to one. Define

A1 =
{(

1 +
1
i

)
ei : i ∈ N

}
, B1 =

{(
−1 +

1
i

)
ei : i ∈ N

}
,

and
A = coA1, B = coB1,

where coA1 denotes the intersection of all convex closed sets containing A1.
At first we observe that

A0 :=

{(
2p1,

3
2
p2,

4
3
p3, . . . ,

i + 1
i

pi, . . .

)
:
∞∑

i=1

pi = 1, pi ≥ 0

}

⊂ A = cl (coA1) ;

for every element of A0 is a limit of some sequence of points belonging
to coA1.

Next, we shall show that A ⊂ A0. Take an arbitrary
a =

(
2p1,

3
2p2,

4
3p3, . . . ,

i+1
i pi, . . .

) ∈ A. Of course pi ≥ 0, i ∈ N. It is
enough to prove that

∑∞
i=1 pi = 1. We can find

an =
(
2pn

1 , 3
2pn

2 , . . . , i+1
i pn

i , . . .
) ∈ co A1, n ∈ N such that limn→∞ an = a

and rn
m := 1−∑m

i=1 pn
i −→ 0 as m →∞ for each n ∈ N. Since

i + 1
i

|pn
i − pi| ≤

∞∑

i=1

i + 1
i

|pn
i − pi| = ‖an − a‖

and limn→∞ ‖an − a‖ = 0,
m∑

i=1

pn
i −→

m∑

i=1

pi as n →∞
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for every m ∈ N. Thus

lim
n→∞ rn

m = 1−
m∑

i=1

pi =: rm (16)

exists for each m ∈ N. Now we shall show that the sequence (rn
m)n∈N

satisfies the Cauchy condition uniformly with respect to m. We have for
all m, k, n ∈ N,

∣∣rn
m − rk

m

∣∣ =
∣∣∣

m∑

i=1

pk
i −

m∑

i=1

pn
i

∣∣∣ ≤
m∑

i=1

∣∣pk
i − pn

i

∣∣ ≤
∞∑

i=1

∣∣pk
i − pn

i

∣∣.

Let us fix ε > 0. Since (an) is convergent, there exists a positive number
α such that ∞∑

i=1

i + 1
i

∣∣pk
i − pn

i

∣∣ < ε

for all n, k > α. Hence
∣∣rn

m − rk
m

∣∣ < ε, n, k > α and m ∈ N.

Now, when k →∞, the sequence (rk
m)k∈N tends to rm and

|rn
m − rm| ≤ ε, for n > α and m ∈ N.

Fix arbitrarily n > α. Since for every m ∈ N,

0 ≤ rm ≤ |rm − rn
m|+ rn

m,

letting m →∞, we obtain lim supm→∞ rm ≤ ε. Consequently,
limm→∞ rm = 0 and by (16),

∑∞
i=1 pi = 1. We have proved that A = A0.

Similarly we can show that

B =

{(
0,−1

2
q2,−2

3
q3, . . . ,− i− 1

i
qi, . . .

)
:
∞∑

i=2

qi = 1, qi ≥ 0

}
.

We observe that 0 ∈ cl(A+B). Indeed the set A+B contains points of the
form 2

(
p1,

1
2p2, . . . ,

1
i pi, . . .

)
, where pi ≥ 0 and

∑∞
i=1 pi = 1. Thus this set

has elements of arbitrarily small norms. To show that 0 6∈ A+B we argue
by contradiction: if for each i ∈ N, i+1

i pi − i−1
i qi = 0 and

∑∞
i=1 pi = 1,∑∞

i=1 qi = 1, we would have then

1 =
∞∑

i=1

pi =
∞∑

i=1

i− 1
i + 1

qi = 1− 2
∞∑

i=1

1
i + 1

qi < 1.
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PODCHORA̧ŻYCH 2, PL-30-084 KRAKÓW

POLAND

E-mail: wsmajdor@wsp.krakow.pl

(Received August 28, 2002; revised February 24, 2003)


