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Note on a Jensen type functional equation

By WILHELMINA SMAJDOR (Krakéw)

Abstract. We look for solutions f : M — S and examine the stability of
the functional equation

3

-2l (57) s (45) = (57))

where M is an Abelian semigroup in which the division by 2 and 3 is performable
and S is an abstract convex cone. Some applications to a multivalued version of
this equation are given.

3f <“y+z> + f@)+ fy) + f(2)

1. Introduction

Let (S,+) be an Abelian semigroup, written additively. Suppose that
S contains the identity element 0 and for each A > 0 and s € .S, an element
As in S is defined, for which the following axioms hold

Is=s, Aus)=Au)s, As+t)=As+ A, (A4 p)s=As+ us,

where s,t € S and A, u > 0. Then S is said to be an abstract convexr cone.
If s,t,t' € S, t+s =t + s always implies that ¢t = ¢/, then S is said to
satisfy the cancellation law.
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Suppose that an invariant with respect to translations and positively
homogeneous metric g is given in S, i.e.,

o(t+s,t' +s) = o(t,t)

and
Q()‘Sa )‘t) = AQ(Sv t)

for A > 0 and s,t,t’' € S.

It is easy to see that the mappings [0,00) X S 3 (A, s) — As € S and
Sx 85 (s,t)— s+t €S are continuous in the metric topology.

Let (M,+) be an Abelian semigroup with the identity element 0 in
which the division by 2 and 3 is performable.

We are going to look for all solutions f : M — S of the functional
equation

3f <:”+3‘”+z> +f(@)+ Fy) + F(2)

2l () () (5))

The inequality

(1)

3

22 () o () o ()

appeared in T. PoprovICIU’s paper [3] in connection with the following
theorem: The real continuous function f defined on an interval I is convex
(i.e. the second divided differences of f are non-negative) if and only if the

3f <‘”y+z> +f(@)+ Fy) + F(2)

above inequality holds true for every triples z, y, z in I.

TiBERIU TRIF [7] solved equation (1) in the class of functions f :
X — Y, where X, Y are real vector spaces. His considerationes cannot be
applied in our reality as subtraction in vector spaces was used.

The main objective of this note is to find all solutions f : M — S
of (1) and to examine its stability. The natural range of equation (1) is
a commutative semigroup. If we consider its stability then the semigroup
ought to be endowed with a metric. Restrictions of the second part of
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the paper (the range of f is an abstract convex cone with the cancellation
law and endowed with a complete metric invariant under translations and
positive homogeneous) enable us to prove Theorem 1. The family clb(X)
of all non-empty convex closed and bounded subsets of a real Banach space
fulfils these conditions and we can apply Theorem 1 to study equation (1)
in the multivalued case. The similar results associated with the Jensen
and Pexider functional equations were obtained in [5].

2. Solutions and Hyers—Ulam stability of (1)

We shall assume that
(i) M is a commutative semigroup with zero in which the division by 2

and 3 is performable;

(ii) S is an abstract cone satisfying the cancellation law;
(iii) (S, p) is a complete metric space and p is invariant with respect to
translations and positively homogeneous.

Let a : M — S be an additive function which means a(z + y) =
a(x) + a(y) for all x,y € M. It is easily seen that for every b € S, the
function f(z) = a(z) + b, x € M, satisfies (1). The converse follows from
the following

Theorem 1. Assume that conditions (i)—(iii) are fulfilled. If ¢ > 0
and if f: M — S satisfies

o (3 (555 ) 4 @)+ 1)+ )

(7)o () (57)]) =

for all x,y,z € M, then there exists a unique additive function a : M — S
such that

(2)

o(f(x),a(z) + f(0)) <e (3)
for x € M.

PROOF. Setting in (2) y = z and z = 0 we obtain

0 <3f (§x> 24 (2)+ £(0), 2/(x) +4f @a:)) <.
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Since the metric p is invariant with respect to translation and positively
homogeneous, we have

o(§1(52) + 1015@) < = (@)

Replacing = by %x, multiplying by % both the sides of (4) we infer

0 ((iyf <<§>2w> + jﬁf(()),%f <§x>> < 4%5,
whence
() ((2)')+ 20+ 3) 1031 (32) +3r0) < 2

Hence in virtue of (4) follows

(') 260 <2 (-

By induction we can show that for every positive integer n the inequality

¢ ((j)f ((3) =) 1|1+ dsmn (j)] f<o>,f<:c>>

LY L A
=1 1 1 c
holds. Write

w3 5 (()5), wermnen

It follows by (5) that for arbitrary n,m € N, and x € M we have

0 Uim (@), Ja(@) = 0 <<i>+mf <<§>+m ) (3 <(§>x)>
@A) st )

()
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TR P @m_l] 1), f <<§>x)>
JELCRECE

1 1+%+-~-+ (2)m1] 0(0, £(0))

< (i)n[erQ(O,f(U))]-

Thus for every € M, (f(z)), oy is a Cauchy sequence. Let
a(%)ﬁ}ﬂﬂ(}ofn(w), z € M. (7)
Letting n — oo, we obtain by (5)
o (a(z) + f(0), f(z)) <e.
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i.e.,

3

o (52) 0 (5) 0 (5))) < ()

Passing to the limit as n — oo we get

o (350 (212N 4 fu@) + fuly) + ful2),
(o (=5)

3a (“g*"’) +a(@) + aly) + a(2)

() (5) ()

for z,y,z € M, which means that a satisfies equation (1). Since a(0) =
lim;,,—.0(3/4)" f(0) by (7) and (6), we have a(0) = 0. Now we shall prove
that a is an additive function. Putting in (8) y = = we get

3a <2x;2>+a(z):4a (x;rz) (9)

If we put u = 22 (9) turns into
3

(8)

3u—+ z

3a(u) + a(z) = 4a 1

R

) , u,z € M. (10)
Substitute z = 0 in (10). Then a (3u) = 3a(u) or
3
a(3u) = Za(4u). (11)

Setting u = 0 in (10) we obtain a(z) = 4a (1z) or a(42) = 4a(z). Hence
and by (11), a(3u) = 3a(u). Now formula (10) may be rewritten in the
form a(3u) 4+ a(z) = a(3u + z), whence the additivity of a follows.

To end the proof we have to show the uniqueness of a.

Suppose that (3) holds with an additive function a : M — S. We have
for arbitrary n € N

otataate) = (3) o ((5) o) (3) aw)
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() ) ()
() rma (32) o)
V() ()
() o) =)

whence a(z) = a(z), z € M. O
Taking € = 0 in Theorem 1 we obtain the following

Theorem 2. Assume that conditions (i)—(iii) are fulfilled. If f: M— S
satisfies (1), then there exists an additive function a : M — S and b € S
such that f(x) =a(x)+b, x € M.

3. Multivalued solutions of (1)

Let X be a real Banach space and let clb(X) denote the set of all
non-empty convex closed and bounded subsets of X. Introduce a binary

operation +in clb(X) by the formula

A+YB=c(A+B)=cl(clA+clB),

where A + B denotes the usual Minkowski sum of A and B while cl A
denotes the closedness of the set A. The second operation in clb(X) is
given by

M ={la:ac A}

for all A > 0 and A € clb(X). It is easily seen that clb(X) is an abstract
convex cone with the identity element 0 := {0}.

The proof of the following generalization of the RADSTROM lemma
(cf. [4]) can be found in [6].

Lemma 1. If a set B C X is a non-empty and bounded and C C X
is convex and closed, then for every A C X,

A+BCcCt+B=— ACC.



710 Wilhelmina Smajdor

From Lemma 1, we derive that the cancellation law holds in the ab-
stract convex cone clb(X).

The set clb(X) is a metric space with the Hausdorff distance h defined
as follows

h(A, B) = max { sup{d(a, B) : a € A}, sup{d(b,A) : b € B}},
where d(a, B) = inf{|ja — b|| : b € B}. The metric space (clb(X),h) is
complete (cf. e.g. [1]).

Lemma 2. If A, B,C € clb(X) and A > 0, then

h(A+ B,C + B) = h(A+ B,C + B) = h(A, C), (12)
and
h(AA, AB) = \h(A, B). (13)

The first equality in (12) is easy to verify, the proof of the second one
can be found in [2]. Formula (13) is well known. Thus the abstract cone
clb(X) satisfy assumptions (ii) and (iii).

A multifunction Fy : M — clb(X) is said to be (x)-additive if

Fo(x +y) = Fo(x) + Foly)

for all z,y € M.
From Theorem 1 we derive the following result.

Theorem 3. Let (M,+) satisfy condition (i) and let X be a real
Banach space. We assume that € > 0 and that F : M — clb(X) satisfies
the inequality

h(3F<x+g+z)er( )+ F(y) + F(z),

F
T+y y+z * z+x
2| F F <
) () e ()] =
then there exists a unique (x)-additive multifunction Fy : M — clb(X)
such that

h (F(m),FO(:U) + F(O)) <e
for all xz,y € M.
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In particular, putting € = 0, we have the following result.

Theorem 4. Let (M,+) satisfy assumption (i) and let X be a real
Banach space. If F': M — clb(X) satisfies the functional equation

3F <$+§+Z> + F(z) + F(y) + F(2)

=2 lr(5) () ()

then there exists a (x)-additive multifunction Fy : M — clb(X) such that

(14)

*

F(z) = Fy(z) + F(0)

for all x € M. Conversely, every multifunction F(x) = Fy(x) + B, where
Fy : M — clb(X) is a (x)-additive multifunction and B € clb(X) is an
arbitrary set, actually satisfies (14).

Remark 1. Every additive multifunction Fy : M — clb(X) which
means
Fo(r+vy) = Fo(x) + Fo(y) forallz,ye M (15)

is (*)-additive. En fact by (15), Fo(z +y) = cl(Fo(z + y)) = cl(Fo(x) +
Fo(y)) = Fo(z) + Fo(y)-

Remark 2. A (x)-additive multifunction Fy : M — clb(X) does not
have to be additive. To see that take A, B € clb(X) such that cl(A+ B) #
A+ B. The authoress believes that an example such sets A, B is known but
we will construct one below for convenience of a reader. The multifunction
F :[0,00)% — cIb(X) given by the formula

F(tl, tg) = Cl(tlA + tQB)
is (x)-additive. Indeed,

F((tl, tg) + (51, 82)) = F(tl + s1,t9 + 82) =cl [(tl + Sl)A + (tg + SQ)B]
=cl [tlA +t9B + s1 A+ SQB] =cl [Cl(tlA + tQB) + Cl(SlA + SQB)}

*
= F(t1,t2) + F(s1,52)
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for all 1,19, 51, 2 € [0,00). However, F' is not additive, as
F(1,0)+ F(0,1) =clA+clB=A+1B
and
F((1,0)4+(0,1)) =F(1,1) =cl(A+B) # A+ B = F(1,0) + F(0,1).

The following example has been suggested by Dr ANNA Kucia (Ka-
towice), the authoress wish to thank her for that in this place. Let X =13
denote the space of all summable sequences real numbers. For each i € N,
let e; be the vector in I; with zeros in all its coordinates except the ith
coordinate which is equal to one. Define

A1:{<1—|—1>6i:i€N}, B1={<—1+1>€i1i€N}a

A =7tcoA,, B =¢toBy,

and

where €04, denotes the intersection of all convex closed sets containing A;.
At first we observe that

3 4 i+1 -
Ay = {(2]91,2172,3]93,...,Z.pz',m) 12% =1, p > 0}
1=
CA=cl(coAy);

for every element of Ag is a limit of some sequence of points belonging
to co Aj.

Next, we shall show that A C Ag. Take an arbitrary
a = (2p1,%pg,%pg,...,%pi,...) € A. Of course p; > 0, i € N. It is
enough to prove that Y ;o p; = 1. We can find
a = (Qp?,%pg,...,#p?,...) € coAq, n € N such that lim,, .., a" = a
and rp, :=1—3 " pl' — 0 as m — oo for each n € N. Since

i+1 Zi+1
: Ip?—pilﬁz ; lp;' — pil = [|a" — a|
=1

and lim,_, ||a™ —al| =0,

m m
E p?—>§ P;  asn — oo
=1 =1



Note on a Jensen type functional equation 713

for every m € N. Thus

lim r —1—217@— Tm (16)

n—00
=1

exists for each m € N. Now we shall show that the sequence (r7,),cx
satisfies the Cauchy condition uniformly with respect to m. We have for
all m, k,n € N,

m m m o
\ﬂ%—ﬁJZ‘zhf—Ejﬁ‘SE:@f—MWSE:@f—%W
=1 =1 =1 =1

Let us fix € > 0. Since (a™) is convergent, there exists a positive number
o such that

+1
2:2 i —pit| <e
=1

for all n, k > «. Hence
}rfn—rfn’ <e, n,k>a and meN.
Now, when k — o0, the sequence (7% )ren tends to r,, and
lrr —rm| <e, forn>a andme€N.
Fix arbitrarily n > «. Since for every m € N,
0<rm < |rm — 1| + 170,
letting m — oo, we obtain limsup,,_,., rm < €. Consequently,

limy;, o0 7 = 0 and by (16), > -2, p; = 1. We have proved that A = Ay.
Similarly we can show that

1 2 i—1 >
B=4(0—-Z¢p.—2¢3.....— 2. )5S q=1. ¢:>0".
{<, 52 =50~ G ) z;% 4> }

We observe that 0 € cl(A+ B). Indeed the set A+ B contains points of the
form 2 (pl, %pg, e %pi, .. .), where p; > 0 and )2, p; = 1. Thus this set
has elements of arbitrarily small norms. To show that 0 ¢ A+ B we argue
by contradiction: if for each ¢ € N, @pl ’ilqi =0and ) 2 p =1,
2, ¢i =1, we would have then
1= Y on= ) e =12 <
A b i1

i=1
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