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Weak automorphisms of the permutation groups S,

By MAREK ZABKA (Gliwice)

0. The notion of weak automorphisms was studied in [3] and [6]. Let

G be a group and let us denote by A(™ the class of all n-ary words in G,
i.e. the set of all functions f : G — G of the form

(1) f(xl,mg,...,xn):x?fl-xZQ-...-xZ”,
where my,ma,... ,m; € Z ( = integers), i1, i2,...,4 € {1,2,...,n}, and
n=1,2,.... We call a permutation 7 of the set G a weak automorphism

of the group G if the mapping 7* : A — A defined by the formula:
(2) (T* ) @1, 20y ) = 7f (7 H2)), 7 Ha), ..., 7 ()

is a bijection, where n = 1,2,... ,n. We denote the set of all weak auto-
morphisms by Aut*G. (cf. [1], [2])

Observe that e is the unique element of A(® and therefore we have
7(e) = e for all 7 € Aut*G (cf. [2]).

The purpose of the paper is to prove the following Theorem

Theorem 0. Fach weak automorphism 7 of the permutation group S,
is of the form 7(z) = a(x)™, where « is an automorphism of the group S,
and m is a positive integer < exp S,,, coprime to n!, and the representation
is unique.

1. In [1] the following proposition is shown:

Proposition 1.1. For any group G, the group Aut G is a normal sub-
group of Aut*G.

Let us start with the simple consequence of the Proposition 1.1.

Lemma 1.1. Let G be a group, z,y € G and 7 € Aut*G. The
following conditions are equivalent:
a) there exists an automorphism ¢ of G such that ¢(x) = y;
b) there exists an automorphism 1 of G such that (7(x)) = 7(y).
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Lemma 1.2. Let H be a set of generators of a group G. If T € Aut*G,
B € AutG and 7(z) = x and 3(x) € H for allx € H, then 7o 3 = [oT.

PROOF. By proposition 1.1 77 o371 o703 € AutG, and it is the
identity on the generating set H, so it is the identity automorphism. O

For any word f of the form (1) we denote by S*(f) the sum of expo-
nents of z;.

Lemma 1.3. If 7 is an weak automorphism of a group G and f is

a word of the form f(x1,...,z,) = x1...%y,, then x = 25" for any
element x € G and i =1,2,... ,n.
PROOF. z =Tf(e,...,e,7 1 (x),e,...,e) = 28" (),

Theorem 1.1. If 7 is a weak automorphism of a group G then 7(x™) =
T(x)" for alln € Z.

PRrROOF. For n =0 Theorem 1.1 means that 7(e) = e.

Now we prove Theorem 1.1 for n > 1. Let f(z1,22,... ,2,) = T1 - 2o
.+ Ty. From Lemma 1.3, we have:

r@") = T (f(r(2),... ,7(2)) = 7(2)5 TN 7@)5" D = r(2)",

Applying Lemma 1.3 in the case n = 2 for the weak automorphism
77! we get:
= ST SHETH)

Hence
m(x)-7(@™h) = f(r(x),7(™") = 7((r7) f)(z,27h) = 7(zz™!) = e
and Theorem 1.1 follows. O

Corollary 1.1. FEach weak automorphism of any group preserves the
order of its element.

The following Lemma 1.4 is a generalization of Lemma 1.3.

Lemma 1.4. If 7 is a weak automorphism of a group G and f is of
the form (1), then

2S5 = ST )
fori=1,2,... ,nand x € G.

Proor. It follows from Theorem 1.1. O
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Lemma 1.5. Let S be a subset of a group G with the property x € S
implies ™ € S for all integersn. Ifx,y € S and ay,as, ... ,ak,b1,ba,... bk
are integers such that:

xa1+a2+--»+ak — ybl+b2+n~+bk —e,

where k = 1,2,..., then:

z®y”t . ay €[S, 8] = gp {s1 sy 5182 1 51,52 € S}

PRrooF. This is obvious for k = 1.

Let us suppose that we have proved Lemma 1.5 for £ < t. To complete
the proof it is enough to notice that we have:

ot . ybl B i s o ybt+1 —

— malybl o zatflybtflxat+at+1ybt+bt+l [ybt+bt+1 ’ xat+1:| [$Gt+1 7 ybt+1] O

Theorem 1.2. Let S be a subset of a group G with the property x € S
implies ™ € S for alln = 1,2,.... Then 7([S,S]) = [7(S), 7(S)] for every
weak automorphism 7 of the group G.

PROOF. At first we prove that 7([S,5]) C [7(S),7(S)]. Let 7 be a
weak automorphism of a group G and f(x1,z2) = [x1,22]. We know from
Theorem 1.1 that z € 7(S) implies 2 € 7(S). Since 7 is a weak au-
tomorphism, (7% f)(u,v) = uv® ... u®vb for some integers ay,... ,a,
b1,...,bx. Hence, applying Lemma 1.4 and Lemma 1.5, we get 7([z,y]) =
rH9) = (7 F)(r (@), 7)) € [7(S), 7(S)]

To complete the proof of Theorem 1.2 it is enough to consider 7~
instead of 7 and 7(95) instead of S. O

1

Corollary 1.2. We have [z,y| = e if and only if [t(x),7(y)] = e for
any weak automorphism 7 of a group G, and z,y € G.

Theorem 1.3. Suppose that 7 is a weak automorphism of a group G
and x,y are elements of G such that [z,y| = e. Then we have [T(z),T(y)] =
e and 7(zy) = 7(z)7(y).

PROOF. Let [z,y] = eand f(z,y) = z-y. By Corollary 1.2, [7(x), 7(y)]
= e. Moreover, 7(zy) = 7°f(7(2),7(y)) = 7(2)¥ 7D . 7(y)STH =
7(z)7(y) according to Lemma 1.3, which completes the proof. O

Corollary 1.3. Every weak automorphism of an abelian group is in
fact an automorphism.
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2. Theorem 2.1. Let G be a group of finite exponent n.
k

k

a) The mapping v — x" is a bijection iff (k,n) = 1.
b) The inverse of x — x" is x — x™, where k - m = 1 modn.
c) If (k,n) =1 then z — z¥ is a weak automorphism of G.

PROOF. a) and b): If z — 2* is a bijection then for every z € G
we have (|z|,k) = 1. So, (k,n) = 1. Conversely, if (k,n) = 1 then there
exists m such that k- m = 1 mod n. Therefore, the mapping z — z¥ is a
bijection, where x — 2" is the inverse mapping.

c) Let 7(x) = ¥, where (k,n) = 1, and let f be a n-ary word of the
form

flry, o, zn) = -2 -
Then 771(z) = 2™ and so:
(Do ) = 7 @) (@), 7 () =
= (g gy

*

Hence 7* is a mapping A™) into A . But (7~1)* is also a mapping A("™)
into A and (771)* o 7* = id| 4n). Hence 7* is a bijection of A™) and
therefore 7 is weak automorphism of G. O

Theorem 2.2. For any group of exponent n the set of all weak au-

tomorphisms of the form x — x¥ is a subgroup of the center of Aut*G
isomorphic to the multiplicative group Z; of the ring Z,,.

Proor. It follows from Theorem 1.1 and Theorem 2.1. O

Theorem 2.3. For any group G of exponent n the set of all weak
automorphisms of the form v — «a(x)¥, where a € AutG, is a normal
subgroup of Aut*G.

Proor. It is a simple consequence of Proposition 1.1, Theorem 2.1
and Theorem 2.2. O

The following Example shows that the set of all weak automorphisms

of the form z — a(x)¥, where a € AutG, could be a proper normal
subgroup of Aut*G.

Example 2.1. Let G be a group of the form:
G = (a,b | [[a,b],a] = [[a,b],b] = [a,b]" = 1).
Each element g € G is of the form
g = a’ba,b]",

where r = 0,1, 2,3, and this form is unique. The exponent of the group
G is infinite, so, if a weak automorphism 7 is of the form 7 = a(z)"™, then
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n =1 or n = —1. Hence, each weak automorphism of the form 7 = a(z)"

satisfies one of the two equations:
T(@-y) =7(x)-7(y) or 7(r-y)=7(y)- 7(2)
Let 7 be defined by
7(aPb?]a,b]") = aPb?[a, bPIT".
It is easy to check that:
a) ToT =id,
b) T(z-y) = 7(x)7(y)[r(z), (y)],
) 7(z-y) # 7(x) - 7(y) and 7(z - y) # 7(y) - 7(x).
Hence, the function 7 is a weak automorphism and it is not of the
form a(z)”. O

3. Now we show that any weak automorphism of the group S,, of all
permutations on n letters is of the form = — a(z)*, where a € Aut S,
(K, |Su]) = 1.

Let By n,1 < k < n/2, denote the set of all compositions of k disjoint
transpositions in the group 5,.

Lemma 3.1. Let 7 be a weak automorphism of a group S,,, which
satisfies the condition 7(B1 ) = B1 . If 7((4,7)) = (p,q) and 7((i,k)) =
(p,7) then 7((j, k)) = (g, 7).

PrOOF. Let us put f(z,y) =x-y-z. For x = (i,j) and y = (i, k) we
have 7((j, k) = 7(z-y-2) = (7" f)(7(2),7(y)) = (7" f)((p, 1), (p, ¢)), which
is a permutation on three letters p, ¢, r. It follows from our hypothesis that
7((j,k)) is a transposition. But 7 is a bijection and so 7((j,%)) = (p, q).

O

Lemma 3.2. If 7 is a weak automorphism of the permutation group
Sy, which satisfies the condition 7(B; ,,) = B ,, then there exists an inner
automorphism « of S,, such that 7(z) = a(x) for each transposition x.

) =
PrROOF. Theorem 1.3 gives [7((1,2)),7((2,3))] # e. Therefore there
exists o(1),0(2),0(3) such that 7((1,2)) = (0(1),0(2)) and 7((2,3)) =
Z())01(2),0(3)). The equality 7((1,3)) = (c(1),0(2)) follows from Lemma

Let us suppose that ¢ is a function: {1,...,k} — {1,...,n} such
that 7((¢,5)) = (0(i),0(j)), where i,7 = 1,2,... k, k > 3. Since 7 is
a bijection and 7((1,2)) = (o(1),0(2)) and 7'(( ,3)) = (0(1),0(3)), so

7((1,k+1)) = (0(1),d), where d is not equal to 0( ),0(2),...,0(k). Let
us put o(k+1) = d. The inductive conclusion follows from Lemma 3.1. So
we have constructed a permutation o € S,, such that 7((z, 7)) = (o(i), 0(j))
for i, =1,2,... ,n. Hence we have 7|g, , = a|p, ,,, where a(z) = ocxo™
and Lemma 3.2 follows. 0O
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Lemma 3.3. For every weak automorphism 7 of S,, there exists an
automorphism « of S,, such that a(z) = 7(x) for all x € By ,.

PROOF. Let n # 6. Then it follows from Lemma 1.1 that for any weak
automorphism 7 of S, there exists k such that 7(B; ,,) = Bj,,. From [4]
we know that | By ,| # |Bg | for n # 6 and k # 1. Hence 7(B1,,) = Bin
and the conclusion follows from Lemma 3.2.

Now let n = 6. As we know from [5] for each automorphism [ of
S6 ﬁ(BQ’6> = 82’6. We have |Bl,6 U B376| = 30 and ’32,6‘ = 45 so from
Lemma 1.1 we obtain that 7(Bsg) = Bag.

Moreover, we shall show that 7(B;g) = B16 or 7(B1,) = Bsg. In-
deed, if 7(B; ) # B1, and 7(B1,6) # B3¢ then let us consider transposi-
tions (7,7) and (j, k) such that 7((¢,7)) € B1,¢ and 7((j, k)) € B3 . From
Theorem 1.3 we know that [7((7, 7)), 7((J, k))] # e so 7((i, 7)) and 7((4, k))
are of the form 7((i,7)) = (p,q) and 7((j, k) = (p,s)(qt)(u, w). Then
7((i,,k)) = 7((6,9)(4, k) = (7" [)(7((5, 9)), 7((4, k))) = (7" F)((p, ), (P, )
(¢, t)(u, w)), where f(z,y) =z -y. We know that (7*f)((p,q), (p, 5)(q,?)
(u,w)) is of the form p o (u,w), where the permutation u fixes v and w.
Therefore its order is not equal to the order of (i, j, k), which contradicts
Corollary 1.1.

From [5] we also know that there exists an automorphism [ of Sg
such that 3(Bsg) = Big. Let § be an automorphism of Sg such that
B(Bsg) = B1 if 7(B16) = B3, and § = id if not. Then the conclusion
follows from Lemma 3.2 after applying it for Fo7. O

In the proof of Lemma 3.5 we use the following obvious number-
theoretical Lemma 3.4:

Lemma 3.4. If my, ms,... ,m, are positive integers such that m,; =
m, mod r for all r -t < n, then there exists m such that m = mj mod k
for all k <n.

Lemma 3.5. If 7 is a weak automorphism of S,, such that 7(z) = x
for each transposition x, then there exists a positive integer m such that
T(y) = y™ for ally € S,,.

Proor. First, we prove that if x is a permutation on some letters
i1,12,... i then 7(x) is a permutation on the same letters. Indeed, there
exists transpositions x1,xs, ... ,x,, on letters i1,1s,... ,4; such that x =
1T+ ... Ty Letusput f(x1,z9,... ,Tm) = X1 T2 .. Ty, Since 7(z;) =
x; for each transposition z;, so we have 7(x) = 7f(x1,22,... ,2m) =
T*(f)(T(ml)a T(Ig), SR 77—(‘7;771)) = T*(f)(xhx% ce wrm)'

Now we prove that if z is a cycle of the form =z = (iy,42,... ,ik),
then 7(z) is also a cycle on the same letters. Indeed, suppose that 7(x)
is not a cycle. Then 7(z) = y; - y2 for some independent permutations.
From Theorem 1.3 we know that * = 77 (y; - y2) = 7 (y1) - 771 (y2)
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and of course 77 !(y;) and 771(y2) are independent, which contradicts the
assumption that x is a cycle.

Now we prove that for each cycle = we have 7(x) = 2™ for some m
(dependent on x) not greater then length of z. Indeed, applying Lemma
1.2 for the set H of all transpositions of S, for B(y) = zyx~! and for
y = x we get 7(z)r = z7(vzr~!) = 27(2). So 7(x) = 2™, where m is a
positive integer.

Further, let us consider two cycles x, y of length k. We have 7(z) = 2™
and 7(y) = y". There exists an inner automorphism 3 of S, such that
B(x) = y, therefore, using Lemma 1.2, we get y* = 76(x) = fBr(x) =
B(x)™ = y™; hence m = w. So, there exists positive integers mqy, ms, ...,
m,, such that 7(z) = z™* for each cycle = of length k. Moreover, if z is
a composition of some disjoint cycles of length k then also 7(x) = x™*,

because of Theorem 1.3.
Now let r,t be positive integers such that r,r -t < n and let x be a

cycle of length r - t. Then z! is a composition of disjoint cycles of length
r. So, using Theorem 1.1, we have 2™ = 7(a)7(z)! = 2™+, Hence
my¢,- = m, mod r. Using Lemma 3.4 we get a positive integer m such that
m = my, mod k. Hence 7(x) = 2™ for each cycle x of S,,.

If z is a composition of disjoint cycles of S,, then using Theorem 1.3
we conclude that also 7(z) = ™. So Lemma 3.5 is proved. O

Now we will PROVE THEOREM 0 from the introduction, which is the
main result of the paper.

PROOF. Let 7 be a weak automorphism of the group S,,. As we

know from Lemma 3.3, there exists an automorphism « of S, such that

a~tr(x) = z for each transposition z of S,. It follows from Lemma 3.5

that there exists a positive integer m such that a='7(z) = ™. Hence
7(z) = a(z)™. Theorem 2.1 implies that m is coprime to n!. Since an
automorphism (3 of S,, can not be of the form (z) = x¥ for k # 1, therefore
the representation 7(x) = a(x)™, with 0 < m < exp(Sy), is unique and
the result follows. O

Corollary 3.1. The group Aut*S,, is the direct product of the group

Aut S,, and the group H of weak automorphisms of the form © — z*,

where k is coprime to n!, and H is isomorphic to the multiplication group
Z of the ring Z,,, where m = exp .S,
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