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Weak automorphisms of the permutation groups Sn

By MAREK ZABKA (Gliwice)

0. The notion of weak automorphisms was studied in [3] and [6]. Let
G be a group and let us denote by A(n) the class of all n-ary words in G,
i.e. the set of all functions f : Gn → G of the form

(1) f(x1, x2, . . . , xn) = xm1
i1
· xm2

i2
· . . . · xml

il
,

where m1,m2, . . . ,ml ∈ Z ( = integers), i1, i2, . . . , il ∈ {1, 2, . . . , n}, and
n = 1, 2, . . . . We call a permutation τ of the set G a weak automorphism
of the group G if the mapping τ∗ : A(n) → A(n) defined by the formula:

(2) (τ∗f)(x1, x2, . . . , xn) = τf(τ−1(x1), τ−1(x2), . . . , τ−1(xn))

is a bijection, where n = 1, 2, . . . , n. We denote the set of all weak auto-
morphisms by Aut∗G. (cf. [1], [2])

Observe that e is the unique element of A(0) and therefore we have
τ(e) = e for all τ ∈ Aut∗G (cf. [2]).

The purpose of the paper is to prove the following Theorem
Theorem 0. Each weak automorphism τ of the permutation group Sn

is of the form τ(x) = α(x)m, where α is an automorphism of the group Sn

and m is a positive integer < exp Sn, coprime to n! , and the representation
is unique.

1. In [1] the following proposition is shown:

Proposition 1.1. For any group G, the group Aut G is a normal sub-
group of Aut∗G.

Let us start with the simple consequence of the Proposition 1.1.
Lemma 1.1. Let G be a group, x, y ∈ G and τ ∈ Aut∗G. The

following conditions are equivalent:
a) there exists an automorphism ϕ of G such that ϕ(x) = y;
b) there exists an automorphism ψ of G such that ψ(τ(x)) = τ(y).
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Lemma 1.2. Let H be a set of generators of a group G. If τ ∈ Aut∗G,
β ∈ Aut G and τ(x) = x and β(x) ∈ H for all x ∈ H, then τ ◦ β = β ◦ τ .

Proof. By proposition 1.1 τ−1 ◦ β−1 ◦ τ ◦ β ∈ Aut G, and it is the
identity on the generating set H, so it is the identity automorphism.

For any word f of the form (1) we denote by Si(f) the sum of expo-
nents of xi.

Lemma 1.3. If τ is an weak automorphism of a group G and f is

a word of the form f(x1, . . . , xn) = x1 . . . xn, then x = xSi(τ∗f) for any
element x ∈ G and i = 1, 2, . . . , n.

Proof. x = τf(e, . . . , e, τ−1(x), e, . . . , e) = xSi(τ∗f).

Theorem 1.1. If τ is a weak automorphism of a group G then τ(xn) =
τ(x)n for all n ∈ Z.

Proof. For n = 0 Theorem 1.1 means that τ(e) = e.

Now we prove Theorem 1.1 for n ≥ 1. Let f(x1, x2, . . . , xn) = x1 ·x2 ·
. . . · xn. From Lemma 1.3, we have:

τ(xn) = τ∗(f(τ(x), . . . , τ(x)) = τ(x)S1(τ∗f) . . . τ(x)Sn(τ∗f) = τ(x)n.

Applying Lemma 1.3 in the case n = 2 for the weak automorphism
τ−1 we get:

x = xS1((τ−1)∗f) = xS2((τ−1)∗f).

Hence

τ(x) · τ(x−1) = f(τ(x), τ(x−1)) = τ(((τ−1)∗f)(x, x−1)) = τ(xx−1) = e

and Theorem 1.1 follows.

Corollary 1.1. Each weak automorphism of any group preserves the
order of its element.

The following Lemma 1.4 is a generalization of Lemma 1.3.

Lemma 1.4. If τ is a weak automorphism of a group G and f is of
the form (1), then

xSif = xSi(τ∗f)

for i = 1, 2, . . . , n and x ∈ G.

Proof. It follows from Theorem 1.1.
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Lemma 1.5. Let S be a subset of a group G with the property x ∈ S
implies xn ∈ S for all integers n. If x, y ∈ S and a1, a2, . . . , ak, b1, b2, . . . , bk
are integers such that:

xa1+a2+...+ak = yb1+b2+...+bk = e,

where k = 1, 2, . . . , then:

xa1yb1 . . . xakybk ∈ [S, S] = gp {s−1
1 s−1

2 s1s2 : s1, s2 ∈ S}.

Proof. This is obvious for k = 1.
Let us suppose that we have proved Lemma 1.5 for k ≤ t. To complete

the proof it is enough to notice that we have:

xa1 · yb1 . . . xat+1 · ybt+1 =

= xa1yb1 . . . xat−1ybt−1xat+at+1ybt+bt+1
[
ybt+bt+1 , xat+1

] [
xat+1 , ybt+1

]
. ¤

Theorem 1.2. Let S be a subset of a group G with the property x ∈ S
implies xn ∈ S for all n = 1, 2, . . . . Then τ([S, S]) = [τ(S), τ(S)] for every
weak automorphism τ of the group G.

Proof. At first we prove that τ([S, S]) ⊂ [τ(S), τ(S)]. Let τ be a
weak automorphism of a group G and f(x1, x2) = [x1, x2]. We know from
Theorem 1.1 that x ∈ τ(S) implies xn ∈ τ(S). Since τ is a weak au-
tomorphism, (τ∗f)(u, v) = ua1vb1 . . . uakvbk for some integers a1, . . . , ak,
b1, . . . , bk. Hence, applying Lemma 1.4 and Lemma 1.5, we get τ([x, y]) =
τf(x, y) = (τ∗f)(τ(x), τ(y)) ∈ [τ(S), τ(S)].

To complete the proof of Theorem 1.2 it is enough to consider τ−1

instead of τ and τ(S) instead of S.

Corollary 1.2. We have [x, y] = e if and only if [τ(x), τ(y)] = e for
any weak automorphism τ of a group G, and x, y ∈ G.

Theorem 1.3. Suppose that τ is a weak automorphism of a group G
and x, y are elements of G such that [x, y] = e. Then we have [τ(x), τ(y)] =
e and τ(xy) = τ(x)τ(y).

Proof. Let [x, y] = e and f(x, y) = x·y. By Corollary 1.2, [τ(x), τ(y)]
= e. Moreover, τ(xy) = τ∗f(τ(x), τ(y)) = τ(x)S1(τ∗f) · τ(y)S2(τ∗f) =
τ(x)τ(y) according to Lemma 1.3, which completes the proof.

Corollary 1.3. Every weak automorphism of an abelian group is in
fact an automorphism.
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2. Theorem 2.1. Let G be a group of finite exponent n.

a) The mapping x → xk is a bijection iff (k, n) = 1.
b) The inverse of x → xk is x → xm, where k ·m ≡ 1mod n.
c) If (k, n) = 1 then x → xk is a weak automorphism of G.

Proof. a) and b): If x → xk is a bijection then for every x ∈ G
we have (|x|, k) = 1. So, (k, n) = 1. Conversely, if (k, n) = 1 then there
exists m such that k ·m ≡ 1 mod n. Therefore, the mapping x → xk is a
bijection, where x → xm is the inverse mapping.

c) Let τ(x) = xk, where (k, n) = 1, and let f be a n-ary word of the
form

f(x1, x2, . . . , xn) = xm1
i1
· xm2

i2
· . . . · xml

il
.

Then τ−1(x) = xm and so:

(τ∗f)(x1, x2, . . . , xn) = τf(τ−1(x1), τ−1(x2), . . . , τ−1(xn)) =

=
(
xmm1

i1
· xmm2

i2
· . . . · xmml

il

)k
.

Hence τ∗ is a mapping A(n) into A(n). But (τ−1)∗ is also a mapping A(n)

into A(n) and (τ−1)∗ ◦ τ∗ = id|A(n) . Hence τ∗ is a bijection of A(n) and
therefore τ is weak automorphism of G.

Theorem 2.2. For any group of exponent n the set of all weak au-
tomorphisms of the form x → xk is a subgroup of the center of Aut∗G
isomorphic to the multiplicative group Z∗n of the ring Zn.

Proof. It follows from Theorem 1.1 and Theorem 2.1.
Theorem 2.3. For any group G of exponent n the set of all weak

automorphisms of the form x → α(x)k, where α ∈ Aut G, is a normal
subgroup of Aut∗G.

Proof. It is a simple consequence of Proposition 1.1, Theorem 2.1
and Theorem 2.2.

The following Example shows that the set of all weak automorphisms
of the form x → α(x)k, where α ∈ Aut G, could be a proper normal
subgroup of Aut∗G.

Example 2.1. Let G be a group of the form:

G = 〈a, b | [[a, b], a] = [[a, b], b] = [a, b]4 = 1〉.
Each element g ∈ G is of the form

g = apbq[a, b]r,

where r = 0, 1, 2, 3, and this form is unique. The exponent of the group
G is infinite, so, if a weak automorphism τ is of the form τ = α(x)n, then



Weak automorphisms of the permutation groups Sn 5

n = 1 or n = −1. Hence, each weak automorphism of the form τ = α(x)n

satisfies one of the two equations:

τ(x · y) = τ(x) · τ(y) or τ(x · y) = τ(y) · τ(x).

Let τ be defined by

τ(apbq[a, b]r) = apbq[a, b]pq+3r.

It is easy to check that:
a) τ ◦ τ = id,
b) τ(x · y) = τ(x)τ(y)[τ(x), τ(y)],
c) τ(x · y) 6= τ(x) · τ(y) and τ(x · y) 6= τ(y) · τ(x).

Hence, the function τ is a weak automorphism and it is not of the
form α(x)n.

3. Now we show that any weak automorphism of the group Sn of all
permutations on n letters is of the form x → α(x)k, where α ∈ Aut Sn,
(k, |Sn|) = 1.

Let Bk,n, 1 ≤ k ≤ n/2, denote the set of all compositions of k disjoint
transpositions in the group Sn.

Lemma 3.1. Let τ be a weak automorphism of a group Sn, which
satisfies the condition τ(B1,n) = B1,n. If τ((i, j)) = (p, q) and τ((i, k)) =
(p, r) then τ((j, k)) = (q, r).

Proof. Let us put f(x, y) = x · y · x. For x = (i, j) and y = (i, k) we
have τ((j, k)) = τ(x ·y ·x) = (τ∗f)(τ(x), τ(y)) = (τ∗f)((p, r), (p, q)), which
is a permutation on three letters p, q, r. It follows from our hypothesis that
τ((j, k)) is a transposition. But τ is a bijection and so τ((j, k)) = (p, q).

Lemma 3.2. If τ is a weak automorphism of the permutation group
Sn, which satisfies the condition τ(B1,n) = B1,n, then there exists an inner
automorphism α of Sn such that τ(x) = α(x) for each transposition x.

Proof. Theorem 1.3 gives [τ((1, 2)), τ((2, 3))] 6= e. Therefore there
exists σ(1), σ(2), σ(3) such that τ((1, 2)) = (σ(1), σ(2)) and τ((2, 3)) =
(σ(2), σ(3)). The equality τ((1, 3)) = (σ(1), σ(2)) follows from Lemma
3.1.

Let us suppose that σ is a function: {1, . . . , k} → {1, . . . , n} such
that τ((i, j)) = (σ(i), σ(j)), where i, j = 1, 2, . . . , k, k ≥ 3. Since τ is
a bijection and τ((1, 2)) = (σ(1), σ(2)) and τ((1, 3)) = (σ(1), σ(3)), so
τ((1, k + 1)) = (σ(1), d), where d is not equal to σ(1), σ(2), . . . , σ(k). Let
us put σ(k+1) = d. The inductive conclusion follows from Lemma 3.1. So
we have constructed a permutation σ ∈ Sn such that τ((i, j)) = (σ(i), σ(j))
for i, j = 1, 2, . . . , n. Hence we have τ |B1,n = α|B1,n , where α(x) = σxσ−1

and Lemma 3.2 follows.
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Lemma 3.3. For every weak automorphism τ of Sn there exists an
automorphism α of Sn such that α(x) = τ(x) for all x ∈ B1,n.

Proof. Let n 6= 6. Then it follows from Lemma 1.1 that for any weak
automorphism τ of Sn there exists k such that τ(B1,n) = Bk,n. From [4]
we know that |B1,n| 6= |Bk,n| for n 6= 6 and k 6= 1. Hence τ(B1,n) = B1,n

and the conclusion follows from Lemma 3.2.
Now let n = 6. As we know from [5] for each automorphism β of

S6 β(B2,6) = B2,6. We have |B1,6 ∪ B3,6| = 30 and |B2,6| = 45 so from
Lemma 1.1 we obtain that τ(B2,6) = B2,6.

Moreover, we shall show that τ(B1,6) = B1,6 or τ(B1,6) = B3,6. In-
deed, if τ(B1,6) 6= B1,6 and τ(B1,6) 6= B3,6 then let us consider transposi-
tions (i, j) and (j, k) such that τ((i, j)) ∈ B1,6 and τ((j, k)) ∈ B3,6. From
Theorem 1.3 we know that [τ((i, j)), τ((j, k))] 6= e so τ((i, j)) and τ((j, k))
are of the form τ((i, j)) = (p, q) and τ((j, k)) = (p, s)(q, t)(u,w). Then
τ((i, j, k)) = τ((i, j)(j, k)) = (τ∗f)(τ((i, j)), τ((j, k))) = (τ∗f)((p, q), (p, s)
(q, t)(u,w)), where f(x, y) = x · y. We know that (τ∗f)((p, q), (p, s)(q, t)
(u,w)) is of the form µ ◦ (u,w), where the permutation µ fixes u and w.
Therefore its order is not equal to the order of (i, j, k), which contradicts
Corollary 1.1.

From [5] we also know that there exists an automorphism β of S6

such that β(B3,6) = B1,6. Let β be an automorphism of S6 such that
β(B3,6) = B1,6 if τ(B1,6) = B3,6 and β = id if not. Then the conclusion
follows from Lemma 3.2 after applying it for β ◦ τ .

In the proof of Lemma 3.5 we use the following obvious number-
theoretical Lemma 3.4:

Lemma 3.4. If m1,m2, . . . , mn are positive integers such that mrt ≡
mr mod r for all r · t ≤ n, then there exists m such that m ≡ mk mod k
for all k ≤ n.

Lemma 3.5. If τ is a weak automorphism of Sn such that τ(x) = x
for each transposition x, then there exists a positive integer m such that
τ(y) = ym for all y ∈ Sn.

Proof. First, we prove that if x is a permutation on some letters
i1, i2, . . . , ik then τ(x) is a permutation on the same letters. Indeed, there
exists transpositions x1, x2, . . . , xm on letters i1, i2, . . . , ik such that x =
x1 ·x2 ·. . .·xm. Let us put f(x1, x2, . . . , xm) = x1 ·x2 ·. . .·xm. Since τ(xi) =
xi for each transposition xi, so we have τ(x) = τf(x1, x2, . . . , xm) =
τ∗(f)(τ(x1), τ(x2), . . . , τ(xm)) = τ∗(f)(x1, x2, . . . , xm).

Now we prove that if x is a cycle of the form x = (i1, i2, . . . , ik),
then τ(x) is also a cycle on the same letters. Indeed, suppose that τ(x)
is not a cycle. Then τ(x) = y1 · y2 for some independent permutations.
From Theorem 1.3 we know that x = τ−1(y1 · y2) = τ−1(y1) · τ−1(y2)



Weak automorphisms of the permutation groups Sn 7

and of course τ−1(y1) and τ−1(y2) are independent, which contradicts the
assumption that x is a cycle.

Now we prove that for each cycle x we have τ(x) = xm for some m
(dependent on x) not greater then length of x. Indeed, applying Lemma
1.2 for the set H of all transpositions of Sn, for β(y) = xyx−1 and for
y = x we get τ(x)x = xτ(xxx−1) = xτ(x). So τ(x) = xm, where m is a
positive integer.

Further, let us consider two cycles x, y of length k. We have τ(x) = xm

and τ(y) = yw. There exists an inner automorphism β of Sn such that
β(x) = y, therefore, using Lemma 1.2, we get yw = τβ(x) = βτ(x) =
β(x)m = ym; hence m = w. So, there exists positive integers m2,m3, . . . ,
mn such that τ(x) = xmk for each cycle x of length k. Moreover, if x is
a composition of some disjoint cycles of length k then also τ(x) = xmk ,
because of Theorem 1.3.

Now let r, t be positive integers such that r, r · t ≤ n and let x be a
cycle of length r · t. Then xt is a composition of disjoint cycles of length
r. So, using Theorem 1.1, we have xmrt = τ(xt)τ(x)t = xmtrt. Hence
mtr ≡ mr mod r. Using Lemma 3.4 we get a positive integer m such that
m ≡ mk mod k. Hence τ(x) = xm for each cycle x of Sn.

If x is a composition of disjoint cycles of Sn then using Theorem 1.3
we conclude that also τ(x) = xm. So Lemma 3.5 is proved.

Now we will prove Theorem 0 from the introduction, which is the
main result of the paper.

Proof. Let τ be a weak automorphism of the group Sn. As we
know from Lemma 3.3, there exists an automorphism α of Sn such that
α−1τ(x) = x for each transposition x of Sn. It follows from Lemma 3.5
that there exists a positive integer m such that α−1τ(x) = xm. Hence
τ(x) = α(x)m. Theorem 2.1 implies that m is coprime to n! . Since an
automorphism β of Sn can not be of the form β(x) = xk for k 6= 1, therefore
the representation τ(x) = α(x)m, with 0 < m < exp(Sn), is unique and
the result follows.

Corollary 3.1. The group Aut∗Sn is the direct product of the group
Aut Sn and the group H of weak automorphisms of the form x → xk,
where k is coprime to n! , and H is isomorphic to the multiplication group
Z∗m of the ring Zm, where m = expSn.
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