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The linear-affine functional equation and group actions

By HARALD FRIPERTINGER (Graz), LUDWIG REICH (Graz)
and JENS SCHWAIGER (Graz)

Abstract. We investigate generalizations of the linear-affine functional equa-
tion

u(rx) = α(r)u(x) + β(r)

usually studied for r, x ∈ R>0 or r, x ∈ R≥1, by introducing a group action of a
group R on a set X on the left hand side, and by studying actions of affine or
arbitrary (semi) groups on the right hand side of this equation.

1. Introduction

The linear-affine functional equation is the equation

u(rx) = α(r)u(x) + β(r)

for the three unknown functions u, α, and β. It is usually studied for r,
x being elements of the group R>0, for r, x belonging to the semigroup
R≥1, but also on intervals, and under certain regularity conditions (like
monotonicity, continuity, boundedness on an interval) on the real-valued
functions u, α and β. (See [1], pp. 37–41 and 148–151, [2], [3], [4], Sec-
tions 2–4, [5], and [10].)
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We want to study the following generalization of the functional equa-
tion above: Let X be a set, R a multiplicative group acting on X, and let
V be a linear space over the field K. We study the linear-affine functional
equation

u(rx) = α(r)u(x) + β(r), r ∈ R, x ∈ X (1)

for the three unknown functions

u : X → V α : R → K β : R → V.

A solution of (1) is indicated as a triple (u, α, β).
A multiplicative group R with neutral element 1 acts on a set X, if

there exists a mapping

∗ : R×X → X, ∗(r, x) = r ∗ x

such that

(r1r2) ∗ x = r1 ∗ (r2 ∗ x), r1, r2 ∈ R, x ∈ X

and
1 ∗ x = x, x ∈ X.

We usually write rx instead of r ∗ x. The orbit R(x) of x ∈ X is defined
as the set {rx | r ∈ R}. It is the equivalence class of x with respect to the
equivalence relation

x1 ∼R x2 :⇐⇒ ∃ r ∈ R : x2 = rx1.

The set of orbits (i.e. the set of equivalence classes) will be denoted by
R\\X = {R(x) | x ∈ X}. A transversal T (R\\X) is a complete set of
orbit representatives. The stabilizer of x ∈ X is Rx = {r ∈ R | rx = x}
which is a subgroup of R. An element x ∈ X is called a fixed point of
r ∈ R if rx = x.

The results concerning this generalization of the linear-affine func-
tional equation will be presented as Lemma 1, Lemma 2, Lemma 4, Lem-
ma 5, Lemma 7, Corollary 18, and Theorem 19. In a final step (cf. Sec-
tion 3) we study the functional equation

u(rx) = ϕ(r)u(x), r ∈ R, x ∈ X (12)
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for the unknown functions

u : X → Y ϕ : R → S

where now X and Y are sets, R is a group acting on X, and S is a
(semi)group acting on Y . It is not difficult to see that (1) is a special case
of (12) (see Section 3).

The description of the general solution of (1) respectively (12) under
the assumptions made in this paper is carried out in the terminology of
group actions (or semigroup actions) and by certain constructions, rather
than by explicit formulas. This seems to be natural in our context, cf. [7],
where analogous methods were applied to the equation of the mean sun.
See also [9] where the general solution of the translation equation is de-
scribed in the same spirit.

2. First generalization by introducing a group action
on the left hand side

2.1. The general solution of (1) in special situations.

Lemma 1. Assume that α = 0. The triple (u, 0, β) is a solution of (1)
if and only if there exists a vector v0 ∈ V such that u(x) = β(r) = v0 for

all x ∈ X and r ∈ R.

Proof. If (u, 0, β) is a solution of (1), then u(rx) = β(r) for all x ∈ X

and r ∈ R, whence u(x) = u(rr−1x) = β(r) for all x ∈ X and r ∈ R.
Conversely, if u = v0, β = v0 for some v0 ∈ V and α = 0, then (u, α, β)

satisfies (1). ¤

Lemma 2. Assume that u is a constant function, say u = v0 ∈ V .

The triple (u, α, β) is a solution of (1) if and only if β(r) = (1 − α(r))v0

for all r ∈ R.

In order to construct all solutions (u, α, β) where u is constant, we

may choose an arbitrary constant function u = v0 ∈ V and an arbitrary

function α and determine β by β(r) = (1−α(r))v0. This gives all solutions

of (1) in the present case.
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If u is not constant, then for each solution (u, α, β) of (1) the function

α is a group homomorphism from R to K∗ := K \ {0}, and (α, β) satisfies

β(rt) = α(r)β(t) + β(r), r, t ∈ R. (2)

Proof. Only the last part of the lemma needs some justification.
Assume that (u, α, β) is a solution of (1) and u is not constant. Then
there exist x, y ∈ X such that u(x) 6= u(y). For r, t ∈ R and x ∈ X we
obtain

u((rt)x)− u((rt)y) = α(rt)u(x) + β(rt)− (
α(rt)u(y) + β(rt)

)

= α(rt)
(
u(x)− u(y)

)

and

u(r(tx))− u(r(ty)) = α(r)
(
u(tx)− u(ty)

)
= α(r)α(t)

(
u(x)− u(y)

)
.

Thus we conclude that α(rt)(u(x) − u(y)) = α(r)α(t)(u(x) − u(y)), and
since u(x) − u(y) 6= 0 it follows that α(rt) = α(r)α(t) for all r, t ∈ R. If
there were some r0 ∈ R such that α(r0) = 0, then α(r) = α(r0r

−1
0 r) =

α(r0)α(r−1
0 r) = 0 for all r ∈ R, whence α = 0. Then, according to

Lemma 1, u is constant. This is a contradiction, thus α(r) 6= 0 for all r ∈ R

which means that α is a group homomorphism. These homomorphism
are also called (onedimensional) characters, but here we rather speak of
homomorphisms.

Moreover, we obtain for r, t ∈ R and x ∈ X that

α(rt)u(x) + β(rt) = u((rt)x) = u(r(tx)) = α(r)
(
α(t)u(x) + β(t)

)
+ β(r)

= α(r)α(t)u(x) +
(
α(r)β(t) + β(r)

)

which implies (2), since α is a homomorphism. ¤

From the last proof we obtain

Corollary 3. If (u, α, β) is a solution of (1) where α is a homomor-

phism, then (α, β) satisfies (2).

Lemma 4. Assume that α = 1. Let R′ := 〈{r∈R | ∃x∈X : rx = x}〉,
then R′ is a normal subgroup of R, in short R′ E R.

If (u, 1, β) is a solution of (1), then β is a group homomorphism and

kerβ ≥ R′.
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In order to construct all solutions (u, 1, β) of (1), assume that β is a

group homomorphism with kerβ≥R′. If u takes arbitrary values u(x0)∈V

for x0 belonging to a transversal T (R\\X) and u(rx0) is defined as u(x0)+
β(r) for all r ∈ R, then (u, 1, β) is a solution of (1). This gives all solutions

of (1) in the present case.

Proof. By definition R′ is a subgroup of R. If r′ belongs to R′,
then there exist n ∈ N, r1, . . . , rn ∈ R, and x1, . . . , xn ∈ X such that
r′ = r1 · · · rn and rixi = xi for 1 ≤ i ≤ n. (We need not explicitly consider
the multiplicative inverse of the elements ri in the representation of r′,
since, if x ∈ X is a fixed point of r ∈ R, then r−1x = r−1(rx) = x, whence
x is also a fixed point of r−1.) In order to prove that R′ is a normal
subgroup of R, we show that tR′t−1 is a subset of R′ for any t ∈ R. The
product tr′t−1 which can be written as (tr1t

−1)(tr2t
−1) · · · (trnt−1) also

belongs to R′, since trit
−1 has txi as a fixed point.

Assume that (u, 1, β) is a solution of (1), then

u(rx) = u(x) + β(r), r ∈ R, x ∈ X.

For r, t ∈ R and x ∈ X we obtain

u(x) + β(rt) = u((rt)x) = u(r(tx)) = u(tx) + β(r)

=
(
u(x) + β(t)

)
+ β(r),

whence β(rt) = β(r) + β(t). In other words, β is a group homomorphism.
(Thus β(r1 · · · rn) = β(r1) + · · ·+ β(rn) for n ∈ N, r1, . . . , rn ∈ R.)

Let r′ = r1 · · · rn with rixi = xi for some xi ∈ X for 1 ≤ i ≤ n.
Consequently ri ∈ R′ and β(ri) = 0 for 1 ≤ i ≤ n, since u(xi) + β(ri) =
u(rixi) = u(xi). Moreover, β(r′) = β(r1 · · · rn) = β(r1) + · · · + β(rn) = 0
for all r′ ∈ R′. Hence kerβ ≥ R′.

Conversely assume that R′ER and β is a homomorphism whose kernel
contains R′. Let x0 be an arbitrary element of T (R\\X) and let u(x0) be
an arbitrary element in V . If we define u(rx0) := u(x0) + β(r), then we
claim that u is well defined on the orbit R(x0). Assume that r1x0 = r2x0

for r1, r2 ∈ R, then r−1
2 r1x = x whence r−1

2 r1 ∈ R′ and consequently
0 = β(r−1

2 r1) = −β(r2)+β(r1) which leads to β(r1) = β(r2) and u(r1x0) =
u(r2x0). If x1 ∈ T (R\\X) is different from x0, then u can be determined on
R(x1) independently from the values of u on R(x0). This way we determine
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functions u defined on X, which is the disjoint union of R(x0) for all x0 ∈
T (R\\X), by choosing for each x0 an arbitrary value u(x0) and by setting
u(rx0) = u(x0) + β(r) for r ∈ R. Finally we have to prove that for each of
these u the triple (u, 1, β) is a solution of (1). Take an arbitrary x ∈ X,
then there exists some r0 ∈ R and a uniquely determined x0 ∈ T (R\\X)
such that x = r0x0. For arbitrary r ∈ R we have u(rx) = u(r(r0x0)) =
u((rr0)x0) = u(x0) + β(rr0) = u(x0) + β(r0) + β(r) = u(r0x0) + β(r) =
u(x)+β(r). It is obvious that each solution (u, 1, β) of (1) can be obtained
in this way. ¤

Lemma 5. Assume that β = 0. If (u, α, 0) is a solution of (1) where

u is not constant, then α is a group homomorphism from R to K∗ and

kerα ≥ R′
u := 〈{r ∈ R | ∃x ∈ X : u(x) 6= 0 and rx = x}〉. Moreover, for

each orbit ω ∈ R\\X, either u(x) = 0 for all x ∈ ω or u(x) 6= 0 for all

x ∈ ω.

In order to construct all solutions (u, α, 0) of (1) where u is not con-

stant, choose a subset X ′ of X as a nonempty union of R-orbits. Let

R′′ := 〈{r ∈ R | ∃x ∈ X ′ : rx = x}〉, and let α : R → K∗ be a homomor-

phism with kerα ≥ R′′. If u(x) = 0 for all x ∈ X \ X ′ and if u takes

arbitrary values u(x0) ∈ V \ {0} for all x0 belonging to a transversal

T (R\\X ′) and u(rx0) is defined as α(r)u(x0) for all r ∈ R, then (u, α, 0)
is a solution of (1). By this construction we obtain all solutions (u, α, 0)
of (1) where u is not identically 0, which allows to determine all solutions

where u is not constant.

Proof. Assume that (u, α, 0) is a solution of (1), then

u(rx) = α(r)u(x), r ∈ R, x ∈ X.

If u is not constant, then according to Lemma 2 the function α is a group
homomorphism from R to K∗. Using similar methods as in the proof of
Lemma 4 we prove that R′

u is a normal subgroup of R and that kerα ≥ R′
u.

Moreover, if u(x0) = 0 for some x0 ∈ X, then u(rx0) = α(r)u(x0) = 0 for
all r ∈ R, whence u is 0 on the orbit R(x0).

Conversely, choose a nonempty subset X ′ of X. We want to determine
all solutions (u, α, β) of (1) where u is 0 on X \ X ′ and u(x) 6= 0 for all
x ∈ X ′. Then, necessarily X ′ is a union of R-orbits. Determine R′′

depending on the action of R on X ′ as indicated above and let α be a
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homomorphism with kerα ≥ R′′. As a matter of fact, R′′ is a normal
subgroup of R. Using similar methods as in the proof of Lemma 4 we
prove that if u takes arbitrary values u(x0) ∈ V \ {0} for all x0 belonging
to a transversal T (R\\X ′) and u(rx0) is defined as α(r)u(x0) for all r ∈ R,
then u is well defined on each orbit and the triple (u, α, 0) is a solution
of (1). ¤

Finally we have to consider the case that u is not constant, α 6= 1
is a homomorphism, and β 6= 0. First we study those solutions where β

satisfies the property

β(rt) = β(tr), r, t ∈ R. (K)

Lemma 6. If (u, α, β) is a solution of (1) where u is not constant,

then β satisfies (K) if and only if β satisfies the so called Kannappan

condition (cf. for instance [8], [6], [11])

β(srt) = β(str), s, r, t ∈ R.

Proof. (K) follows from the Kannappan condition for s = 1.
Conversely, according to Lemma 2, the pair (α, β) satisfies (2). Since

β satisfies (K), for any s, r, t ∈ R we have

β(srt) = α(s)β(rt) + β(s) = α(s)β(tr) + β(s) = β(str). ¤

Consequently we call (K) the Kannappan condition for β.
If β satisfies (K), then the set of all solutions of (1) is described in

Lemma 7. If (α, β) is a solution of (2) where α 6= 1 is a group

homomorphism and β satisfies (K), then for any t 6∈ kerα and for all

r ∈ R

β(r) = (1− α(t))−1(1− α(r))β(t)
holds.

If (u, α, β) is a solution of (1) where u is not constant, α 6= 1, β 6= 0,

and β satisfies (K), then there exists a vector v0 ∈ V \ {0} such that

β(r) = (1 − α(r))v0 for all r ∈ R. Moreover, the function U : X → V

defined by U(x) := u(x)− v0 satisfies

U(rx) = α(r)U(x), (3)
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a functional equation, which was completely solved in Lemma 5. Thus

kerα ≥ 〈{r ∈ R | ∃x ∈ X : u(x) 6= v0 and rx = x}〉.
In order to construct all solutions (u, α, β) of (1) with u not constant,

α 6= 1, and β 6= 0, satisfying (K), we determine all solutions (U,α) of (3)
where U is not constant and α 6= 1. Then for each (U,α) and for any vector

v0 ∈ V \{0}, we get a solution (u, α, β) of (1) by setting u(x) := U(x)+v0

for all x ∈ X, and β(r) := (1 − α(r))v0 for all r ∈ R. These (u, α, β) are

all solutions of (1) under the above conditions.

Proof. Assume that (α, β) is a solution of (2) where α 6= 1 is a group
homomorphism and β satisfies (K), then from β(rt) = β(tr) for r, t ∈ R

we obtain
α(r)β(t) + β(r) = α(t)β(r) + β(t)

and consequently (
1− α(t)

)
β(r) =

(
1− α(r)

)
β(t).

If t0 denotes an element of R such that α(t0) 6= 1, this implies

β(r) = (1− α(t0))−1(1− α(r))β(t0), r ∈ R.

Moreover, β = 0 if and only if β(t0) = 0.
Assume that (u, α, β) is a solution of (1) where u is not constant,

α 6= 1, and β 6= 0, satisfying (K). For arbitrary t0 ∈ R \ kerα we deduce
β(t0) 6= 0 and β(r) = (1−α(r))v0 for v0 = (1−α(t0))−1β(t0). This allows
to rewrite (1) as

u(rx) = α(r)u(x) + (1− α(r))v0 = α(r)
(
u(x)− v0

)
+ v0.

Introducing U : R → V by U(x) := u(x)− v0 we end up with the equation

U(rx) = α(r)U(x) (3)

with U not constant, which was solved in Lemma 5. Since (U,α) is a
solution of (3) where U is not constant, kerα ≥ R′

U = 〈{r ∈ R | ∃x ∈ X :
U(x) 6= 0 and rx = x〉} = 〈{r ∈ R | ∃x ∈ X : u(x) 6= v0 and rx = x}〉.

Conversely, if (U,α) is a solution of (3) where U is not constant, and
if v0 is an arbitrary element of V \ {0}, then the triple (u, α, β) with
u(x) = U(x) + v0 for x ∈ X, and β(r) = (1 − α(r))v0 for r ∈ R is a
solution of (1) since

u(rx) = U(rx) + v0 = α(r)U(x) + v0 = α(r)
(
u(x)− v0

)
+ v0
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= α(r)u(x) +
(
1− α(r)

)
v0 = α(r)u(x) + β(r). ¤

Hence, it is important to analyze, under which conditions β necessarily
satisfies (K).

Lemma 8. Assume that α 6= 1 is a group homomorphism and that

(α, β) satisfies (2).
There exists a function u and some x0 ∈ X such that (u, α, β) is a

solution of (1) where u is constant on the orbit R(x0) if and only if β

satisfies (K).

Proof. If (u, α, β) is a solution of (1) and (2) where α is a homomor-
phism and where u is constant on the orbit R(x0), then u(x0) = u(rx0) =
α(r)u(x0) + β(r) for all r ∈ R, whence β(r) = (1 − α(r))u(x0). For that
reason β(rt) = (1−α(rt))u(x0) = (1−α(r)α(t))u(x0) = (1−α(tr))u(x0) =
β(tr) for all r, t ∈ R. Thus β satisfies (K).

Conversely assume that β satisfies (K). Since α 6= 1, according to
Lemma 7 β(r) = (1− α(r))v0 with v0 = (1 − α(t0))−1β(t0) for some t0 6∈
kerα and for all r ∈ R. Define u(x) = v0 for all x ∈ X, then u is constant
on any orbit of R, and α(r)u(x)+β(r) = α(r)v0+(1−α(r))v0 = v0 = u(rx)
for all r ∈ R and x ∈ X. Consequently (u, α, β) is a solution of (1). ¤

Corollary 9. If there exists an orbit ω ∈ R\\X of cardinality 1, then

for each solution (u, α, β) of (1), where α is a homomorphism, the function

β satisfies (K).

Proof. If α = 1 and (u, α, β) is a solution of (1), then according to
Lemma 4 the function β is a homomorphism, whence it satisfies (K). If
α 6=1 is a homomorphism, then our claim follows directly from Lemma 8.

¤

An interesting application of the last Corollary is described in

Example 10. If X = R and R acts by conjugation on itself, then (1)
means

u(rtr−1) = α(r)u(t) + β(r), r, t ∈ R. (4)

Since the conjugacy class of 1 consists of only one element, for each
solution (u, α, β) of (4) where α is a homomorphism the function β satis-
fies (K).
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By setting t = r we derive from (4) that

(1− α(r))u(r) = β(r),

whence β(r) = 0 for all r ∈ kerα.
If α = 1, then β = 0 and u is constant on each conjugacy class in R.
If α 6= 1, we get for r 6∈ kerα

u(r) = (1− α(r))−1β(r).

For t = 1 we also derive from (4) that

u(1) = (1− α(r))−1β(r), r 6∈ kerα,

thus
u(r) = u(1), r 6∈ kerα.

Moreover, u restricted to the center C(R) := {r ∈ R | rt = tr for all t ∈ R}
is constant. Assuming in contrary that there exist two elements r1 and r2

in C(R) with u(r1) 6= u(r2), then it follows from Lemma 7 (for v0 = u(r1),
say) that kerα ≥ {

t ∈ R | tr2t
−1 = r2

}
= R, which is a contradiction to

α 6= 1. Hence u(1) = v0, u(r) = v0 for all r ∈ C(R) and for all r 6∈ kerα.
As a first consequence we derive that

β(r) = (1− α(r))v0, r ∈ R.

As a second consequence we see that only the values u(r) for r ∈ R′ :=
kerα\C(R) can be different from v0. The set R′ decomposes into conjugacy
classes CR(t), on each of which the function u is uniquely determined by
the single value u(t) of the representative t of the conjugacy class CR(t)
and by the formula u(rtr−1) = α(r)u(t) + (1−α(r))v0 for all r ∈ R which
is a direct consequence of (4).

2.2. The general solution of (1) for α 6= 1, β 6= 0 and u not a
constant function.

As we already saw, it is crucial to determine all solutions (α, β) of (2)
where α is a group homomorphism. Some properties of β are collected in

Lemma 11. If (α, β) is a solution of (2) where α : R → K∗ is a

group homomorphism, then
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• β(1) = 0
• β(rn) = (1− α(r))−1(1− α(r)n)β(r) for all n ∈ Z and r 6∈ kerα

• β(rn) = nβ(r) for all n ∈ Z and r ∈ kerα

• β(r−1) = −α(r)−1β(r) for r ∈ R

• for n ∈ N and r1, . . . , rn ∈ R we have

β(r1 · · · rn) =
n∑

j=1

(
j−1∏

i=1

α(ri)

)
β(rj)

• α(r)
(
β(r−1tr)− β(t)

)
= β(rt)− β(tr) for all r, t ∈ R.

Now we are going to interpret the functional equation (2) for α : R →
K∗, being a homomorphism, and β : R → V in the language of Linear
Algebra, i.e. in terms of certain automorphisms of the vector space V ×K.

For any pair (α, β) where α : R → K∗ and β : R → V , and for any
r ∈ R the mapping

Φ(α,β)
r : V ×K → V ×K with Φ(α,β)

r (v, λ) = (α(r)v + λβ(r), λ),

(v, λ) ∈ V ×K

is a vector space automorphism of V ×K. In order to show that Φ(α,β)
r is

a homomorphism fix r ∈ R. For a = α(r), b = β(r) we have Φ(α,β)
r (v, λ) =

(av+λb, λ). This is a homomorphism since (v, λ) 7→ av+λb and (v, λ) 7→ λ

are linear. Moreover, Φ(α,β)
r is injective, since Φ(α,β)

r (v1, λ1) = Φ(α,β)
r (v2, λ2)

implies (av1 + λ1b, λ1) = (av2 + λ2b, λ2). Hence λ1 = λ2. Consequently
av1 = av2, which leads to v1 = v2 since a = α(r) 6= 0. Finally it is surjec-
tive, since for arbitrary (v2, λ2) ∈ V ×K let λ1 = λ2 and v1 = a−1(v2−λ1b),
then (v1, λ1) ∈ V ×K and Φ(α,β)

r (v1, λ1) = (v2, λ2).
All solutions of (2) are implicitly described in

Lemma 12. 1. Assume that α(r) 6= 0 for all r ∈ R. The pair (α, β)
is a solution of (2) and α is a homomorphism if and only if the mapping

Φ(α,β) : R → Aut(V ×K), r 7→ Φ(α,β)(r) := Φ(α,β)
r

is a group homomorphism.
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2. Let (bi)i∈I be a basis of V , and write

β(r) =
∑

i∈I

∗
βi(r)bi, r ∈ R

as a formally infinite sum with coefficient functions βi : R → K for i ∈ I.

Then (α, β) is a solution of (2) and α is a group homomorphism if and

only if for all i ∈ I the mappings

R 3 r 7→
(

α(r) βi(r)
0 1

)
∈ GL2(K) (5)

are group homomorphisms from R into the general linear group of 2 × 2-

matrices over K.

Proof. Assume that (α, β) satisfies (2) and α is a homomorphism.
Choose r, t ∈ R and (v, λ) ∈ V ×K. Then

Φ(α,β)
rt (v, λ) =

(
α(rt)v + λβ(rt), λ

)
=

(
α(r)α(t)v + λ(α(r)β(t) + β(r)), λ

)

=
(
α(r)(α(t)v + λβ(t)) + λβ(r), λ

)

= Φ(α,β)
r (α(t)v + λβ(t), λ) = Φ(α,β)

r (Φ(α,β)
t (v, λ)),

whence Φ(α,β)
rt = Φ(α,β)

r ◦ Φ(α,β)
t .

Assume conversely that the mapping Φ(α,β) is a group homomorphism,
then for all (v, λ) ∈ V ×K and for all r, t ∈ R we have

Φ(α,β)
rt (v, λ) = (Φ(α,β)

r ◦ Φ(α,β)
t )(v, λ).

This means

(α(rt)v + λβ(rt), λ) =
(
α(r)(α(t)v + λβ(t)) + λβ(r), λ

)
.

For λ = 0 and v 6= 0 we obtain α(rt)v = α(r)α(t)v, whence α is a homo-
morphism. Moreover, for λ 6= 0 we obtain λβ(rt) = α(r)λβ(t) + λβ(r),
whence (α, β) satisfies (2).

Moreover, it is clear that the mapping

Φ :
{
(α, β) | α ∈ (K∗)R, β ∈ V R

} →
{

Φ(α,β) | α ∈ (K∗)R, β ∈ V R
}

,

Φ(α, β) := Φ(α,β)
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is a bijection.
Using the basis (bi)i∈I of V , each element v of V can be written as a

formally infinite sum

v =
∑

i∈I

∗
vibi, vi ∈ K

with only finitely many vi 6= 0. Expressing also β in terms of its coefficient
functions βi we obtain

Φ(α,β)
rt (v, λ) =

( ∑

i∈I

∗
(α(rt)vi + λβi(rt))bi, λ

)

and

Φ(α,β)
r (Φ(α,β)

t (v, λ)) =
( ∑

i∈I

∗(
α(r)(α(t)vi + λβi(t)) + λβi(r)

)
bi, λ

)
.

Comparing coefficients we derive that Φ(α,β) is a group homomorphism if
and only if the mapping

R 3 r 7→
(

α(r) βi(r)
0 1

)
∈ GL2(K) (5)

is a group homomorphism for all i ∈ I. For λ = 0 we obtain that α is a
homomorphism, and then for λ = 1 we obtain that βi(rt) = α(r)βi(t) +
βi(r). ¤

This way we described all solutions (α, β) of (2) where α is a ho-
momorphism. Here we assume the homomorphisms (5) as known. This
procedure is similar to what happens usually in the investigation of certain
functional equations where additive and generalized exponential functions
are considered as known.

Finally for a given solution (α, β) of (2) we analyse under which con-
ditions there exists a function u such that (u, α, β) is a solution of (1).

Lemma 13. If (u, α, β) is a solution of (1) where α is a group homo-

morphism, then for x ∈ X and r ∈ Rx (the stabilizer of x) we have

β(r) = (1− α(r))u(x).

Hence, β(r) = 0 for all r ∈ Rx ∩ kerα and u(x) = (1− α(r))−1β(r) for all

r ∈ Rx \ kerα.
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Proof. Choose x ∈ X and assume that r belongs to the stabilizer
of x, then

u(x) = u(rx) = α(r)u(x) + β(r),
whence β(r) = (1− α(r))u(x). If moreover r ∈ Rx ∩ kerα then β(r) = 0.
For any r ∈ Rx \ kerα the function r 7→ (1 − α(r))−1β(r) takes the same
value u(x). ¤

This motivates us to introduce a function γ : R \ kerα → V by

γ(r) := (1− α(r))−1β(r). (6)

From the last lemma we derive that γ is constant on Rx \ kerα for all
x ∈ X.

Lemma 14. Assume (u, α, β) is a solution of (1) where α is a group

homomorphism, and that x and y are two different elements of X, such

that (Rx ∩Ry) \ kerα 6= ∅. Then γ is constant on (Rx ∪Ry) \ kerα.

Proof. According to Lemma 13, the function γ is constant both on
Rx \ kerα and Ry \ kerα. Since (Rx \ kerα) ∩ (Ry \ kerα) which equals
(Rx ∩ Ry) \ kerα is not empty by assumption, the function γ is constant
on (Rx \ kerα) ∪ (Ry \ kerα) = (Rx ∪Ry) \ kerα. ¤

Lemma 15. Let (α, β) be a solution of (2) where α is a group homo-

morphism, let x0 ∈ X, and assume that there exists a vector v0 ∈ V such

that

α(r)v0 + β(r) = v0, r ∈ Rx0 . (7)

Then the function u : R(x0) → V defined by

u(rx0) = α(r)v0 + β(r), r ∈ R (8)

satisfies (1) on the orbit R(x0). It is the unique solution (u, α, β) on R(x0)
with u(x0) = v0.

Condition (7) is equivalent to

β(r) = 0, r ∈ Rx0 ∩ kerα

γ(r) = v0, r ∈ Rx0 \ kerα.
(9)



The linear-affine functional equation and group actions 223

Proof. First we show that u satisfies (1) on R(x0). For x ∈ R(x0)
there exists some r0 ∈ R such that x = r0x0. The function u is well defined,
since if r0x0 = r1x0 for some r1 ∈ R, then r−1

1 r0 belongs to Rx0 , whence
α(r−1

1 r0)v0 + β(r−1
1 r0) = v0. Since (α, β) is a solution of (2) and α is a

homomorphism, we obtain from the last equality that α(r1)−1α(r0)v0 +
α(r1)−1β(r0) + β(r1)−1 = v0. An application of the fourth item of Lem-
ma 11 yields finally α(r1)−1(α(r0)v0+β(r0)−β(r1)) = v0, whence α(r0)v0+
β(r0) = α(r1)v0+β(r1). This shows that the value of u(x) does not depend
on the special choice of r0 or r1.

For r ∈ R and for x = r0x0 ∈ R(x0) we obtain

u(rx) = u(r(r0x0)) = u((rr0)x0) = α(rr0)v0 + β(rr0)

= α(r)α(r0)v0 + α(r)β(r0) + β(r)

= α(r)
(
α(r0)v0 + β(r0)

)
+ β(r) = α(r)u(x) + β(r).

This shows that (u, α, β) satisfies (1) for all x ∈ R(x0).
If (u, α, β) is a solution of (1) with u(x0) = v0, then

u(rx0) = α(r)u(x0) + β(r) = α(r)v0 + β(r),

whence the restriction of u to R(x0) is of the form (7).
If (α, β) and v0 satisfy (7), then β(r) = (1 − α(r))v0, whence (9) is

satisfied. Conversely, if β and γ satisfy (9), then β(r) = (1 − α(r))v0 for
all r ∈ Rx0 , consequently (7) is satisfied. ¤

Remark 16. Assume that R acts transitively on X, in other words
R(x0) = X for x0 ∈ X. If (u, α, β) is a solution of (1) where α is a group
homomorphism, then

β(r) = 0, r ∈
( ⋃

t∈R

tRx0t
−1

)
∩ kerα,

and γ is constant on tRx0t
−1 \ kerα for any t ∈ R.

If (α, β) is a solution of (2) where α is a group homomorphism, and (9)
is satisfied for some v0 ∈ V , then for u given by (8) the triple (u, α, β) is a
solution of (1). We obtain, in the present situation, all solutions (u, α, β)
of (1) by this construction.
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Proof. Since (u, α, β) is a solution of (1) and since R(x0) = X, ac-
cording to Lemma 15, the function β vanishes on Rx0 ∩ kerα. But X can
also be expressed as the orbit R(tx0) for any t ∈ R, whence β(r) = 0 for all
r ∈ Rtx0 ∩ kerα which equals tRx0t

−1 ∩ kerα. The same argument shows
that γ is constant on tRx0t

−1 \ kerα. ¤

If R acts transitively on X, then we determined in the last remark
the set of all solutions (u, α, β) of (1). Finally we still have to deal with
the situation that X decomposes into several orbits. We have to analyse
whether different orbits impose new conditions on u.

Let
T := {r ∈ R | ∃x ∈ X : rx = x} (10)

be the set of all elements of the group R which have at least one fixed
point. The set of all fixed points of r is indicated as Xr, thus Xr =
{x ∈ X | rx = x}. For r ∈ T \ kerα let

U(r) :=

( ⋃

x∈Xr

Rx

)
\ kerα. (11)

Then r ∈ U(r) ⊆ T \ kerα.
If (u, α, β) is a solution of (1) where α is a group homomorphism, then

β(r) = 0 for r ∈ T ∩kerα and γ is constant on each U(r) for r ∈ T \kerα.
In general, some of these sets U(r) will have non-empty intersection. Now
we want to determine the maximal subsets of T \ kerα on which γ is
constant. For doing this, we introduce a relation on T \kerα. Two elements
r, t ∈ T \ kerα are in relation r ' t if there exists an integer n ∈ N0 and
a sequence r0 = r, r1, . . . , rn = t in T \ kerα, such that the intersection
U(ri)∩U(ri+1) is not empty for 0 ≤ i < n. It is easy to prove that ' is an
equivalence relation. The equivalence class of r is indicated as [r]. Then
r ∈ U(r) ⊆ [r] for all r ∈ T \ kerα.

Lemma 17. Let α be a group homomorphism from R to K∗. A func-

tion γ : T \ kerα → V is constant on U(r) for all r ∈ T \ kerα if and only

if γ is constant on each equivalence class [r].

Proof. Assume that γ is constant on U(r) for all r ∈ T \ kerα.
Choose r0 ∈ R and assume that r0 ' t. Then there exist n ∈ N0 and a
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sequence r0, r1, . . . , rn = t in T \ kerα, such that U(ri)∩U(ri+1) 6= ∅. For
that reason γ(r0) = γ(r1) = · · · = γ(rn) = γ(t), whence γ is constant on
the equivalence class [r0].

Obviously, if γ is constant on [r], then it is constant on the subset
U(r) of [r]. ¤

Using the notation just introduced, we collect some necessary condi-
tions on solutions (u, α, β) of (1) in

Corollary 18. If (u, α, β) is a solution of (1) where α is a group

homomorphism, then β(r) = 0 for r ∈ T ∩ kerα and γ is constant on each

class [r] for r ∈ T \ kerα.

Finally, if (α, β) is a solution of (2) where α is a group homomorphism
we want to determine whether it is possible to find a function u such that
(u, α, β) is a solution of (1). And if so we want to construct all functions
u with this property. This is done in

Theorem 19. Assume that (α, β) is a solution of (2) where α is a

group homomorphism, and assume that R acts on X. Let T be given

by (10). For r ∈ T \ kerα let U(r) be determined by (11). These sets

determine an equivalence relation on T \kerα by setting r ' t if there exist

n ∈ N0 and r0 = r, r1, . . . , rn = t ∈ T \kerα such that U(ri)∩U(ri+1) 6= ∅
for 0 ≤ i < n.

Moreover, assume that β(r) = 0 for all r ∈ T ∩kerα, and that γ, given

by (6), is constant on each equivalence class [r] = {t ∈ T \ kerα | r ' t}.
Then for any function u : R → V determined in the following way the

triple (u, α, β) is a solution of (1). For each x0 ∈ T (R\\X), a transversal

of the R-orbits on X, determine u on the orbit R(x0) by:

– If the stabilizer Rx0 is a subgroup of kerα, then choose u(x0) as an

arbitrary element of V .

– If Rx0 6⊆ kerα, then choose an arbitrary element r0 of Rx0 \ kerα and

set u(x0) = γ(r0).

– Set v0 = u(x0). Determine u on the other elements of the orbit R(x0)
by (8).

Proof. The sets T , U(r) and the equivalence relation ' just depend
on the group action of R on X. Choose some x0 ∈ T (R\\X).
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If Rx0 ⊆ kerα, then choose u(x0) as an arbitrary element of V . If
Rx0 6⊆ kerα, then there exists some r0 ∈ Rx0 \ kerα. Consequently Rx0 \
kerα ⊆ [r0], whence γ is constant on Rx0 \ kerα and the value of u(x0)
does not depend on the special choice of r0.

If we put v0 = u(x0) then in both cases (9) is satisfied. If û denotes the
restriction of u to R(x0) determined by (8), then according to Lemma 15
the triple (û, α, β) is a solution of (1) restricted to R(x0).

A triple (u, α, β) is a solution of (1) if and only if the restriction of u

to any orbit R(x0) together with (α, β) is a solution of (1) restricted to
R(x0). Hence, any function u, independently determined on each orbit
R(x0) as described above, is a solution of (1). ¤

Remark 20. Using the notation from above, it is easy to prove that if
(α, β) is a solution of (2) where α : R → K∗ is a homomorphism, then γ

satisfies the functional equation

γ(rtr−1) = α(r)γ(t) + β(r), r, t ∈ T \ kerα.

3. Arbitrary (semi)group actions
on the right hand side of (1)

Now the vector space on the right hand side of (1) will be replaced by
an arbitrary set Y on which a (semi)group S acts. We want to solve the
functional equation

u(rx) = ϕ(r)u(x), r ∈ R, x ∈ X (12)

for the two unknown functions

u : X → Y, ϕ : R → S.

A solution of (12) is indicated as a pair (u, ϕ).
We show now that (12) is a generalization of (1). In the previous

section we were dealing with the situation Y being a K-vector space and
S being the affine semigroup Aff(V ) or the affine group Aff(V )∗. They are
given by the two sets

Aff(V ) = {(a, v) | a ∈ K, v ∈ V } and
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Aff(V )∗ = {(a, v) | a ∈ K∗, v ∈ V }
together with the multiplication

(a1, v1)(a2, v2) = (a1a2, a1v2 + v1), (a1, v1), (a2, v2) ∈ Aff(V ).

Their action on V is described by

(a, v) ∗ w = aw + v, (a, v) ∈ Aff(V ), w ∈ V.

In that situation the mapping ϕ is given by ϕ(r) = (α(r), β(r)) for r ∈ R.
Hence, it is clear that (12) generalizes (1).

To begin with we give a formal definition of an action of a semigroup on
a set. It naturally generalizes the notion of group actions. A multiplicative
semigroup S with neutral element 1 acts on a set X if there exists a
mapping

∗ : S ×X → X, ∗(s, x) 7→ s ∗ x

such that
(s1s2) ∗ x = s1 ∗ (s2 ∗ x), s1, s2 ∈ S, x ∈ X

and
1 ∗ x = x, x ∈ X.

Usually we write sx instead of s ∗ x. In general we cannot speak of orbits
under this action. The stabilizer of x is indicated by Sx = {s ∈ S | sx = x}.
It is a subsemigroup of S.

First we want to determine necessary conditions on u and ϕ for being
a solution of (12). If (u, ϕ) is a solution of (12), then for all r1, r2 ∈ R and
x ∈ X we have

ϕ(r1r2)u(x) = u((r1r2)x) = u(r1(r2x)) = ϕ(r1)ϕ(r2)u(x). (13)

Let S′ := 〈ϕ(R)〉, in other words S′ is the subsemigroup of S generated by
ϕ(R). It is the set

S′ =

{
n∏

i=1

ϕ(ri) | n ∈ N, ri ∈ R

}
.

The element ϕ(1) belongs to S′, and it satisfies ϕ(1)u(x) = u(x) for all
x ∈ X.
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We define an equivalence relation on S′ (depending on a solution u)
by

s1 ∼ s2 :⇐⇒ s1u(x) = s2u(x), ∀x ∈ X.

From (13) it follows immediately that

ϕ(r1r2) ∼ ϕ(r1)ϕ(r2), r1, r2 ∈ R.

The equivalence class of s ∈ S′ is denoted by s̄, and (S′/ ∼) stands for the
set of all equivalence classes with respect to ∼.

Lemma 21. The set (S′/ ∼) together with the multiplication s̄1 ·s̄2 :=
s1s2 is a semigroup with neutral element ϕ(1).

Proof. First we have to show that the composition defined on (S′/ ∼)
is well defined, i.e. it does not depend on the particular choice of the
representative s of s̄. Assume that t1 ∈ s̄1 and t2 ∈ s̄2. Then

t1t2 =
{
s ∈ S′ | s ∼ t1t2

}
=

{
s ∈ S′ | t1t2u(x) = su(x), ∀x ∈ X

}
.

Choose x ∈ X. From the choice of t1 and t2 it follows immediately that
t1u(x) = s1u(x) and t2u(x) = s2u(x) for all x ∈ X. Moreover, since s2 ∈ S′

there exist n ∈ N and r1, . . . , rn ∈ R such that s2 = ϕ(r1) · · ·ϕ(rn). Hence,

(t1t2)u(x) = t1(t2u(x)) = t1(s2u(x))

= t1

( n∏

i=1

ϕ(ri)
)

u(x) = t1u

( n∏

i=1

rix

)

= s1u

( n∏

i=1

rix

)
= s1

( n∏

i=1

ϕ(ri)
)

u(x) = s1s2u(x).

This equality holds for any x ∈ X, whence t1t2 ∼ s1s2 and consequently
t1t2 = s1s2.

Next we show that ϕ(1) is the neutral element of (S′/ ∼). By defini-
tion, for s ∈ S′ we have s̄ϕ(1) = sϕ(1) and ϕ(1)s̄ = ϕ(1)s. Applying sϕ(1)
to u(x) for any x ∈ X we obtain sϕ(1)u(x) = su(1x) = su(x), whence
sϕ(1) = s̄. Since s ∈ S′ there exist n ∈ N and r1, . . . , rn ∈ R such that
s = ϕ(r1) · · ·ϕ(rn). Consequently

ϕ(1)su(x) = ϕ(1)
( n∏

i=1

ϕ(ri)
)

u(x) = ϕ(1)u
( n∏

i=1

rix

)
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= u

(
1

n∏

i=1

rix

)
=

( n∏

i=1

ϕ(ri)
)

u(x) = su(x)

whence also ϕ(1)s = s̄. This finishes the proof that ϕ(1) is the neutral
element of (S′/ ∼). ¤

Thus we derive that

ϕ(r1r2) = ϕ(r1) ϕ(r2), r1, r2 ∈ R. (14)

Lemma 22. The semigroup (S′/ ∼) acts in a natural way on Y ′ :=
u(X), namely as

∗ : (S′/ ∼)× Y ′ → Y ′, s̄ ∗ y = sy.

Proof. First we have to show that this action is well defined, i.e. it
does not depend on the special choice of s in s̄ and that the mapping ∗
maps (S′/ ∼)× Y ′ to Y ′.

Assume that t also belongs to s̄, then s ∼ t, whence su(x) = tu(x) for
all x ∈ X, thus sy = ty for all y ∈ Y ′. Let y ∈ Y ′ and s ∈ S′, then there
exist some x ∈ X such that y = u(x) and r1, . . . , rn ∈ R such that s =∏n

i=1 ϕ(ri). For that reason, sy =
∏n

i=1 ϕ(ri)u(x) = u
(∏n

i=1 rix
)
∈ Y ′.

Finally it is left to the reader to prove that s̄1 ∗ (s̄2 ∗ y) = s1s2 ∗ y and
ϕ(1) ∗ y = y for all s̄1, s̄2 ∈ (S′/ ∼) and all y ∈ Y ′. ¤

Lemma 23. The mapping ψ : R → (S′/ ∼) defined by ψ(r) := ϕ(r)
is a homomorphism which maps 1 ∈ R to ϕ(1).

Proof. For r1, r2 ∈ R we derive from (14) that

ψ(r1r2) = ϕ(r1r2) = ϕ(r1) ϕ(r2) = ψ(r1)ψ(r2).

By definition ψ maps the neutral element 1 of R to the neutral element
ϕ(1) of (S′/ ∼). ¤

Lemma 24. For x ∈ X we have ψ(Rx) ⊆ (S′/ ∼)u(x).

Proof. If r belongs to the stabilizer Rx of x ∈ X, then u(x) =
u(rx) = ϕ(r)u(x), whence ϕ(r) belongs to the stabilizer of u(x) in S.
Consequently, ϕ(Rx) is contained in Su(x) ∩ S′. If π : S′ → (S′/ ∼)
denotes the natural projection π(s) = s̄, then

ψ(Rx) = (π ◦ ϕ)(Rx) ⊆ π(Su(x) ∩ S′) = (S′/ ∼)u(x). ¤
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In Lemma 23 and Lemma 24 we have described necessary conditions
on (u, ϕ) or ψ = π ◦ ϕ for being solutions of (12). In the next theorem we
will prove that they are also sufficient conditions. This means that they
can be used to describe the set of all solutions of (12).

Theorem 25. Assume that T (R\\X) is given as {xi | i ∈ I}. Let

(yi)i∈I be a family in Y and let S′ be a subsemigroup of S with a particular

element e ∈ S′ such that

ey = y ∀y ∈ Y ′ :=
{
syi | s ∈ S′, i ∈ I

}
.

Introduce an equivalence relation on S′ by

s1 ∼ s2 :⇐⇒ s1y = s2y, ∀y ∈ Y ′.

Then (S′/ ∼) is a semigroup with neutral element ē. It acts in a natural

way on Y ′, namely by s̄∗y = sy. Choose a homomorphism ψ : R → (S′/ ∼)
with the properties

ψ(1) = ē, ψ(Rxi) ⊆ (S′/ ∼)yi , i ∈ I.

If we define ϕ : R → S′ by ϕ(r) ∈ ψ(r) and u : X → Y by u(rxi) = ψ(r)yi,

then u is well defined and (u, ϕ) is a solution of (12). Especially u(xi) = yi

for all i ∈ I. We obtain all solutions of (12) in this way.

Proof. Evidently ∼ is an equivalence relation on S′. The particular
element e corresponds to the element ϕ(1) in our previous considerations.
It follows as in the proof of Lemma 21 that (S′/ ∼) is a semigroup with
neutral element ē. The same arguments as in the proof of Lemma 22 can
be used to show that this semigroup acts on Y ′.

Assume that ψ is a homomorphism with the required properties and
that ϕ(r) is a representative of ψ(r) for all r ∈ R. In order to show
that u is well defined, i.e. its definition does not depend on the special
choice of r representing an element rxi of the orbit R(xi) assume that
rxi = r1xi. Then r−1

1 rxi = xi, whence r−1
1 r belongs to Rxi and by as-

sumption ψ(r−1
1 r) ∈ (S′/ ∼)yi which is equivalent to ψ(r−1

1 r)yi = yi.
Multiplying this equation from the left with ψ(r1) and using the homo-
morphism property of ψ we get

ψ(r1r
−1
1 r)yi = ψ(r1)yi
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from which we immediately deduce that ψ(r)yi = ψ(r1)yi and u(rxi) =
u(r1xi), whence u is well defined on each orbit R(xi).

Moreover u(xi) = u(1xi) = ψ(1)yi = ēyi = yi for all i ∈ I.
Finally we have to prove that (u, ϕ) is a solution of (12). Assume that

x ∈ X is of the form r0xi for some r0 ∈ R and a uniquely determined
xi ∈ T (R\\X). Then for arbitrary r ∈ R we have by definition of u

u(rx) = u(rr0xi) = ψ(rr0)yi = ψ(r)ψ(r0)yi

= ψ(r)u(r0xi) = ϕ(r)u(x),

which finishes the proof. ¤

If the semigroup S acting on the right hand side is actually a group,
then we can also proceed similar as in [7]. This second approach allows to
replace certain equivalence relations by computations in factor groups.

Remark 26. If (u, ϕ) is a solution of (12) then

ϕ(Rx) ⊆ Su(x)

and from

ϕ(r1r2)u(x) = u(r1r2x) = ϕ(r1)ϕ(r2)u(x), r1, r2 ∈ R, x ∈ X

we obtain that

(ϕ(r1)ϕ(r2))−1ϕ(r1r2) ∈
⋂

x∈X

Su(x), r1, r2 ∈ R.

Moreover, the intersection S̃ :=
⋂

x∈X Su(x) is a normal subgroup of S′ :=
〈ϕ(R)〉. The factor group S′/S̃ acts in a natural way on Y ′ := u(X) and
the mapping ψ : R → S′/S̃ given by ψ(r) := ϕ(r)S̃ = ϕ(r) is a group
homomorphism. Furthermore, ψ(Rx) ⊆ (S′/S̃)u(x).

Conversely, assume that T (R\\X) is given as {xi | i ∈ I}. Let (yi)i∈I

be a family in Y and let S′ be a subgroup of S. Moreover, let N be a
normal subgroup of S′ such that N ⊆ Syi for all i ∈ I. Then S′/N acts in
a natural way on Y ′ := {syi | s ∈ S′, i ∈ I} namely by s̄ ∗ y = sy. Choose
a homomorphism ψ : R → S′/N with

ψ(Rxi) ⊆ (S′/N)yi , i ∈ I.
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If we define ϕ : R → S′ by ϕ(r) ∈ ψ(r) and u : X → Y by u(rxi) = ψ(r)yi,
then u is well defined and (u, ϕ) is a solution of (12). Especially u(xi) = yi

for all i ∈ I.

We leave the details to the reader.
These general results can easily be rewritten for the particular action

of the affine (semi)group on a vector space V . Assume that the semigroup
S = Aff(V ) acts on the K-vector space V , then the stabilizer of w ∈ V is
given by

Aff(V )w = {(a, (1− a)w) | a ∈ K} .

If we are interested in solutions (u, ϕ) of (12) where u is constant, then it is
enough to consider the case that |Y ′| = 1, in other words Y ′ = {w} for some
w ∈ V , whence yi = w for all i ∈ I. Moreover, S′ ⊆ Aff(V )w, whence for all
s1, s2 ∈ S′ we have s1w = w = s2w. Consequently s1 ∼ s2 for all s1, s2 ∈ S′

and S′/ ∼= {s̄} for any s ∈ S′. As a matter of fact, ψ : R → (S′/ ∼) is
the constant mapping ψ = s̄ and ϕ(r) = (α(r), β(r)) ∈ ψ(r) = s̄ for all
r ∈ R. That’s why, α : R → K is an arbitrary mapping and β : R → V is
given by β(r) = (1− α(r))w.

Finally, we consider the case that |Y ′| > 1. Then there exist at least
two different vectors w and w′ in Y ′. Let S′ be a subsemigroup of S as
indicated in Theorem 25. Two elements s1, s2 of S′ are equivalent if and
only if s1 = s2. (If s1 ∼ s2, then s1w = s2w and s1w

′ = s2w
′. Since si

belongs to Aff(V ), it is of the form (ai, vi) for i = 1, 2. Thus we obtain
a1w + v1 = a2w + v2 and a1w

′ + v1 = a2w
′ + v2. Subtracting the second

equation from the first one, we get a1(w−w′) = a2(w−w′) which implies
a1 = a2, since w−w′ 6= 0. Then we also obtain that v1 = v2, consequently
s1 = s2.) Hence, S′/ ∼ can be identified with S′. Moreover, it was assumed
that there exists a particular element e ∈ S′ such that e applied to any
element of Y ′ does not change it. Hence ew = w and ew′ = w′, what
immediately implies that e = (1, 0). Since the equivalence classes on S′

are trivial, ϕ can be identified with ψ which is a homomorphism from R

to S′. Thus ϕ(r) = ψ(r) = (α(r), β(r)). Since ψ is a homomorphism we
deduce

(α(r1r2), β(r1r2)) = (α(r1)α(r2), α(r1)β(r2) + β(r1)).

If there exists an r0 ∈ R such that α(r0) = 0, then α(r) = 0 for all
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r ∈ R, which is a contradiction to ψ(1) = (1, 0). Consequently α is a
homomorphism from R to K∗ and (α, β) satisfies (2).

We are able to deduce from Theorem 25 and the related lemmas con-
cerning the solution of (12) some additional facts in the special case where
S = Aff(V ). We collect them in

Remark 27. Let T (R\\X) be given by {xi | i ∈ I} and let (wi)i∈I be
a family in V . The homomorphism ψ satisfies ψ(Rxi) ⊆ S′wi

for all i ∈ I if
and only if the function γ given by (6) is constant on each equivalence class
[r] for r ∈ T \ kerα, where T is given by (10), γ(r) = wi for r ∈ Rxi \kerα

for i ∈ I, and β(r) = 0 for all r ∈ T ∩ kerα.

Proof. Assume that ψ(Rxi) ⊆ S′wi
which is included in the stabilizer

of wi in Aff(V ), given by {(a, (1− a)wi) | a ∈ K}. If r ∈ Rxi \ kerα, then
ψ(r) = (α(r), (1−α(r))wi), whence γ(r) = (1−α(r))−1(1−α(r))wi = wi.
Next we prove the claim that ψ(Rgxi) ⊆ S′ψ(g)wi

for all i ∈ I and g ∈ R.
Since the stabilizer of gxi equals gRxig

−1 we have

ψ(Rgxi) = ψ(gRxig
−1) = ψ(g)ψ(Rxi)ψ(g−1)

⊆ ψ(g)S′wi
ψ(g−1) ⊆ S′ψ(g)wi

.

The last inclusion follows from the fact that

(ψ(g)sψ(g−1)) ∗ (ψ(g)wi) = ψ(g)sψ(g−1g) ∗ wi

= ψ(g)sψ(1) ∗ wi = ψ(g)wi

for all s ∈ S′wi
. If r ∈ T ∩ kerα, then there exists some x ∈ X such that

rx = x. Moreover, there exist g0 ∈ R and i0 ∈ I such that x = g0xi0 ,
whence r ∈ Rg0xi0

. For that reason ψ(r) belongs to S′ψ(g0)wi0
, thus ψ(r) =

(α(r), (1− α(r))ψ(g0)wi0) = (1, 0), and consequently β(r) = 0.
Finally we have to prove that γ is constant on each equivalence class

[r] for r ∈ T \ kerα. If r0 ∈ T \ kerα, then there exists some x ∈ X

such that r0x = x. Moreover, there exist g0 ∈ R and i0 ∈ I such that
x = g0xi0 , whence r0 ∈ Rg0xi0

. For that reason ψ(r0) belongs to S′ψ(g0)wi0
,

thus ψ(r0) = (α(r0), (1−α(r0))ψ(g0)wi0) and β(r0) = (1−α(r0))ψ(g0)wi0

and finally γ(r0) = ψ(g0)wi0 . In other words, γ(r0) does not depend on r0,
consequently γ(r) = ψ(g0)wi0 for all r ∈ Rg0xi0

= Rx. Thus γ is constant
on each Rx \ kerα for all r ∈ R. In the next step we prove that γ is
constant on U(r0). If r ∈ U(r0), then there exists some x′ ∈ Xr0 such that
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r ∈ Rx′ . Moreover r0 ∈ (Rx∩Rx′)\kerα. For that reason γ(r) = ψ(g0)wi0

for all r ∈ (Rx ∪ Rx′) \ kerα and consequently γ(r) = ψ(g0)wi0 for all
r ∈ U(r0). Again this holds for any r0 ∈ T \ kerα. Finally assume that
r ∈ [r0], then there exist n ∈ N and r1, . . . , rn = r ∈ T \ kerα such
that U(ri) ∩ U(ri+1) 6= ∅ for all 0 ≤ i < n, whence γ is constant on the
equivalence class [r0]. This holds for all r0 ∈ T \ kerα.

Conversely, assume that r ∈ Rxi . If r ∈ kerα, then β(r) = 0, whence
ψ(r) = (1, 0) ∈ S′wi

. If r 6∈ kerα, then wi = γ(r) = (1 − α(r))−1β(r),
whence β(r) = (1 − α(r))wi. Consequently α(r)wi + β(r) = wi which
proves that ψ(r) = (α(r), β(r)) ∈ S′wi

. ¤
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Königstein, 1989, 3–14.

[6] Ilie Corovei, The d’Alembert functional equation on metabelian groups, Aequa-

tiones Mathematicae 57 (2–3) (1999), 201–205.

[7] H. Fripertinger, Group actions and the functional equation of the mean sun,
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