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Integer points on rational curves with fixed gcd

By DIMITRIOS POULAKIS (Thessaloniki)

Abstract. Let F (X,Y ) be an irreducible polynomial with integer coeffi-
cients of degree ≥ 2 such that the curve C defined by the equation F (X, Y ) = 0
has infinitely many integer points and the point (0, 0) is simple on C. In this
paper we obtain an explicit upper bound for the size of integer points (x, y) of C
for which gcd(x, y) is bounded.

1. Introduction

Let F (X, Y ) be a non-zero polynomial, with integer coefficients, which
is irreducible in Q[X, Y ] and satisfies F (0, 0) = 0. In 1929, Skolem [14],
[15, page 90] proved, using Runge’s theorem about Diophantine equations,
that the equation F (X, Y ) = 0 has only finitely many solutions (x, y) ∈ Z2

for which gcd(x, y) is bounded. In 1992, G. Walsh [16, Theorem 2], using
an effective version of Runge’s theorem, calculated an explicit upper bound
for the size of these solutions. The purpose of this paper is to improve the
above result, in the case where the equation F (X,Y ) = 0 has infinitely
many integer solutions, using a different approach.

Let P be a point of the projective space Pr(Q) overQ. Choose homoge-
neous coordinates (x0 : . . . : xr) for P so that xi ∈Z and gcd(x0, . . . , xr)= 1.
The height of P is defined by

H(P ) = max
{|x0|, . . . , |xr|

}
.
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For x ∈ Q we define H(x) = H((1 : x)). Further, if G is a nonzero
polynomial with coefficients in Q, we define the height H(G) of G as the
height of the point whose coordinates are the coefficients of G (in any
order). For an account of the properties of heights, see [3], [1], [13].

Theorem 1. Let F (X,Y ) be an irreducible polynomial in Z[X, Y ] of

degree n ≥ 2 in Y and of degree m ≥ 1 in X with n ≥ m. Suppose that the

curve C defined by the equation F (X,Y ) = 0 has infinitely many integer

points and the point (0, 0) is simple on C. Then, if d is a positive integer

and (x, y) an integer solution of F (X,Y ) = 0 with gcd(x, y) = d, we have

max{|x|, |y|} < d2n(2(mn + 1))430m2n6
H(F )230m2n6

.

G. Walsh communicated me that his method, under the assumptions
of the aforementioned theorem, gives the following estimate:

max
{|x|, |y|} < (3dmnH(F ))6m7n7

.

We remark that the bound of the above theorem is sharper and especially
the dependence of d.

Recall that if F (X,Y ) is an irreducible polynomial of Z[X, Y ] such
that the equation F (X,Y ) = 0 has infinitely many integer solutions, then
[5, page 122] implies that F (X, Y ) is an absolutely irreducible polynomial.

Suppose next that F (X, Y ) is an absolutely irreducible polynomial of
Z[X,Y ] and denote by C the curve defined by the equation F (X, Y )= 0.
Let Q be an algebraic closure of the field of rational numbers Q and Q(C)
the function field of C over Q. Consider the valuation ring V∞ of Q(X)
consisting of all elements f(X)/g(X) such that deg f ≤ deg g. We denote
by C∞ the set of all discrete valuation rings V of Q(C) such that V ∩
Q(X) = V∞. By the classical Siegel’s theorem on the integer points, the
hypothesis that the equation F (X, Y ) = 0 has infinitely many integer
solutions implies that the curve C is rational with |C∞| ≤ 2.

We call an element V of C∞ defined over a subfield k of Q, if τ(V ) = V

for every τ ∈ Gal(k/k). Furthermore, we say that two elements V and W

of C∞ are conjugate over a quadratic field k, if V and W are defined over
k and there is σ ∈ Gal(Q/Q) which is not the identity on k such that
σ(V ) = W . In view of Theorem 5.2 of [9], which gives a necessary and
sufficient condition for the curve C to have infinitely many integer points,
the above statement is equivalent to the following one.
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Theorem 2. Let F (X,Y ) be an absolutely irreducible polynomial in

Z[X,Y ] of degree n ≥ 2 in Y and of degree m in X with n ≥ m such that

the curve C defined by the equation F (X, Y ) = 0 is rational. Suppose that

the point (0, 0) is simple on C and that |C∞| = 1 or |C∞| = 2 and the two

elements of C∞ are conjuguate over a real quadratic field. If d is a positive

integer and (x, y) an integer solution of F (X,Y ) = 0 with gcd(x, y) = d,

then x and y satisfy the inequality of Theorem 1.

The paper is organised as follows. In Section 2, an effective version
of Riemann–Roch theorem due to W. Schmidt [12] and a version of the
implicit functions theorem due to M. Laurent and D. Roy [4] enable us
to obtain an effective parametrization of the rational curve C. In Section 3,
using this parametization, we prove Theorem 1.

2. Construction of a parametrization

Let F (X,Y ) be an absolutely irreducible polynomial in Z[X, Y ]. We
denote by Σ(C) the set of discrete valuation rings W of the function field
Q(C) of C such that Q ⊂ W . A divisor D on C is a formal sum

D = a1W1 + · · ·+ asWs,

where a1, . . . , as ∈ Z and W1, . . . , Ws are pairwise distinct elements of
Σ(C). Given f ∈ Q(C) and W ∈ Σ(C), we denote by ordW (f) the order
of the function f at W . Let L(D) be the set of functions f ∈ Q(C) having
ordWi(f) ≥ −ai and ordW (f) ≥ 0 for every W ∈ Σ(C) with W 6= Wi

(i = 1, . . . , s). Then L(D) is a finite-dimensional vector space over Q
(see [2]).

Lemma 1. Let F (X, Y ) be an absolutely irreducible polynomial in

Z[X,Y ] of degree n ≥ 2 in Y and of degree m in X with n ≥ m. Suppose

that the curve C defined by the equation F (X, Y ) = 0 is rational and the

point (0, 0) is simple on C. Then the curve C admits a parametrization

given by

X =
α(T )
β(T )

, Y =
γ(T )
δ(T )

,
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where α(T ), β(T ), γ(T ), δ(T ) ∈ Z[T ] with deg α, deg β ≤ n, deg γ, deg δ ≤
m, gcd(α, β) = gcd(γ, δ) = 1 and

H(β(T )X − α(T )) < (2(mn + 1))32m2n4
H(F )17m2n4

,

H(δ(T )Y − γ(T )) < (2(mn + 1))42m3n3
H(F )18m3n3

.

Proof. Let P = (0, 0) and OP be the local ring of C at P . Since
P is a simple point, OP is a discrete valuation ring. By Riemann–Roch
theorem, the space L(OP ) has dimension equal to 2. Theorem A2 of [12]
implies that there are polynomials bi(X,Y ) (i = 1, 2) and q(X), with

degX bi ≤ 2mn + 4n−m, degY bi ≤ n− 1, deg q ≤ mn + n−m,

such that the functions fi represented by the quotients bi(X, Y )/q(X) on
C form a basis of L(OP ). Since the divisor OP is defined over Q, Theorem
B2 of [12] yields that the coefficients of bi(X,Y ) (i = 1, 2) and q(X) are
integers. If the order of the functions fj at OP is > −1, then fj is a
constant. Therefore, the order of f1 or f2 at OP is equal to −1. Suppose
that f1 has this property and put t = f1 and b(X, Y ) = b1(X,Y ). Thus
we have Q(C) = Q(t).

Write F (X, Y ) =
∑m

i=0

∑n
j=0 ai,jX

iY j . By Lemmata A1 and A2 of [4],
there is only one power series y(X) =

∑
s≥1 csX

s such that F (X, y(X)) = 0
in Q[[X]]. The coefficients of this series satisfy a2s−1

0,1 cs ∈ Z and for every
v ∈ M(Q) we have

|cs|v < max
{|ai,j |v/|a0,1|v

}2s−1(2(m + 1)(n + 1))(2s−1)e(v) (s ≥ 1),

where e(v) = 1 if the absolute value | · |v is archimedean and e(v) = 0
otherwise. Replacing Lemma 21 in [12] by the above result, we obtain
that the vectors δ1, . . . , δn of Lemma 26 in [12] satisfy

H(δi) < (2(mn + 1))10m2n3+15mn3
H(F )6m2n3+9mn3−3m2n2

.

Next, the equalities (A.5.6), (B.3.1) in [12] and the above upper bound for
H(δi) yield

H(b) < (2(mn + 1))26m2n3
H(F )15m2n3

.

Furthermore, [13, Theorem 5.9, p. 211], [12, Lemma 16] and [7, Lemma 4]
give

H(q) < ((4mn2H(F ))2n(mn+n−m).
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Let x and y be the coordinate functions on C. Since Q(C) = Q(t), we
have that

x =
α(t)
β(t)

and y =
γ(t)
δ(t)

,

where α(t), β(t), γ(t) and δ(t) are polynomials of Z[t] with gcd(α(t), β(t))=
gcd(γ(t), δ(t)) = 1. Put E(X, Y, T ) = b(X, Y )− q(X)T . We may suppose,
without loss of generality, that 1 occurs as coefficient of b(X, Y ) and q(X).
So H(E) ≤ H(b)H(q). We denote by R(X,T ) the resultant of E(X,Y, T )
and F (X, Y ) with respect to Y . By [8, Lemma 3.2], we obtain degT R ≤ n,
degX R ≤ 2mn2 + 4n2 −m and

H(R) < (2(mn + 1))30m2n4
H(F )17m2n4

.

The polynomial β(T )X − α(T ) divides R(X, T ). Then deg α, deg β ≤ n

and [1, Proposition B.7.3, page 228] implies

H(β(T )X − α(T )) < (2(mn + 1))32m2n4
H(F )17m2n4

.

Next, we denote by S(Y, T ) the resultant of E(X, Y, T ) and F (X, Y ) with
respect to X. By [8, Lemma 3.2], we obtain degT S ≤ m, degX S ≤
2mn2 + 4n2 −m and

H(S) < (2(mn + 1))39m3n3
H(F )18m3n3

.

Since δ(T )Y − γ(T ) divides S(X, T ), it follows that deg γ,deg δ ≤ m and
[1, Proposition B.7.3, page 228] gives

H(δ(T )Y − γ(T )) < (2(mn + 1))42m3n3
H(F )18m3n3

.

¤

3. Proof of Theorem 1

Since the equation F (X,Y ) = 0 has infinitely many integer solutions,
[11] yields that the highest homogeneous part of F (X, Y ) is up to a con-
stant factor a power of a linear or irreducible indefinite quadratic form.
Thus the inequality n ≥ m gives deg F = n. By Lemma 1, the curve C
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admits a parametrization given by

X =
α(T )
β(T )

, Y =
γ(T )
δ(T )

,

where α(T ), β(T ), γ(T ), δ(T ) ∈ Z[T ] with deg α, deg β≤n, deg γ, deg δ≤m,
gcd(α, β) = gcd(γ, δ) = 1 and

H(β(T )X − α(T )) < (2(mn + 1))32m2n4
H(F )17m2n4

,

H(δ(T )X − γ(T )) < (2(mn + 1))42m3n3
H(F )18m3n3

.

Moreover, we may suppose, without loss of generality, that the polynomials
β(T )X − α(T ) and δ(T )Y − γ(T ) have relatively prime coefficients.

Let C̃ be the projective closure of C. Then we have a birational map
φ : P1 → C̃ given by the correspondence

(S, T ) → (u(S, T ), v(S, T ), w(S, T )),

where u(S, T ), v(S, T ), w(S, T ) are relatively prime homogeneous polyno-
mials of Z[S, T ] with

α(T )
β(T )

=
u(1, T )
w(1, T )

,
γ(T )
δ(T )

=
v(1, T )
w(1, T )

.

Thus [9, Lemma 2.1] implies that φ is a birational morphism of P1 onto
C and deg u(S, T ) = deg v(S, T ) = deg w(S, T ) = n. Furthermore, since
the point (0, 0) is simple on C, it follows that there are η, θ ∈ Z with
gcd(η, θ) = 1 such that u(η, θ) = v(η, θ) = 0 and w(η, θ) 6= 0. If η 6= 0,
then α(1, θ/η) = 0 and so [7, Lemma 4] implies that

max
{|η|, |θ|} = H(θ/η) < 2H(α) ≤ 2H(β(T )X − α(T )).

Hence
max

{|η|, |θ|} < 2(2(mn + 1))32m2n4
H(F )17m2n4

.

Dividing the polynomials w(S, T )X − u(S, T ) and w(S, T )Y − v(S, T )
by the g.c.d. of their coefficients, we obtain homogeneous polynomials
u1(S, T ), v1(S, T ),w1(S, T ) in Z[S, T ] and integers a1, a2, such that the
polynomials a1w1(S, T )X−u1(S, T ), a2w1(S, T )Y −u2(S, T ) and w1(S, T )
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have relatively prime coefficients. The equalities u(η, θ) = v(η, θ) = 0 im-
ply that there exist homogeneous polynomials u2(S, T ), v2(S, T ) in Z[S, T ]
such that

θnu1(S, T ) = (θS − ηT )u2(S, T ), θnv1(S, T ) = (θS − ηT )v2(S, T ),

if θ 6= 0, and

u1(S, T ) = Tu2(S, T ), v1(S, T ) = Tv2(S, T ),

otherwise.
Let (x, y) be a simple integer point on C with gcd(x, y) = d. Then

x = dx′ and y = dy′, where gcd(x′, y′) = 1. We have the following two
cases:

1. |C∞| = 1. By [9, Lemma 2.2], it follows that w1(S, T ) = (bS+cT )n,
where b, c are integers with gcd(b, c) = 1. Since w(η, θ) 6= 0, we have
(η : θ) 6= (c : −b) which is equivalent to bη + cθ 6= 0. By [9, Lemma 2.1],
there are s, t ∈ Z with gcd(s, t) = 1 such that

x =
u1(s, t)

a1(bs + ct)n
and y =

v1(s, t)
a2(bs + ct)n

.

Suppose first that θ 6= 0. We have

θndx′a1(bs + ct)n = (θs− ηt)u2(s, t),

θndy′a2(bs + ct)n = (θs− ηt)v2(s, t).

Since gcd(x′, y′) = 1, it follows that θs−ηt divides θndl(bs+ct)n, where l is
the l.c.m. of a1 and a2. It is easily seen that the g.c.d. of bs+ct and θs−ηt

divides bη + cθ. Thus we obtain that θs − ηt divides θnld(bη + cθ)n. On
the other hand, using the euclidean algorithm for polynomials, we deduce
that there exist two homogeneous polynomials qi(S, T ) (i = 1, 2) in Z[S, T ]
such that

bnu1(S, T ) = (bS + cT )q1(S, T ) + Tnu1(−c, b),

(−c)nu1(S, T ) = (bS + cT )q2(S, T ) + Snu1(−c, b).

Since x is an integer, we obtain that bs + ct divides tnu1(−c, b) and
snu1(−c, b), whence it follows that bs + ct divides u1(−c, b).
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Thus we have the following linear system in unknowns s and t:

θs− ηt = κ, bs + ct = λ

where κ, λ are integers with κ divides θnld(bη+cθ)n and λ divides u1(−c, b).
Hence, we deduce

max
{|s|, |t|} < max

{|b|, |c|}n max
{|η|, |θ|}2n−1(da1a22n−1 + (n + 1)|u1|),

where |u1| denotes the maximum of the absolute values of the coefficients
of u1(S, T ). Using the above inequalities, we obtain

max
{|s|, |t|} < d(2(mn + 1))81m2n5

H(F )43m2n5
.

It follows

max
{|x|, |y|} < dn(2(mn + 1))92m2n6

H(F )50m2n6
.

If θ = 0, then we obtain a sharper estimate.
2. |C∞| = 2. It follows from [9, Lemma 2.2] that w1(S, T ) = (fS2 +

gST + hT 2)n/2, where f , g, h are integers with gcd(f, g, h) = 1. By [9,
Remark 4.1, p. 485], the disriminant of fS2+gST +hT 2 is positive and not
a perfect square. By [9, Lemma 2.1], there are s, t ∈ Z with gcd(s, t) = 1
such that

x =
u1(s, t)

a1(fs2 + gst + ht2)n/2
and y =

v1(s, t)
a2(fs2 + gst + ht2)n/2

.

Suppose first that θ 6= 0. We have

θndx′a1(fs2 + gst + ht2)n/2 = (θs− ηt)u2(s, t),

θndy′a2(fs2 + gst + ht2)n/2 = (θs− ηt)v2(s, t).

Since gcd(x′, y′) = 1, it follows that θs−ηt divides θndl(fs2+gst+ht2)n/2,
where l is the l.c.m. of a1 and a2. The polynomials fS2 + gS + h and
θS − η are relatively prime. Thus [10, Lemma 3.1] implies that there are
ζ, ξ ∈ Z − {0} and polynomials A(S), B(S), Γ(T ), ∆(T ) with integer
coefficients, deg A,deg Γ ≤ 1, deg B, deg ∆ ≤ 2 and

|ζ|, |ξ| < 2H(f, g, h)2H(η, θ)2
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such that

A(S)(fS2 + gS + h) + B(S)(θS − η) = ζ,

Γ(T )(f + gT + hT 2) + ∆(T )(θ − ηT ) = ξ.

Homogenizing the above equalities, we obtain

A1(S, T )(fS2 + gST + hT 2) + B1(S, T )(θS − ηT ) = ζTµ,

Γ1(S, T )(fS2 + gST + hT 2) + ∆1(S, T )(θS − ηT ) = ξSν ,

where A1(S, T ), B1(S, T ), Γ1(S, T ), ∆1(S, T ) are homogeneous polynomi-
als of Z[S, T ] with A1(S, 1) = A(S), B1(S, 1) = B(S), Γ1(1, T ) = Γ(T ),
∆1(1, T ) = ∆(T ), and µ, ν are positive integers ≤ 3. Thus, if ω(s, t) =
gcd(fs2 + gst + ht2, θs − ηt), then the above equalities yield that ω(s, t)
divides ζξ. Therefore

ω(s, t) < 4H(f, g, h)4H(η, θ)4 < 26(2(mn + 1))2
8m2n4

H(F )136m2n4
.

The quantity K = θs− ηt divides θnda1a2ω(s, t)n/2 and hence

|K| < d24n(2(mn + 1))192m2n5
H(F )102m2n5

.

Since the polynomials fS2 + gST + hT 2, u1(S, T ), v1(S, T ) are rela-
tively prime and fS2 + gST + hT 2 is irreducible over Q, it follows that at
least one of u1(S, T ), v1(S, T ) is not divisible by fS2 +gST +hT 2. Denote
by %(S, T ) this polynomial. We have

H((fS2 + gST + hT 2)n/2X − %(S, T )) < (2(mn + 1))42m2n4
H(F )18m2n4

.

By [10, Lemma 3.1], there are R ∈ Z−{0} and polynomials A(S), B(S) ∈
Z[S], with deg A < n, deg B < n and

|R| < (2n− 1)!H((fS2 + gST + hT 2)n/2X − %(S, T ))2n−1

such that
A(S)(fS2 + gS + h)n/2 + B(S)%(S, 1) = R.

Homogenizating the above equality, we obtain

A1(S, T )(fS2 + gST + hT 2)n/2 + B1(S, T )%(S, T ) = RT π,
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where A1(S, T ), B1(S, T ) are homogeneous polynomials of Z[S, T ] with
A1(S, 1) = A(S), B1(S, 1) = B(S) and π is a positive integer < 2n. Since
Λ = fs2 + gst + ht2 divides %(s, t), the above equality, implies that Λ
divides (Rtπ)2/n. On the other hand, the g.c.d of fs2 + gst + ht2 and t

divides f . Hence

|Λ| < (2(mn + 1))255m2n4
H(F )122m2n4

.

Now, putting s = (ηt + K)/θ in the equality Λ = fs2 + gst + ht2, we
obtain

(fη2 + gηθ + hθ2)t2 + (2ηKf + gKθ)t + fK2 − Λθ2 = 0.

Using [6, Corollary 2] and the above inequalities, we obtain

|t| < d228n+1(2(mn + 1))400m2n5
H(F )213m2n5

,

|s| < d228n+3(2(mn + 1))417m2n5
H(F )222m2n5

.

Thus, we deduce

max
{|x|, |y|} < d2n(2(mn + 1))430m2n6

H(F )230m2n6
.

If θ = 0, then we obtain a sharper estimate.

Acknowledgements. I am greatful to Professor G. Walsh for put-
ting at my disposal the result of his method in the case studing in this
paper and for useful comments.
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