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The approximate solution of nonlinear
operational equations

By DURDICA TAKAČI (Novi Sad) and ARPAD TAKAČI (Novi Sad)

Abstract. The approximate solution of a class of differential equations, in
the field of Mikusiński operators is constructed by using the method of successive
approximations. It is shown that a sequence of approximate solutions converges
uniformly in the field of Mikusiński operators to the exact solution of the con-
sidered equation. The obtained results are applied to a class of partial integro-
differential equations.

1. Notations and notions

The set of continuous functions C+ with supports in [0,∞), with the
usual addition and the multiplication given by the convolution

f ∗ g(t) =
∫ t

0
f(τ)g(t− τ) dτ, t ≥ 0,

is a commutative ring without unit element. By the Titchmarsh theorem,
C+ has no divisors of zero, hence its quotient field, called the Mikusiński
operator field, and denoted by F , can be defined. Its elements are called
operators; they are quotients of the form

f

g
, f ∈ C+, 0 �≡ g ∈ C+,
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where the last division is observed in the sense of convolution (see [1]).
Clearly, every continuous function a = a(t) with support in [0,∞) can

be observed as a (unique) operator of the form (a ∗ g)/g (where g is an
arbitrary nonzero element from C+); we shall simply denote this operator
by a. Then we say that the operator a represents the continuous function
a(t) and write a = {a(t)}. In view of this remarks, the multiplication
in F of two continuous functions a = a(t) and b = b(t) from C+ will be
simply denoted by ab; this product is thus the operator c representing the
continuous function c(t) = a∗b(t), t ≥ 0. We shall denote by Fc the proper
subset of F consisting of the operators representing continuous functions.

As examples of operators, we have the integral operator � ∈ Fc repre-
senting the constant function 1 (on [0,∞)), and its powers �α, α ≥ 1 :

� = {1}, �α =
{
tα−1

Γ(α)

}
, α ≥ 1.

Also, among the most important operators are the inverse operator to �,
the differential operator s, and I is the identity operator, i.e.,

�s = I.

Neither s nor I are operators from Fc.
For the theory of differential equations, the following relation, con-

necting the operator representing the nth derivative of an ntimes derivable
function x = x(t) with the operator x is essential:{

x(n)(t)
}

= snx− x(0)sn−1 − · · · − x(n−1)(0)I.

Two operators a and b can be compared only if they represent con-
tinuous real valued functions, say a = {a(t)} and b = {b(t)}, and then, by
definition, we have

a ≤ b iff a(t) ≤ b(t), for each t ≥ 0,

a ≤T b iff a(t) ≤ b(t), for each 0 ≤ t ≤ T

(see [1], p. 237).
Two operational functions a(x) = {a(t, x)}, b(x) = {b(t, x)} represent-

ing continuous real valued function of two variables t ∈ [0, T ] and x ∈ [c, d],
and are compared as

a(x) ≤T b(x), x ∈ [c, d],
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iff
a(t, x) ≤ b(t, x) for every pair (t, x) ∈ [0, T ] × [c, d].

The absolute value of an operator a ∈ Fc, representing a continuous
real valued function a(t), t ≥ 0, i.e., a = {a(t)}, is the operator |a| =
{|a(t)|}. Also, we put |a(x)| = {|a(x, t)|} if a represents a continuous
function of two variables.

If the operators a and b are from Fc, then it holds

|a+ b| ≤ |a| + |b|,

|ab| =
∣∣∣∣
∫ t

0
a(τ)b(t − τ) dτ

∣∣∣∣ ≤ |a| |b|,

and
|a| ≤T α(T )�, where α(T ) = max

t∈[0,T ]
|a(t)|.

In this paper we shall use only the type I convergence (shortly: con-
vergence) in the field F (see [2], p. 155). By definition, a sequence of
operators (an)n∈N converges to an operator a iff there exists an opera-
tor q �= 0, such that (qan)n∈N is a sequence of continuous functions on
[0,∞) which converges uniformly on every finite interval to the continuous
function qa.

2. Introduction

We consider the partial integro-differential equation of the form

n1∑
i=0

2∑
j=0

Ai,j(x)
∂i+ju

∂ti∂xj
(t, x)

=
∫ t

0


 n2∑

i=0

1∑
j=0

Bi,j(t− τ, x)
∂i+ju

∂ti∂xj
(τ, x)


 dτ

+
∫ t

0

(
n3∑
i=0

Ci(x)u(t− τ, x)
∂iu

∂ti
(τ, x)

)
dτ,

(1)
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with the appropriate initial conditions

∂iu

∂ti
(0, x) = ψi(x), i = 0, 1, . . . ,max(n1, n2, n3) − 1, (2)

∂ju

∂xj
(t, x0) = φj(t), j = 0, 1, (3)

for x ∈ [x0, x0 + h] and t ≥ 0, such that An1,2 �= 0, n1 > max(n2, n3),
n1, n2, n3 ∈ N0.

In (1), the coefficients Ai,j, i = 0, 1, 2, . . . , n1, j = 0, 1, 2, and Ci,
i = 1, 2, . . . , n2, depend only on the variable x, while the coefficients Bi,j,
i = 0, 1, 2, . . . , n3, j = 0, 1, depend on variables t and x. In (2) and (3),
ψi, i = 1, . . . ,max(n1, n2, n3) − 1, φj , j = 0, 1, are continuous functions of
the variable t and x, respectively. Further on (without loss of generality),
we shall take ψi = 0, for each i = 1, . . . ,max(n1, n2, n3) − 1.

In F , (1) with the conditions (2) corresponds to the equation

n1∑
i=0

2∑
j=0

Ai,j(x)siu(j)(x) =
n2∑
i=0

1∑
j=0

siBi,j(x)u(j)(x)

+
n3∑
i=0

Ci(x)siu2(x),

(4)

where s is the differential operator, and Bi,j are operational functions

Bi,j(x) = {Bi,j(t, x)}, i = 1, 2, . . . , n2, j = 0, 1.

In F , the conditions (3) correspond to the conditions

∂ju

∂xj
(x0) = φj , j = 0, 1, (5)

where the operators φj , correspond to the functions φj(t), j = 0, 1.
In [5], [6] and [7], the authors considered the partial differential equa-

tion of the form (1), where Bi,j = 0, i = 1, . . . , n2, j = 0, 1, and Ci = 0,
i = 1, . . . , n3, with the conditions (2) and the boundary conditions instead
of initial conditions (3). The corresponding problem in the field F is a
linear ordinary differential equation with boundary conditions. By using
the factorization method in F , the approximate solutions were constructed
and the error of approximation was estimated.
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In [3], the Volterra linear equation and the following equation

x′(t) + λx(t) +
∫ t

0
k(t− τ)x(τ) dτ = f(t), with x(0) = x0,

where k and f are continuous functions, were analyzed. Using some alge-
braic considerations, in particular proving that the space C+ is a Jacobson
algebra, Heatherly and Huffman proved the existence and uniqueness of
the solution of this problems in the field F .

Clearly, (4) is a nonlinear equation in the field F . It can be reduced
to a system of simultaneous first order differential equations in F , as in
the classical theory of differential equations.

In Section 3, we apply the method of successive approximations to
the first order nonlinear differential equation in the field F , similarly as
Picard’s method in classical sense. For that purpose, we introduce a Lips-
chitz type condition in the field F . We prove the existence of the solution
of the considered problem and construct the approximate solutions in the
field F . We also estimate the error of approximation and prove the con-
vergence of the sequence of approximate solutions.

The upper method can be applied to more general cases, e.g., to a
partial differential equation containing the nth derivative in x; its corre-
sponding equation in F would then be an nth order ordinary differential
equation, and not just of order two as is (4). The other possible general-
ization is to replace the conditions in (2) or (3) with certain generalized
functions (for example, δ distributions).

3. The first order nonlinear differential equation

Let us consider the nonlinear first order differential equation in the
field F

u′(x) = D(x)u(x) + E(x)u2(x), (6)
with the condition

u(x0) = u0, (7)

where u is an unknown operator function, D and E are continuous oper-
ational functions on the interval (x0 − h, x0 + h), h > 0, while the given
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operator u0 on the right-hand side of (7) is not necessarily representing a
continuous function, but we assume that there exists an r ∈ N, such that
�ru0 represents a continuous function.

We shall assume that the operational functions D and E can be re-
spectively written in the form

D(x) = �r1A(x) + �r2B(x), E(x) = �r3 , (8)

where � is the integral operator, r1, r2 and r3 are natural numbers, A is
a continuous parametric function, and B is an operational function repre-
senting a continuous one, both on the interval (x0 − h, x0 + h), for some
h > 0.

If we denote by f the right hand side of (6) (with D and E from (8))
then the problem (6), (7) in the field F can be written as

u′(x) = f(x, u), x ∈ (x0 − h, x0 + h), (9)

with the condition
u(x0) = u0. (10)

Let us denote the domain of the operational function f(x, u) by

Ω = (x0 − h, x0 + h) × (a, b), (11)

where a and b are operators from Fc, and a < b. This means that we are
looking for the solutions u from Fc, such that a < u < b.

The function f is an operational function of two variables x and u in
the field F , defined on the domain Ω. Since by supposition A and B are
continuous functions on Ω, then the operational function f represents a
function of three variables on the domain ΩT (for some T > 0) given by

ΩT = (0, T ) × (x0 − h, x0 + h) × (a, b).

The problem (9), (10) can be expressed in the field F as

u(x) = u0(x) +
∫ x

x0

f(ξ, u(ξ)) dξ. (12)

In (12), the integral of an operational function in F appears; it is analogous
to the Riemann integral of a continuous function (see [2]). In particular,
the integral of the continuous operational function f in (12) is a continuous
operational function in F , on the domain Ω given by (11).
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3.1. The Lipschitz condition in the field F
In the theory of ordinary differential equations the main role play the

functions satisfying the Lipschitz condition. Thus we need to express the
Lipschitz condition in the field F , where absolute values of operators or
operational functions representing continuous functions are considered.

Definition 1. An operational function f on a domain Ω, given by (11),
satisfies the Lipschitz condition “with the factor �k, k ∈ N0”, in the field F ,
if there exists a positive numerical constant L such that∣∣�k(f(x, u2) − f(x, u1))

∣∣ ≤T L �
∣∣�k1(u2 − u1)

∣∣, (13)

for k1 ≤ k ∈ N, and every (x, u1), (x, u2) ∈ Ω, T > 0.

In (13), we consider the absolute value of operational functions, mean-
ing that �k(f(x, u2)−f(x, u1)) and �k1(u2−u1) represent continuous func-
tions of three variables (namely t, x and u), and of two variables (namely t
and x), respectively. If the operational functions f and u represent contin-
uous functions, then k = k1 = 0, i.e., �k = �k1 = I, where I is the identity
operator. In this case we simply use

Definition 2. An operational function f , representing continuous func-
tion, satisfies the Lipschitz condition in the field F on a domain Ω, given
by (11), if there exists a positive numerical constant L such that

|f(x, u2) − f(x, u1)| ≤T L � |u2 − u1| , (14)

for every (x, u1), (x, u2) ∈ Ω, T > 0.

In the rest of the paper we shall assume that the operational function
f from the right-hand side of (6) is representing a continuous function,
and, moreover, satisfies the Lipschitz condition in the field F on a domain
Ω, i.e.,

|f(x2, u2) − f(x1, u1)| =
∣∣∣(�r1A(x) + �r2B(x))u2 + �r3u2

2

− ((�r1A(x) + �r2B(x))u1 + �r3u2
1

)∣∣∣
=
∣∣∣�r1A(x) + �r2B(x) + �r3(u2 + u1)

∣∣∣ |u2 − u1|
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≤T L |u2 − u1| �,
where L = max(t,x,u)∈ΩT

|L(t, x, u)|, with

{L(t, x, u)} = �r1A(x) + �r2B(x) + �r3(u2 + u1).

4. The method of successive approximations in F

In the following considerations let us denote the domain of the function
f by

Ω̃ =
{
(x, u)

∣∣ |x− x0| ≤ h, |�k1(u− u0)| ≤T Mh�
}
, (15)

where M is a positive constant. Note that the first absolute value in (15)
is considered in the usual sense. The operators u and u0 are not neces-
sarily from Fc, therefore the power k1 ∈ N of the operator �k1 is chosen
sufficiently large so that �k1(u− u0) represents a continuous function. If u
and u0 represent continuous functions, then we simply put

Ω̃ =
{
(x, u)

∣∣ |x− x0| ≤ h, |u− u0| ≤T Mh�
}
. (16)

Next we shall apply the method of successive approximations in the
field F , analogously as is done in classical analysis, in order to obtain the
existence of the solution of the problem (9), (10). Firstly, let us choose
an arbitrary continuous operational function q0(x), satisfying q0(x0) = u0,
where (x0, q0) ∈ Ω̃. Then we define the sequence of operators (qn)n∈N in
the field F by

qn(x) = u0 +
∫ x

x0

f(ξ, qn−1(ξ)) dξ, x ∈ (x0 − h, x0 + h). (17)

It holds

Proposition 1. For every n ∈ N, the operational function qn(x) is

continuous, provided that f is a continuous function.

Proof. The operational function f is a continuous one, and by sup-
position there exists an operator �k such that the operator �ku0 is from
Fc. Therefore, the operator function

q1(x) = u0 +
∫ x

x0

f(ξ, q0(ξ)) dξ,
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is also continuous. By using the mathematical induction, we obtain that
qn(x) is a continuous operational function on (x0 − h, x0 + h), for every
n ∈ N.

If the operational function f in the problem (9), (10) represents a
continuous function of three variables t, x and u, and, moreover, u0 is an
operator from Fc, then every operational function qn(x), n ∈ N, represents
a continuous function of two variables t and x. �

We can prove now

Theorem 1. Let us suppose that for the problem (9), (10) the fol-

lowing conditions are satisfied:

1. the operational function f represents a continuous function on the

domain Ω̃, given by (16);

2. the operational function f satisfies the Lipschitz condition (14) in the

field F ;

3. it holds |f(x, u)| ≤T M�, where M = max0≤t≤T, |x−x0|≤h |f1(t, x, u)|,
and f1 is a function satisfying f(x, u) = {f1(t, x, u)}.

Then, every operational function qn, n ∈ N, satisfies the inequality

|qn(x) − u0| ≤T Mh�, for |x− x0| ≤ h, 0 ≤ t ≤ T.

Proof. The operational function f represents a continuous function
on the domain Ω̃, given by (16), and each operational functions qn, n ∈ N,
also represents a continuous function. Therefore we can use the absolute
value and the estimations as in classical analysis

|qn(x) − u0| ≤
∫ x

x0

|f(ξ, qn(ξ))| dξ ≤T M |x− x0|�,

|x− x0| ≤ h, T > 0.

Now we can prove the uniform convergence of the sequence (qn(x))n∈N.
�

Theorem 2. If the conditions of Theorem 1 are satisfied, then the

sequence of operational functions (qn(x))n∈N, given by (17), converges uni-

formly in the field F .
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Proof. As one can expect, the proof is similar to the well known
proof in the case of ordinary differential equations. The difference is that,
instead of functions of one variable, we deal with operational functions
representing continuous functions of two variables.

Firstly, let us recall that from Proposition 1 it follows that every op-
erational function qn(x), n ∈ N, represents a continuous function on the
domain Ω̃. Let us suppose that for the operator function q0 there exists a
numerical constant K such that in the field F it holds

|q′0(x) − f(x, q0(x))| ≤T K�, |x− x0| ≤ h,

where K = max0≤t≤T, |x−x0|≤h |Q0(t, x)|, and

{Q0(t, x)} = q′0(x) − f(x, q0(x)).

The operator function q1 also represents a continuous function (of
variables t and x), and therefore we have the following estimation:

|q0(x) − q1(x)| =
∣∣∣q0(x) − u0 −

∫ x

x0

f(ξ, q0(ξ)) dξ
∣∣∣

≤
∫ x

x0

|q′0(ξ) − f(ξ, q0(ξ))| dξ

≤T K|x− x0|�.

(18)

Using the inequalities in (18) and the assumed Lipschitz condition for f ,
we have

|q2(x) − q1(x)| ≤
∫ x

x0

|f(ξ, q1(ξ)) − f(ξ, q0(ξ))| dξ

≤T L

∫ x

x0

|q1 − q0|� dξ

≤T
LK|x− x0|2

2!
�2, |x− x0| ≤ h.

Next, using the mathematical induction, we get

|qn(x) − qn−1(x)| ≤T
Ln−1K|x− x0|n

n!
�n

≤T
Ln−1K|x− x0|nT n−1

n!(n− 1)!
�, n ∈ N,

(19)
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for |x− x0| ≤ h.
Let us consider the following infinite series of functions in the field F

q0(x) +
∞∑

n=1

(qn(x) − qn−1(x)). (20)

It represents a functional series of functions of two variables, and from (19)
it follows that it converges uniformly to a continuous function a(t, x). How-
ever, the partial sum of (20) is equal to qn(x), and therefore the sequence
of operational functions (qn(x))n∈N converges uniformly to a continuous
function a(x). �

In fact, we have

Theorem 3. If the conditions of Theorem 1 are satisfied, then the

sequence of operational functions (qn(x))n∈N, given by (17), converges uni-

formly to the exact solution u(x) of the problem (9), (10).

Proof. By Theorem 2, there exists the limit

a(x) := lim
n→∞ qn(x) = a(x),

Then we have

a(x) = lim
n→∞ qn(x) = u0 +

∫ x

x0

lim
n→∞ f(ξ, qn−1(ξ)) dξ

= u0 +
∫ x

x0

f(ξ, lim
n→∞ qn−1(ξ)) dξ = u0 +

∫ x

x0

f(ξ, u(ξ)) dξ

= u(x). �

Thus we obtained that the sequence of operational functions (qn(x))n∈N

given by (17) converges uniformly to the exact solution u(x) of the prob-
lem (9). Therefore the sum of the infinite series given by (20) is u(x), i.e.,
we have

u(x) = q0(x) +
∞∑

n=1

(qn(x) − qn−1(x)). (21)
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5. The approximate solution of the problem (9), (10)

Let us construct the approximate solution of the problem (9), (10)
by using the Picard’s method of successive approximations in the field of
Mikusiński operators. Namely, we shall construct the sequence of approx-
imate solutions (un(x))n∈N of the problem

u′(x) = f(x, u), x ∈ [x0, x0 + h), u(x0) = u0,

as
un(x) = u0 +

∫ x

x0

f(ξ, un−1) dξ, n ∈ N, (22)

where the integral in the previous expression is defined in the field of F
(see [2], p. 67).

The approximate solutions given by (22) are of the same form as the
operational function (17). Thus, we obtain the sequence of approximate
solutions of the problem (9), (10), i.e., the sequence (un)n∈N of operational
functions in the field F .

In order to estimate the error of approximation between the exact
solution u of problem (9), (10) and its approximate one un, n ∈ N, given
by (22), let us suppose that the operational function u(x)− un(x), n ∈ N,
represents a continuous function. Then the approximate solution can be
estimated, by using (21), and un(x) = qn(x) as

|u(x) − un(x)| =

∣∣∣∣∣
∞∑
i=1

(qi(x) − qi−1(x)) −
n∑

i=1

(qi(x) − qi−1(x))

∣∣∣∣∣
≤

∞∑
i=n+1

|qi(x) − qi−1(x)|

≤T �

∞∑
i=n+1

Li−1K|x− x0|iT i−1

i!(i − 1)!

≤T �
Ln|x− x0|n+1T n

(n + 1)(n!)2
R,

where R is a positive number such that

R ≥
∞∑
i=1

Li−1K|x− x0|i−1T i−1

i!(i− 1)!
. (23)



The approximate solution of nonlinear operational equations 77

If the operational function u(x) − qn(x), n ∈ N, does not represent a
continuous function, but there exists a k ∈ N such that �k(u(x) − qn(x))
represents a continuous function, then the error of approximation in the
field F can be estimated with the factor �k as

|�k(u(x) − qn(x))| ≤T �
Ln|x− x0|n+1T n

(n+ 1)(n!)2
R,

where the constant R is defined in (23).

6. An example

In order to illustrate the exposed method, we consider the following
integro-differential equation

∂u(t, x)
∂t

=
∂4u(t, x)
∂x2∂t2

−
∫ t

0

∂2u(t− τ, x)
∂t2

u(τ, x) dτ,

x ∈ [0, 1], t ≥ 0,

(24)

with the conditions

u(0, x) = 0,
∂u(0, x)
∂t

= 0, (25)

and
u(t, 0) = 1,

∂u(t, 0)
∂x

= 1. (26)

Note that the problem (24), (25), (26) is of the type (1), (2), (3).
The equation (24) with the conditions (25) corresponds, in the field F ,

to the equation
su(x) = s2u′′(x) − s2u2(x).

Thus in the field F we obtain the following problem:

u′′(x) = �u(x) + u2(x), u′(0) = �, u(0) = �. (27)

The equation in (27) reduces to the following system of simultaneous first
order equation

u′(x) = z(x), z′ = �u(x) + u2(x). (28)
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Applying the method of successive approximations to the system (28),
using the conditions (26), we get

u0 = u(0) = �, z0 = u′(0) = �,

and thus for the first approximation

u1(x) =
∫ x

0
z0 dξ =

∫ x

0
� dξ = �x,

z1(x) =
∫ x

0
(�u0(x) + u2

0(x)) dξ =
∫ x

0
(�2 + �2) dξ = 2�2x.

The second and third approximation will be equal to

u2(x) =
∫ x

0
z1 dξ =

∫ x

0
2�2ξ dξ = �2x2,

z2(x) =
∫ x

0
(�2ξ + �2ξ2) dξ = �2

(
x2

2
+
x3

3

)
,

and

u3(x) =
∫ x

0
z2 dξ = �2

(
x3

3!
+

2x4

4!

)
.

As shown before, the sequence of approximate solutions (un)n∈N con-
verges to the exact solution of the problem (27). Clearly one can continue
the upper procedure in order to obtain an approximate solution un with
given precision. Note that each un is an operator function representing a
continuous function.
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[7] D. Takači and A. Takači, Construction of the solutions of difference equation
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