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On 2-groups of almost maximal class

By CZES�LAW BAGIŃSKI (Bia�lystok) and
ALEXANDER KONOVALOV (Zaporozhye)

Abstract. Let G be a 2-group of order 2n, n � 6, and nilpotency class n−2.
The invariants of such groups determined by their group algebras over the field
of two elements are given in the paper.

1. Introduction

Let p be a prime. We say that a finite p-group G of order pn has the
coclass k if the nilpotency class of G is equal to n − k. The p-groups of
coclass k = 1 and k = 2 are called the p-groups of maximal class and of
almost maximal class respectively. The natural partition of the class of all
p-groups into a series of well-behaved families of p-groups of fixed coclass
has proved to be one of the most fruitful ideas of classifying p-groups
(see [7]). But the full description of p-groups by generators and relations
within each family was obtained only for a small number of families. It
is well known for (p, k) ∈ {(2, 1), (3, 1)} and can be derived for (p, k) ∈
{(2, 2), (2, 3)} from [8] (see also [5], [6]).

Here we study the internal structure of 2-groups of nilpotency coclass 2
counting the important invariants of these groups. The work, though mo-
tivated by the Modular Isomorphism Problem (MIP) for finite p-groups is
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of independent interest. Recall that the MIP asks whether, for given finite
p-groups G and H, the isomorphism of the group algebras FG and FH

over a field F of characteristic p implies the isomorphism of G and H. The
problem was posed more than 50 years ago and for a long time there was
rather small progress in studying it. The state of the problem in the end
of the nineties in a more general context is briefly described in [3] (see also
[11] and [1], [2], [10], [12], [14], [15]). One of the last results known to the
authors are that of Wursthorn saying that the groups of order 26 and 27

are determined by their modular group algebras over GF (2) (see [3], [15]).
He used computer programs in studying the problem for groups of small
order, which are classified and have descriptions usable by computers. In
December 2002 the authors were informed that the problem was solved
positively for group algebras of all p-groups over the field F = GF (p)
([4])1.

Throughout, p will denote a fixed prime. If G is a p-group then G′ =
(G,G) is the commutator subgroup of G, Φ(G) is the Frattini subgroup, Gp

is the subgroup generated by p-th powers of all elements of G and Ωi(G)
is the subgroup generated by all elements of order not bigger than pi.
By γi(G), i � 2, we mean the i-th term of the lower central series of G

(γ2(G) = G′); by γ1(G) we mean the subgroup CG(γ2(G) mod γ4(G)); if
g ∈ G and X ⊂ G, then (X, g) denotes the set of commutators {(x, g) :
x ∈ X}. By d(G) we denote the minimal number of generators of G, that
is d(G) = logp(|G/Φ(G)|). The center of G we denote by ζ(G). If g, h ∈ G

then gh = h−1gh and Cg is the conjugacy class of g, i.e. Cg = {gh : h ∈ G}.
The set of all conjugacy classes of G will be denoted by Cl(G). If S is a
normal subset of G then ClG(S) is the set of all conjugacy classes of G

contained in S.
We use (x, y) = x−1y−1xy for the group commutator of elements x

and y of a group. The group commutator of weight n, n > 2, we define
inductively by (x1, x2, . . . , xn) = ((x1, x2, . . . , xn−1), xn).

For a p-group G we will denote by R(G) the Roggenkamp parameter∑
i=1,...,t

d(CG(gi)),

where g1, . . . , gt is a set of representatives of all conjugacy classes of G.

1The proof given in the paper appeared to be incorrect, so the MIP remains open.
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This parameter was introduced by Roggenkamp and described in [14], [15],
where it is proved that R(G) is determined by the modular group algebra.
We will also use notation RG(S) for∑

i=1,...,s

d(CG(hi)),

where h1, . . . , hs is a set of representatives of the conjugacy classes of G

contained in the normal subset S of G.
If G is a finite p-group then by [9] the number of conjugacy classes

of maximal elementary abelian subgroups of given rank is determined by
FG. By the Quillen parameter of G we mean a series Q(G) = (q1, q2, . . .),
where qi is the number of conjugacy classes of maximal elementary abelian
subgroups of rank i. Since 2-groups of nilpotency coclass � 2 do not
contain elementary abelian subgroups of rank bigger than 4, we will write
the Quillen parameter in the form (q1, q2, q3, q4).

In the paper we count the isomorphism class of the centers, the num-
bers of conjugacy classes, the Quillen parameters and the Roggenkamp
parameters of all 2-groups of nilpotency coclass 2. From this follows that
the last two parameters determine almost all the groups.

Theorem 1.1. Let G and H be groups of order 2n, n � 8, and

nilpotency class n − 2. If Q(G) = Q(H) and R(G) = R(H) then either

G � H or {G,H} ⊂ {G9, G13, G14} or {G,H} = {G24, G25}.
It appears also that the numbers of conjugacy classes does not give

more information about differences between these groups and the isomor-
phism class of the center allows only to exclude G9 from the first set in
the theorem.

Using the fact that every metacyclic p-group G is determined by the
modular group algebra FG over the field F = GF (p) ([2], [12]) and some
additional arguments one can prove the following theorem.

Theorem 1.2. Let F = GF (2) be the field of 2 elements and let

G be a group of order 2n, n � 8, and nilpotency class n − 2. Then

FG � FH ⇒ G � H, provided {G,H} �= {G24, G25}
As we were informed by W. Kimmerle for n = 8 it was checked using

a computer that FG24 is not isomorphic to FG25.
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2. Presentations of groups of almost maximal class

Following [5], [6] and [8], 2-groups of almost maximal class of order
2n, n > 4, are classified. However, the full list of presentations of these
groups by generators and relations was not published. In [5] and [6] some
groups were omitted. In [8] there is given the list of pro-2 presentations of
pro-2 groups of coclass ≤ 3. Using both approaches first we give the list
of all groups of nilpotency coclass 2 and order 2n, n > 4. According to [8]
they are divided into five families with numbers 7, 8, 9, 50, 59. We will
use the same numbers of the families and denote them by Fam k, where
k ∈ {7, 8, 9, 50, 59}. For our purposes the presentations derived from the
pro-2 presentations of pro-2 groups are more convenient than ones that
were given in James’ paper.

2.1. 2-groups of almost maximal class with cyclic commutator
subgroup.

Theorem 2.1 ([5], Theorem 5.1). There are precisely 6 groups of

order 2n, n � 4, and class n−2 with G/γ2(G) elementary abelian and γ2(G)
cyclic. They form Fam 59 and are given by the following presentation:

〈x, y, t : x2n−2
= t2 = 1, y2 = z1, xy = x−1z2, xt = xz3, ty = tz4〉

where the values of zi, 1 � i � 4, for particular groups Gm, 1 � m � 6,

are such as in the following table.

G1 G2 G3 G4 G5 G6

z1 1 1 x2n−3
x2n−3

1 x2n−3

z2 1 x2n−3
1 1 1 1

z3 1 1 1 1 x2n−3
x2n−3

z4 1 1 1 x2n−3
1 1

Table 1

Theorem 2.2 ([5], Theorem 5.2). The number of groups of order 2n,

n � 5, and class n − 2 with G/γ2(G) of exponent 4, γ2(G) cyclic and

γ1(G)/γ2(G) cyclic is: {
3, if n = 5,

6, if n > 5.
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They form Fam 9 and are given by the following presentation:

〈x, y, t : x2n−2
= t2 = 1, y2 = z1, xy = x−1z2t, xt = xz3, ty = tz4〉

where the values of zi, 1 � i � 4, for particular groups Gm, 7 � m � 12,

are such as in the following table (for G9, G11 and G12 we have n > 5).

G7 G8 G9 G10 G11 G12

z1 1 x2n−3
1 1 1 x2n−3

z2 1 1 x2n−4
1 x2n−4

x2n−4

z3 1 1 1 x2n−3
x2n−3

x2n−3

z4 1 1 x2n−3
x2n−3

1 1

Table 2

Theorem 2.3 ([5], Theorem 5.3(a)). The number of groups of order

2n, n � 5, and class n − 2 with G/γ2(G) of exponent 4, γ2(G) cyclic and

γ1(G)/γ2(G) elementary abelian is:{
3, if n = 5,

4, if n > 5.

They form Fam 50 and are given by the following presentation:

〈x, y : x2n−2
= 1, y4 = z1, xy = x−1z2〉,

where the values of z1 and z2 are such as in the following table (for G16

we have n > 5).

G13 G14 G15 G16

z1 1 1 x2n−3
1

z2 1 x2n−3
1 x2n−4

Table 3

2.2. 2-groups of almost maximal class with 2-generated
commutator subgroup.

Theorem 2.4 ([5], [8]). The number of groups of order 2n, n � 5, and

class n−2 with G/γ2(G) of exponent 4, γ2(G) 2-generated and γ1(G)/γ2(G)
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elementary abelian is 
3, if n = 5,

4, if n = 6,

9, if n > 6, n odd,

10, if n > 6, n even.

They form Fam 8.

The description of the groups of Fam 8 by generators and defining
relations is more complicated than in the previous families. Let |G| =
2n = 22k+2+ε, n � 6, ε ∈ {0, 1}. Each of the groups of Fam 8 can be
described as the group

〈x1, x2, y :

x2k+ε

1 = x2k

2 = 1, y4 = t1, xy
1 = x1x2, xy

2 = x−2
1 x−1

2 t2, xx1
2 = x2t3〉,

(1)

where t1, t3 ∈ {1, z1}, t2 ∈ {1, z1, z2, z1z2}, ε ∈ {0, 1} and:
if ε = 0, then z1 = x2k−1

2 , z2 = x2k−1

1 ;
if ε = 1, then z1 = x2k

1 , z2 = x2k−1

2 .
The values of ti (i = 1, 2, 3), for the groups Gm, 18 � m � 27, are given
in the following table. Note that for ε = 1 the groups G24 and G25 are
isomorphic.

G18 G19 G20 G21 G22 G23 G24 G25 G26 G27

t1 1 z1 z1 1 z1 1 z1 1 1 z1

t2 1 1 z1 1 1 z1 z2 z1z2 z2 z1z2

t3 1 1 1 z1 z1 1 1 1 z1 z1

Table 4

For n = 5 we have only the groups G18, G19 and

G17 = 〈x1, x2, y |
x8

1 = x4
2 = 1, y4 = x4

1, x
y
1 = y2x1x2, x

y
2 = x−2

1 , xx1
2 = x−1

2 x2
1x2〉;

for n = 6 we have only the groups G18, G19, G20 and G23.
Accordingly to the definitions from [8], G18 is the mainline group of

this family with the immediate descendants G19−G22 (which are terminal)
and G23 (which have 4 immediate terminal descendants G24−G27 if ε = 0,
and 3 immediate terminal descendants G24−G27 with G24

∼= G25, if ε = 1).
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2.3. 2-groups of almost maximal class with 3-generated
commutator subgroup.

Theorem 2.5 ([5], [8]). The number of groups of order 2n, n ≥ 6, and

class n−2 with G/γ2(G) of exponent 4, γ2(G) 3-generated and γ1(G)/γ2(G)
elementary abelian is 

2, if n = 6,

4, if n > 6, n odd,

12, if n > 6, n even.

They form Fam 7.

The groups of Fam 7 have the most complicated description by gener-
ators and defining relations among all 2-groups of coclass 2.

Assume first that |G| = 2n = 22k+2, n � 6, that is G = Gm, where
28 � m � 39. Each of these groups can be described as the group

〈x1, x2, y : x2k+1

1 = 1,

x2k−1

2 = x2k

1 , y4 = t1, xy
1 = y2x1x2t2, xy

2 = x−2
1 t3, xx1

2 = x−1
2 t4〉,

(2)

where t1, t2, t3 ∈ {1, z1}, t4 ∈ {1, z1, z2}, z1 = x2k

1 = x2k−1

2 , z2 = x2k−1

1 x2k−2

2 .
The values of ti (i = 1, 2, 3, 4) for particular groups are given in the fol-
lowing table:

G28 G29 G30 G31 G32 G33 G34 G35 G36 G37 G38 G39

t1 1 1 z1 z1 1 1 z1 z1 1 1 z1 z1

t2 1 z1 1 z1 z1 1 z1 1 1 1 z1 1
t3 1 1 1 1 1 1 1 1 1 z1 1 1
t4 1 1 z1 z1 z1 z1 1 1 z2 z2 z2 z2

Table 5

Note that for n = 6 we have only groups G28 and G29.
For further calculations we derive additional helpful relations. For

28 � m � 35 in a group G = Gm we have

xy2

1 = x−1
1 x2t1, (x2

1)y2
= x−2

1 t4, (x2
1)y = x2t4, xy2

2 = x−1
2 t4. (3)

If 36 � m � 39 then

xy2

1 = x−1
1 x2t1t3z1, (x2

1)y2
= x−2

1 z1z2, (x2
1)y = x2t3z2, xy2

2 = x−1
2 z2. (4)
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If |G| = 2n = 22k+3, n > 6, that is G ∈ {G40, G41, G42, G43}, the
groups of Fam 7 can be described in a little simpler way:

〈x1, x2, y :

x2k+1

1 = x2k

2 = 1, y4 = t1, xy
1 = y2x1x2, xy

2 = x−2
1 , xx1

2 = x−1
2 t4〉

(5)

where t1, t4 ∈ {1, z}, z = x2k

1 x2k−1

2 . The values of t1 and t4 for particular
groups are given in the following table:

G40 G41 G42 G43

t1 1 z 1 z
t4 1 z z 1

Table 6

The relations (3) are valid also for these groups.
The group G40 is the mainline group with the immediate descendant

G28 which is mainline and seven immediate descendants G29–G35 which
are terminal. The groups G41 and G43 are terminal, G42 is capable with
four immediate descendants G36–G39 which in turn are terminal. All the
groups G40–G43 are immediate descendants of the mainline group G28.

3. Groups with cyclic commutator subgroup

In this section we describe properties of the groups defined in The-
orems 2.1, 2.2 and 2.3. All these groups are extensions of a noncyclic
group of class at most two with a cyclic maximal subgroup by the group
of order 2.

Let G = Gm, 1 � m � 16. We let A be the subgroup of G generated by
the elements x and t (for m ∈ {13, 14, 15, 16} we put t = y2). The following
lemma is an easy observation obtained by a straightforward computation
from the presentations of groups. We assume that all the groups Gm have
order pn, where n � 5.

Lemma 3.1. Let G = Gm ∈ Fam 9 ∪ Fam 50 ∪ Fam 59. Then:

(a) γ2(G) =

{
〈x2〉 if G ∈ Fam 50 ∪ Fam 59

〈x2t〉 if G ∈ Fam 9
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(b) If i � 3 then γi(G) = 〈x2i−1〉;

(c) ζ(Gm) =


〈x2n−3

, t〉 for m ∈ {1, 2, 3, 7, 8, 13, 14},
〈x2n−4

t〉 for m ∈ {4, 9},
〈y2〉 for m = 15,

〈x2n−3〉 for m ∈ {5, 6, 10, 11, 12, 16};

(d) |G : A| = 2 and Ω1(A) = 〈x2n−3
, t〉 is an elementary abelian normal

subgroup of G of order 4;

(e) If A is nonabelian then γ2(A) = 〈x2n−3〉, ζ(A) = 〈x2〉, in particular

the nilpotency class of A is not greater than 2.

For counting the Roggenkamp and Quillen parameters of our groups
we need information about the conjugacy classes of elements of order 2
lying outside A.

Lemma 3.2. Let G = Gm ∈ Fam 9 ∪ Fam 50 ∪ Fam 59.

(a) The set G\A splits into the following four conjugacy classes: Cy, Cyx,

Cyt, Cyxt.

(b) The orders of the elements y, yx, yt, yxt are given in the following

tables.

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12

y 2 2 4 4 2 4 2 4 2 2 2 4
yx 2 4 4 4 2 4 4 4 8 4 8 8
yt 2 2 4 2 2 4 2 4 4 4 2 4
yxt 2 4 4 2 4 2 4 4 8 4 8 8

Table 7

G13 G14 G15 G16

y 4 4 8 4
yx 4 4 8 8
yt = y−1 4 4 8 4
yxt = y−1x 4 4 8 8

Table 8



106 C. Bagiński and A. Konovalov

Proof. (a) The unique subgroup of order 4 contained in 〈x〉 is equal to
〈x2n−4〉. Since (x2n−4

)y �= x2n−4
and (x2n−3

)y = x2n−3
, we have C〈x〉(y) =

〈x2n−3〉, that is |C〈x〉(y)|= 2. But 〈x2n−4〉 ∈ ζ(A), so for all g ∈{y, yx, yt, yxt}
we have |C〈x〉(g)| = 2 and then |C〈x〉(g)| � 8, as |G : 〈x〉| = 4. Hence
|Cg| � 2n−3. On the other hand the size of the conjugacy class Cg does
not exceed the size of the commutator subgroup because Cg ⊆ gG′. In
our groups we have |G′| = 2n−3. Consequently |Cg| = 2n−3 and Cg = gG′.
Finally, since the elements y, yx, yt, yxt lie in different cosets of G by G′,
we obtain G \ A = yG′ ∪ yxG′ ∪ ytG′ ∪ yxtG′ = Cy ∪ Cyx ∪ Cyt ∪ Cyxt.

(b) By the defining relations (Theorem 2.1) for the groups Gm ∈
Fam 59 we have y2 = z1, (yx)2 = y2xyx = z1z2, (yt)2 = y2tyt = z1z4

and (yxt)2 = y2xytyxt = z1z2z3z4. Using the values of zi, 1 � i � 4, we
obtain the orders given in the table.

Similarly, for the groups Gm ∈ Fam 9 we have y2 = z1, (yx)2 =
y2xyx = z1z2z3t, (yt)2 = y2tyt = z1z4 and (yxt)2 = y2xytyxt = z1z2z4t

and again using the values of zi, 1 � i � 4, we obtain the orders given in
the table.

Finally, for the groups of Fam 50 we have y4 = (y−1)4 = z1 and (yx)4 =
z1z

2
2 = (y−1x)4. The orders of the considered elements are easily seen from

the defining relations of the groups of Fam 50. �
Proposition 3.1. Let G = Gm ∈ Fam 9 ∪ Fam 50 ∪ Fam 59.

(a) If A is abelian, that is m ∈ {1, 2, 3, 4, 7, 8, 9, 13, 14, 15}, then

|Cl(G)| = 2n−2 + 6.

(b) If A is nonabelian, that is m ∈ {5, 6, 10, 11, 12, 16}, then

|Cl(G)| = 5 · 2n−5 + 6.

Proof. (a) It follows immediately from the defining relations and
Lemma 3.1 that A is abelian if and only if |ζ(G)| = 4. Now, if A is
abelian and a ∈ A \ ζ(G), then CG(a) = A that is |Ca| = 2. Thus
|ClG(A\ζ(G))| = |A|−|ζ(G)|

2 = 2n−1−22

2 = 2n−2−2. Now the four conjugacy
classes contained in G\A, the four 1-element classes and the classes counted
above give the formula.

(b) For nonabelian A we have ζ(A) = 〈x2〉. The elements of ζ(A) \
ζ(G) have centralizers equal to A. So |ClG(〈x2〉)| = |ζ(A)|−|ζ(G)|

2 + 2 =
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2n−3−2
2 + 2 = 2n−4 + 1. The subgroup 〈x2, t〉 has index 2 in A. The set

t〈x2〉 = 〈x2, t〉 \ 〈x2〉 contains exactly two elements of order 2 (they form a
conjugacy class of the element t) and exactly two elements of order 4 (they
form a conjugacy class of the element tx2n−4

). All other elements of this set
form 2n−3−4

4 = 2n−5 − 1 four-element conjugacy classes. Every conjugacy
class contained in A\〈x2, t〉 has 4 elements. Therefore we obtain |Cl(G)| =
|ClG(G\A)|+|ClG(A\〈x2, t〉)|+|ClG(〈x2, t〉\〈x2〉)|+|ClG(〈x2〉)|+|ζ(G)| =
4 + 2n−4 + (2n−5 + 1) + (2n−4 − 1) + 2 = 2n−3 + 2n−5 + 6. �

Proposition 3.2. Let G = Gm ∈ Fam 9 ∪ Fam 50 ∪ Fam 59.

a) If A is abelian, that is m ∈ {1, 2, 3, 4, 7, 8, 9, 13, 14, 15}, then

R(G) = 2n−1 + rm,

where the values of rm are given in the following table.

G1 G2 G3 G4 G7 G8 G9 G13 G14 G15

rm 20 18 16 16 14 12 10 12 12 8

Table 9

(b) If A is nonabelian, that is m ∈ {5, 6, 10, 11, 12, 16}, then

R(G) = 2n−2 + rm,

where the values of rm are given in the following table.

G5 G6 G10 G11 G12 G16

rm 18 16 13 13 11 10

Table 10

Proof. (a) It is seen from Lemma 3.1 that A is abelian if and only if
|ζ(G)| = 4. But ζ(G) � A, so for a ∈ A \ ζ(G) we have CG(a) = A, which
is 2-generated. For a ∈ ζ(G) we have obviously CG(a) = G. Therefore by
the proof of Lemma 3.1(a) we obtain

RG(A) = 2 · |ClG(A \ ζ(G))| + 4 · d(G)

= 2n−1 +

{
8 if m ∈ {1, 2, 3, 4}
4 if m ∈ {7, 8, 9, 13, 14, 15}.

(6)
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As it was already noted in the proof of Proposition 3.2 for g ∈ G \ A we
have |Cg| = 2n−3, so |CG(g)| = 23 and CG(g) = 〈g, ζ(G)〉. If g has order 2
and ζ(G) is elementary abelian, then d(CG(g)) = 3. If ζ(G) is cyclic of
order 4 (i.e. m ∈ {4, 9}) or g has order 4, then obviously d(CG(g)) = 2.
Finally d(CG(g)) = 1, when g has order 8. Now using the formula (6) and
the information from the tables of Proposition 3.2 we get the assertion.

(b) It is obvious that for a ∈ ζ(A) \ ζ(G) we have CG(a) = A that is
d(CG(a)) = 2. Hence

RG(〈x2〉) = 2 · 2n−3 − 2
2

+ 2 · d(G) = 2n−3 +

{
4 if m ∈ {5, 6}
2 if m ∈ {10, 11, 12, 16}.

If the conjugacy class of an element a ∈ t〈x2〉 has four elements, then
obviously its centralizer is equal to 〈x2, a〉 = 〈x2, t〉, which is 2-generated.
For the representatives t and x2n−4

t of the 2-element classes (see the proof
of Proposition 3.1b) we have

CG(t) =

{
〈x2, y, t〉 if m ∈ {5, 6, 11, 12},
〈x2, xy〉 if m ∈ {10, 16}

and

CG(tx2n−4
) =

{
〈x2, y, t〉 if m ∈ {5, 6, 10},
〈x2, xy〉 if m ∈ {11, 12, 16}.

Thus

RG(t〈x2〉) = 2 · 2n−3 − 4
4

+


6 if m ∈ {5, 6}
5 if m ∈ {10, 11, 12}
4 if m = 16.

It is clear that all the elements a ∈ A \ 〈x2, t〉 have order 2n−2 and by
Proposition 3.1b we have |Ca| = 4. Thus CG(a) = 〈a〉 and, consequently,
RG(A \ 〈x2, t〉) = |ClG(A \ 〈x2, t〉)| = 2n−4. Finally,

R(G) = RG(G \ A) + 2n−2 +


8 if m ∈ {5, 6},
5 if m ∈ {10, 11, 12}
4 if m = 16,
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so after counting the centralizers of the elements g ∈ {y, yx, yt, yxt} in a
similar way as in the proof of part (a) we get the assertion. �

We finish this section with counting the Quillen parameters. It was
noted in Lemma 3.1 that Ω1(A) is an elementary abelian normal subgroup
of G of order 4. Hence, if there are no elements of order 2 outside A, Ω1(A)
is the unique maximal elementary abelian subgroup of G, i.e. the Quillen
parameter of G is equal to (0, 1, 0, 0). Since |G : A| = 2, there is not an
elementary abelian subgroup of order 4 with trivial intersection with A.
Hence, in all other cases the parameter has type (0, q2, q3, 0). The values of
q2 and q3 can be easily counted by studying the centralizers of the elements
of order 2 lying outside A and the intersections of these centralizers with
Ω1(A). We leave the details to the reader.

Proposition 3.3. If G ∈ Fam 9 ∪ Fam 50 ∪ Fam 59 then the Quillen

parameters are given in Table 11.

4. Groups with 2-generated commutator
subgroup

In this section we describe the groups defined in Theorem 2.4. All
these groups are extensions of a subgroup of nilpotency class � 2 by the
cyclic group of order 4.

Let G = Gm, 18 � m � 27. In this section we let A be the subgroup
of G generated by the elements x1 and x2. The following lemmas are
easy observations obtained by a straightforward computation from the
presentations of groups. We assume that all the groups Gm have order pn,
where n � 7.

Lemma 4.1. Let G ∈ Fam 8. Then γ2(G) = 〈x2
1, x2〉, γ3(G) =

〈x2
1, x

2
2〉, and in general, γ2i(G) = 〈x2i

1 , x2i−1

2 〉, γ2i+1(G) = 〈x2i

1 , x2i

2 〉 for

i � 1.

Lemma 4.2. Let G ∈ Fam 8. Then:

(a) If G = Gm, where m ∈ {21, 22, 26, 27}, then A′ = {z1} and ζ(A) =
γ3(G); in all other cases A is abelian.

(b) If g ∈ {y, yx1, y
−1, y−1x1, y

2x1}, then (G, g) = γ2(G); if g ∈ {y2, y2x2},
then (G, g) = γ3(G).
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Group Isomorphism
type of ζ(G)

Quillen
parameter

Representatives of the conjugacy
classes of maximal

elementary abelian subgroups

G1 C2 × C2 (0, 0, 2, 0) 〈x2n−3
, y, t〉, 〈x2n−3

, yx, t〉
G2 C2 × C2 (0, 0, 1, 0) 〈x2n−3

, y, t〉
G3 C2 × C2 (0, 1, 0, 0) 〈x2n−3

, t〉
G4 C4 (0, 3, 0, 0) 〈x2n−3

, y〉, 〈x2n−3
, yx〉, 〈x2n−3

, x2n−4
t〉

G5 C2 (0, 1, 1, 0) 〈x2n−3
, yx〉, 〈x2n−3

, y, t〉
G6 C2 (0, 2, 0, 0) 〈x2n−3

, t〉, 〈x2n−3
, xyt〉

G7 C2 × C2 (0, 0, 1, 0) 〈x2n−3
, y, t〉

G8 C2 × C2 (0, 1, 0, 0) 〈x2n−3
, t〉

G9 C4 (0, 2, 0, 0) 〈x2n−3
, t〉, 〈x2n−3

, y〉
G10 C2 (0, 2, 0, 0) 〈x2n−3

, t〉, 〈x2n−3
, y〉

G11 C2 (0, 0, 1, 0) 〈x2n−3
, y, t〉

G12 C2 (0, 1, 0, 0) 〈x2n−3
, t〉

G13 C2 × C2 (0, 1, 0, 0) 〈x2n−3
, y2〉,

G14 C2 × C2 (0, 1, 0, 0) 〈x2n−3
, y2〉,

G15 C4 (0, 1, 0, 0) 〈x2n−3
, y2x2n−4〉

G16 C2 (0, 1, 0, 0) 〈x2n−3
, y2〉

Table 11

(c) Ω1(A) is an elementary abelian subgroup of order 4 and Ω1(A) �
ζ(〈A, y2〉).
Lemma 4.3. The set G \A splits into 7 conjugacy classes, which are

yγ2(G), yx1γ2(G), −1γ2(G), y−1x1γ2(G), y2x1γ2(G), y2γ3(G), y2x2γ3(G).
Moreover, first four classes do not contain elements of order 2.

Proof. It is obvious that A is a normal subgroup of index 4 with
the cyclic factor group G/A = 〈yA〉. We have also by Lemma 4.1 that
A = x1γ2(G) ∪ x2γ3(G) ∪ γ3(G). Hence

G \ A = yA ∪ y−1A ∪ y2A

= yγ2(G) ∪ yx1γ2(G) ∪ y−1γ2(G) ∪ y−1x1γ2(G)
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∪ y2x1γ2(G) ∪ y2γ3(G) ∪ y2x2γ3(G).

By Lemma 4.2(b) each of the sets from the last two lines is a conjugacy
class. Since yA and y−1A are elements of order 4 in G/A, none of these
cosets contains elements of order 2 and the lemma is proved. �

Lemma 4.4. Let G ∈ Fam 8, and let C be one of the conjugacy

classes y2x1γ2(G), y2γ3(G), y2x2γ3(G). If C consists of elements of order

2, then the family Θ = {〈g, x2k+ε−1

1 , x2k−1

2 〉 : g ∈ C} is a conjugacy class of

maximal elementary abelian subgroups of G. Moreover |Θ| = |C|/4.

Proof. Notice first that any two elements from different conjugacy
classes listed in the lemma are not commuting. So they cannot lie together
in an abelian subgroup. Further, if C is one of these classes and g ∈ C, then
as it follows from Lemma 4.2(c), 〈g, Ω1(G)〉 is abelian. So by the above,
if g has order 2, it is maximal elementary abelian. It is clear that one
such subgroup contains 4 elements belonging to C and different subgroups
determine disjoint such four-element subsets. Thus |Θ| = |C|

4 . �

Corollary 4.1. If G ∈ Fam 8 and |G| ≥ 26, then maximal elementary

abelian subgroups of G have order not greater than 23. If |G| > 26, and B

is a maximal elementary abelian subgroup of G of order 23, then B is not

normal in G.

The proof of the following lemma needs standard and not difficult
calculations.

Lemma 4.5. Let G ∈ Fam 8. Then:

(a) for g ∈ ζ(G), CG(g) = G;

(b) for g ∈ 〈z1, z2〉 \ ζ(G), CG(g) = 〈y2, x1, x2〉;
(c) for g ∈ γ3(G) \ 〈z1, z2〉, CG(g) = A;

(d) for g ∈ A \ γ3(G), CG(g) =

{
A, if A is abelian,

〈g, γ3(G)〉, if A is nonabelian;

(e) for g ∈ y2x1γ2(G), CG(g) = 〈g, z1, z2〉;
(f) for g ∈ y2γ3(G) ∪ y2x2γ3(G), CG(g) = 〈h, z1, z2〉, where h2 = g;

(g) for g /∈ 〈y2, A〉, CG(g) = 〈g, ζ(G)〉.
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Proposition 4.1. Let G ∈ Fam 8.

(a) If A is abelian, that is m ∈ {18, 19, 20, 23, 24, 25}, then

|Cl(G)| = 9 + 22k+ε−2.

(b) If A is nonabelian, that is m ∈ {21, 22, 26, 27}, then

|Cl(G)| = 9 + 5 · 22k+ε−5.

Proof. Assume first that A is abelian. We split A into the set theo-
retic sum of 3 disjoint subsets: A = ζ(G)∪ (〈z1, z2〉 \ ζ(G))∪ (A \ 〈z1, z2〉).
In ζ(G) we have two one-element classes, the set 〈z1, z2〉 \ ζ(G) forms one
two-element class and finally in the last subset we have |A|−4

4 = 22k−2+ε−1
four-element classes. All this classes together with the seven classes con-
tained in G \ A give 9 + 22k+ε−2 conjugacy classes.

Now let A be nonabelian and let us split it into the set theoretic sum
of 4 disjoint sets A = ζ(G)∪(〈z1, z2〉\ζ(G))∪(γ3(G)\〈z1 , z2〉)∪(A\γ3(G)).
As in the previous case, conjugacy classes contained in the three first sets
have respectively 1, 2 and 4 elements. Each conjugacy class contained
in A \ γ3(G) has 8 elements, by Lemma 4.5(d). Therefore |Cl(G)| =
2 + 1 + 22k+ε−2−4

4 + 22k+ε−22k+ε−2

8 + 7 = 9 + 5 · 22k+ε−5. �

Lemma 4.6. Let G ∈ Fam 8. The conjugacy classes of G not con-

tained in A have elements of order as listed in Table 12.

Groups G18 G19 G20 G21 G22 G23 G24 G25 G26 G27

A abelian + + + − − + + + − −
Representatives
of conjugacy
classes

y, y−1 4 8 8 4 8 4 8 4 4 8
yx1, y−1x1 4 8 8 8 4 4 4 8 4 8

y2x1 2 4 4 2 4 2 4 2 2 4
y2 2 4 4 4 2 2 2 4 2 4

y2x2 2 4 2 2 4 4 4 4 4 4

Table 12

Proof. The order of y, y−1 and y2 can be easily fixed by Table 4.
For yx1 and y−1x1 we have (yx1)2 = y2x2

1x
x1
2 ∈ y2x2γ3(G) and similarly
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(y−1x1)2 ∈ y2x2γ3(G). Further (y2x2)2 = t1t2t
y
2t3. If t2 = z1, then obvi-

ously ty2 = t2. If t2 = z2, then ty2 = z1z2. Now it is an easy task to fill the
table. �

Lemma 4.7. Let G ∈ Fam 8.

(a) If A is abelian, that is m ∈ {18, 19, 20, 23, 24, 25}, then

RG(A) = 5 + 22k+ε−1.

(b) If A is nonabelian, that is m ∈ {21, 22, 26, 27}, then

RG(A) = 5 + 5 · 22k+ε−4.

Proof. The only conjugacy class contained in A whose representa-
tives have 3-generated centralizers is Cz2 = {z2, z1z2}. Representatives of
all other conjugacy classes contained in A have 2-generated centralizers.

�

Now we are ready to count the Roggenkamp and the Quillen parame-
ters of all the groups of Fam 8.

Proposition 4.2. Let G = Gm ∈ Fam 8, |G| > 26. Then

R(G) =

{
22k+ε−1 + rm, if A is abelian, that is m ∈ {18, 19, 20, 23, 24, 25},
5 · 22k+ε−4 + rm, if A is nonabelian, that is m ∈ {21, 22, 26, 27},

where the values of rm are given in the following table.

G18 G19 G20 G23 G24 G25 G21 G22 G26 G27

rm 20 15 16 19 17 17 18 17 19 15

Table 13

Proof. By Lemma 4.7 in order to find the Roggenkamp parameters
we need to count minimal numbers of generators of the centralizers of the
elements listed in Table 12. The elements y, y−1, yx1, y

−1x1 have central-
izers of order 8, so if any of these elements has order 4, then it must have a
2-generated centralizer. If it has order 8, then its centralizer is cyclic. The
elements y2, y2x2 are 2-powers and have centralizers of order 16 which are
2-generated. The centralizer of y2x1 has 8 elements and depending on its
order it is 3-generated when its order is equal 2 and 2-generated, when its
order is equal 4. �
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Proposition 4.3. If G = Gm ∈ Fam 8, |G| > 26, then the Quillen
parameter of G is such as it is listed in the following table.

Group Quillen
parameter

The representatives of the conjugacy classes
of elementary abelian maximal subgroup

G18 (0, 0, 3, 0) 〈y2x1, Ω1(A)〉, 〈y2, Ω1(A)〉, 〈y2x2, Ω1(A)〉
G19 (0, 1, 0, 0) Ω1(A)
G20 (0, 0, 1, 0) 〈y2x2, Ω1(A)〉
G21 (0, 0, 2, 0) 〈y2x1, Ω1(A)〉, 〈y2x2, Ω1(A)〉
G22 (0, 0, 1, 0) 〈y2, Ω1(A)〉
G23 (0, 0, 2, 0) 〈y2x1, Ω1(A)〉, 〈y2, Ω1(A)〉
G24 (0, 0, 1, 0) 〈y2, Ω1(A)〉
G25 (0, 0, 1, 0) 〈y2x1, Ω1(A)〉
G26 (0, 0, 2, 0) 〈y2x1, Ω1(A)〉, 〈y2, Ω1(A)〉
G27 (0, 1, 0, 0) Ω1(A)

Table 14

Proof. It was mentioned earlier that if the elements y2, y2x1, y2x2

have order 4 then Ω1(A) is the unique maximal elementary abelian sub-
group of G and then (0, 1, 0, 0) is the Quillen parameter of G. If among
these elements there are i elements of order 2, i ∈ {1, 2, 3}, then the
Quillen parameter of G has the form (0, 0, i, 0). So using the information
from Table 12 one can easily fill Table 13. �

5. Groups with 3-generated commutator subgroup

In this section we describe the groups defined in Theorem 2.5.
Let G = Gm, 28 � m � 43. In this section we let A be the subgroup

of G generated by the elements x2
1 and x2. This subgroup will play a key

role in our computations.
The following lemmas are easy observations obtained by a straightfor-

ward computation from the presentations of the groups. We assume that
all the groups Gm have order pn, where n � 6.

Lemma 5.1. Let G ∈ Fam 7. Then γ2(G) = 〈y2x2
1, x

2
1x2, x

2
2〉, γ3(G) =

〈x2
1x2, x

2
2〉, and, in general for m � 2, γ2m(G) = 〈x2m

1 , x2m−1

2 〉, γ2m+1(G) =
〈x2m

1 x2m−1

2 , x2m

2 〉.
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Lemma 5.2. Let G ∈ Fam 7. Then:

(a) γ3(G) ≤ A and |A : γ3(G)| = 2;

(b) A is normal in G and the factor group G = G/A is isomorphic to the

dihedral group of order 8;

(c) If G = Gm, with 36 ≤ m ≤ 39, then [A,A] = 〈z1〉; in all other cases A

is abelian;

(d) The subgroup H = 〈y2, A〉 is the unique normal subgroup of G of

index 4 containing A;

(e) There exist exactly 4 non-normal subgroups of G of index 4 containing

A: H1 = 〈x1, A〉, H2 = 〈y2x1, A〉, H3 = 〈yx−1
1 , A〉, H4 = 〈y3x1, A〉.

Moreover, Hy
1 = H2 and Hx1

3 = H4.

Let H = Φ(G) = 〈y2, A〉. Since d(G) = 2, G has exactly three maximal
subgroups. These are M1 = 〈y,H〉, M2 = 〈x1,H〉 and M3 = 〈yx1,H〉. It
can be easily seen that d(M1) = d(M2) = 2 and d(M3) = 3. In further
considerations we will use the splitting of G into the following set-theoretic
sum of pairwise disjoint subsets:

G = A ∪ (H \ A) ∪ (M1 \ H) ∪ (M2 \ H) ∪ (M3 \ H).

Lemma 5.3. Let G ∈ Fam 7. Then

(a) ClG(H \ A) = {y2γ3(G), y2x−2
1 γ3(G)},

(b) ClG(M1 \ H) = {yγ2(G), y3γ2(G)}.
Proof. (a) Since H \ A = y2A and A = γ3(G) ∪ x−2

1 γ3(G), we have
H \ A = y2γ3(G) ∪ y2x−2

1 γ3(G). Now the relations 3 and 4 give [G, y2] =
[G, y2x−2

1 ] = γ3(G). Hence for g ∈ {y2, y2x−2
1 }, Cg = gγ3(G).

(b) By Lemma 5.1, H = γ2(G)∪x2
1γ2(G), so M1 \H = yH = yγ2(G)∪

yx2
1γ2(G). Now CG(y) = 〈y, ζ(G)〉 and CG(yx2

1) = 〈yx2
1, ζ(G)〉, that is for

g ∈ {y, yx2
1}, |Cx| = |γ2(G)| and the assertion follows. �

The following lemma will allow us to count the Quillen parameters of
all groups of Fam 7.

Lemma 5.4. Let G = Gm be a group of Fam 7. Then the set of all

elements of order 2 of G is contained in

Ω1(A) ∪
⋃

g∈X

Cg
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where

X =

{
{y2, y2x−2

1 , yx−1
1 , yx−1

1 x2k−1

2 } if A is abelian,

{y2, yx−1
1 x2k−2

2 } if A is nonabelian.

Proof. It suffices to show, that conjugacy classes which are not rep-
resented by elements from X, do not consist of elements of order 2. By
Lemma 5.3 elements belonging to M1 \ H are conjugated either to y or
to y3, so their order is equal either 4 or 8. It can be also easily verified
that elements of the set M2 \ H have order equal to o(x1) = 2k+1. So
let us consider elements of M3 \ H. Since M3 \ H = yx−1

1 A ∪ y3x1A

and (yx−1
1 A)y = y3x1A, we consider only elements from yx−1

1 A. Let
g = yx−1

1 (x2r
1 xs

2) be an arbitrary element of this set. First let us as-
sume that |G| = 22k+2 (in this case 0 ≤ r < 2k, 0 ≤ s < 2k−1). If A

is abelian, then g2 = t1t2t4(x−2
1 x2)s−r. Since t1, t2, t4 ∈ {1, x2k

1 = x2k−1

2 },
g has order 2 if and only if t1t2t4 = 1 = (x−2

1 x2)s−r. It follows from
Table 5 that for m ∈ {29, 31, 33, 35} t1t2t4 = z1 so the subset M3 \ H

of Gm does not contain elements of order 2. If m ∈ {28, 30, 32, 34}
then t1t2t4 = 1 and then g is of order 2, when r − s ≡ 0 (mod 2k−1).
Since this congruence has exactly 2k solutions, there exist exactly 2k+1

elements of order 2 in M3 \ H (half of them lie in yx−1
1 A and the sec-

ond half in y3x1A). It can be easily checked that for m ∈ {28, 30},
CG(yx−1

1 ) = 〈yx−1
1 , y2x−2

1 , z1, x
−1
1 x2〉, so |Cyx−1

1
| = 2k. The second con-

jugacy class consisting of elements of order 2 is the class represented by
yx−1

1 z1. If m ∈ {32, 34}, then CG(yx−1
1 ) = 〈yx−1

1 , z1, x
−1
1 x2〉 and then all

elements of order 2 of M3 \ H lie in one conjugacy class.
Now let us assume that A is nonabelian, that is m ∈ {36, 37, 38, 39}.

For g = yx−1
1 (x2r

1 xs
2) we have

g2 = t1t2t
1+r+s
3 z

1+r(s−r)
1 z2x

−2(s−r)
1 xs−r

2 . (7)

Therefore, if g2 = 1 we have x
−2(s−r)
1 xs−r

2 ∈ Ω1(A), which says that
x
−2(s−r)
1 xs−r

2 ∈ {1, x−2k−1

1 x2k−2

2 = z1z2}. In particular s and r have to be of
the same parity, and because of that g2 = t1t2t3z1z2x

−2(s−r)
1 xs−r

2 . Thus, as
it follows from Table 5, there is no element of order 2 in M3\H for G37 and
G39. If G = G36 or G = G38 then g2 = 1 if and only if r−s ≡ 2k−2(mod 2k).
This congruence has 2k solutions which means, in particular, that in M3\H
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there exist exactly 2k+1 elements of order 2 and they all belong to the class
of the element yx−1x2k−2

2 as CG(yx−1x2k−2

2 ) = 〈yx−1x2k−2

2 , z1, x
−2
1 x2〉, i.e.

|C
yx−1x2k−2

2
| = 2k+1.

Finally, let |G| = 22k+3. Then g2 = t1t
1+r
4 (x−2

1 x2)s−r and so g

has order 2 if and only if t1t
1+r
4 (x−2

1 x2)s−r = 1, 0 ≤ s, r ≤ 2k − 1.
For arbitrary values of t1 and t4 the last equality is valid for exactly
2k different pairs (s, r). Now notice that (yx−1

1 )y2x−2
1 = (yx−1

1 )t1t4 and

(yx−1
1 x2k−1

2 )y2x−2
1 x2k−1

2 = (yx−1
1 x2k−1

2 )zt1t4. Hence t1 = t4 implies that
yx−1

1 has order 2, CG(yx−1
1 ) = 〈yx−1

1 , y2x−2
1 , x−2

1 x2〉 and |Cyx−1
1
| = 2k+1.

Therefore all elements of order 2 of the set M3 \H lie in Cyx−1
1

. If t1 �= t4,

then yx−1
1 x2k−1

2 has order 2 and similarly as in the previous case, all ele-
ments of order 2 of the set M3 \H lie in the conjugacy class represented by
yx−1

1 x2k−1

2 since CG(yx−1
1 x2k−1

2 ) = 〈yx−1
1 x2k−1

2 , y2x−2
1 x2k−1

2 , x−2
1 x2〉. �

Corollary 5.1. Tables 15, 16 and 17 contain full information about

orders of elements of X in particular groups.

g G28 G29 G30 G31 G32 G33 G34 G35

y2 2 2 4 4 2 2 4 4
y2x−2

1 2 2 2 2 4 4 4 4
yx−1

1 2 4 2 4 2 4 2 4
yx−1

1 x2k−1

2 2 4 2 4 2 4 2 4

Table 15

g G36 G37 G38 G39

y2 2 2 4 4
yx−1

1 x2k−2

2 2 4 2 4

Table 16

g G40 G41 G42 G43

y2 2 4 2 4
y2x−2

1 2 2 4 4
yx−1

1 2 2 4 4
yx−1

1 x2k−1

2 4 4 2 2

Table 17

Now, similarly as in the case of Fam 8 we can use it for building max-
imal elementary abelian subgroups and counting the Quillen parameters
for our groups.
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Proposition 5.1. Let G = Gm ∈ Fam 7. Then the Quillen parameter

of G is such as in the following table

Group Quillen
parameter

Representatives of the conjugacy classes
of maximal elementary abelian subgroup

G28 (0, 0, 1, 1) 〈y2, Ω1(A)〉, 〈yx−1
1 , y2x−2

1 , Ω(A)〉
G29 (0, 0, 2, 0) 〈y2, Ω1(A)〉, 〈y2x−2

1 , Ω1(A)〉
G30 (0, 0, 0, 1) 〈yx−1

1 , y2x−2
1 , Ω1(A)〉

G31 (0, 0, 1, 0) 〈y2x−2
1 , Ω1(A)〉

G32 (0, 0, 2, 0) 〈y2, Ω1(A)〉, 〈yx−1
1 , Ω1(A)〉

G33 (0, 0, 1, 0) 〈y2, Ω1(A)〉
G34 (0, 0, 1, 0) 〈yx−1

1 , Ω1(A)〉
G35 (0, 1, 0, 0) Ω1(A)

G36 (0, 0, 2, 0) 〈y2, Ω1(A)〉, 〈yx−1
1 x2k−2

2 , Ω1(A)〉
G37 (0, 0, 1, 0) 〈y2, Ω1(A)〉
G38 (0, 0, 1, 0) 〈yx−1

1 xk−2
2 , Ω1(A)〉

G39 (0, 1, 0, 0) Ω1(A)

G40 (0, 0, 3, 0) 〈y2, Ω1(A)〉, 〈y2x−2
1 , Ω1(A)〉, 〈yx−1

1 , y2x−2
1 , z〉

G41 (0, 0, 2, 0) 〈y2x−2
1 , Ω1(A)〉, 〈yx−1

1 , y2x−2
1 , z〉

G42 (0, 1, 1, 0) 〈y2, Ω1(A)〉, 〈yx−1
1 x2k−1

2 , z〉
G43 (0, 2, 0, 0) Ω1(A), 〈yx−1

1 x2k−1

2 , z〉

Table 18

For counting the numbers of conjugacy classes and the Roggenkamp
parameters we need much more detailed considerations than in the previ-
ous families.

Lemma 5.5. Let G ∈ Fam 7.

(a) If |G| = 22k+3, then |ClG(A)| = 22k−3 + 2k−1 + 2k−2 + 1;

(b) If |G| = 22k+2 and A is abelian, then |ClG(A)| = 22k−4 + 2k−1 + 1;

(c) If |G| = 22k+2 and A is nonabelian, then

|ClG(A)| = 22k−5 + 22k−7 + 2k−2 + 2k−3 + 2k−4 + 1.
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Moreover,

RG(A) =

{
2|ClG(A)| if |G| = 22k+3,

2|ClG(A)| + 1 if |G| = 22k+2.

Proof. (a) Since A is abelian and |G : A| = 8, each conjugacy class
of G contained in A has at most 8 elements. For a noncentral element g

of Ω1(A) = 〈(x2
1)2

k−1
, x2k−1

2 〉 we have CG(g) = 〈y2, x1, x2〉 = 〈y2, x1〉 and
then |Cg| = 2. For g ∈ A \ Ω1(A), gy2

= g−1h �= g, where h ∈ {1, z}.
Hence y2 /∈ CG(g) and because of that |G : CG(g)| � 4, which says that
either CG(g) = A or CG(g) = Hi for certain i ∈ {1, 2, 3, 4}. Thus for
g ∈ A \ Ω1(A), |Cg| ≤ 4 if and only if g ∈ T = CA(x1) ∪ CA(y2x1) ∪
CA(yx1) ∪ CG(y3x1). Straightforward computations show that CA(x1) =
〈x2

1, Ω1(A)〉, CA(y2x1) = 〈x2, Ω1(A)〉, CA(yx1) = 〈x2
1x

−1
2 〉, CA(y3x1) =

〈x2
1x2〉. It is clear that CA(x1) ∩ CA(y2x1) = Ω1(A) and CA(yx1) ∩

CA(y3x1) = 〈(x2
1x2)2

k−1〉 ≤ Ω1(A). Hence |CA(x1)∪CA(y2x1)| = 2k+2−4,
|CA(yx1) ∪ CA(y3x1)| = 2k+1 − 2 and so |T | = 2k+2 + 2k+1 − 8. The
set T is of course a normal subset of G and it contains three conju-
gacy classes having less than 4 elements, namely {e}, {(x2

1x2)2
k−1} and

{(x2
1)2

k−1
, x2k−1

2 }. Therefore |ClG(T )| = 3 + 2k+2+2k+1−12
4 = 2k + 2k−1.

All other elements of A lie in 8-element conjugacy classes. So we have
22k−2k+2−2k+1+8

8 = 22k−3 − 2k−1 − 2k−2 + 1 such classes. Consequently
|ClG(A)| = 22k−3 + 2k − 2k−2 + 1 = 22k−3 + 2k−1 + 2k−2 + 1.

(b) Similarly as in the proof of the first case for a ∈ A, |Ca| = 4 if
and only if CG(a) is one of the five subgroups of index 4 containing A. If
a /∈ Ω1(A), then ay2

= a−1t, where t ∈ Ω1(A), so H is not a centralizer
of an element from A \ Ω1(A). If CG(a) = H1, then a ∈ 〈x2

1〉 = A1.
Since (x2

1)y = x2t3t4, CG(a) = H2 for a ∈ 〈x2t3t4〉 = A2. Further, if
CG(a) = H3, then a ∈ 〈x−2

1 x2, Ω1(A)〉 = B1 and similarly CG(a) = H4, if
a ∈ 〈x1x2, Ω1(A)〉 = B2. Since A1A2 = A and |A1| = |A2| = 2k we obtain
|A1 ∩ A2| = 2. Analogously, |A : B1B2| = 2 and |B1| = |B2| = 2k, so
|B1 ∩B2| = 4. Hence |A1 ∪A2| = 2k+1 − 2, |B1 ∪B2| = 2k+1 − 4 and from
|(A1 ∪ A2) ∩ (B1 ∪ B2)| = 2 we obtain |A1 ∪ A2 ∪ B1 ∪ B2| = 2k+2 − 8.
Since A1 ∪ A2 ∪ B1 ∪ B2 contains all elements, whose conjugacy classes
have no more than 4 elements, we obtain 3 + 2k+2−12

4 = 2k 4-element
classes. Each of all other classes contained in A has 8 elements. So we
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have 22k−1−2k+2+8
8 = 22k−4 − 2k−1 + 1 such classes. Finally we obtain

|ClG(A)| = 22k−4 + 2k − 2k−1 + 1 = 22k−4 + 2k−1 + 1.

(c) It is clear that A is nonabelian only when xx1
2 = x−1

2 z2, that is when
G ∈ {G36, G37, G38, G39}. In this case the action of G on A2 is similar
to the action of G on A in the previous case, that is when A is abelian and
|A| = 22k−3. So |ClG(A2)| = 22k−6 +2k−2 +1. Conjugacy classes which are
contained in A\A2 have either 8 or 16 elements. Since for every g ∈ A\A2,
Cg = Cgz1 and ζ(G) = 〈z1〉, images of these classes in G̃ = G/ζ(G) have
twice less elements and images of different classes are different. By (a)
|ClG̃(Ã \ Ã2)| = (22k−5 + 2k−2 + 2k−3 + 1) − (22k−7 + 2k−3 + 2k−4 + 1) =
22k−5 − 22k−7 + 2k−3 + 2k−4. Therefore |ClG(A \ A2)| = 22k−5 − 22k−7 +
2k−3 + 2k−4 + 22k−6 + 2k−2 + 1 = 22k−5 + 22k−7 + 2k−2 + 2k−3 + 2k−4 + 1.

For the proof of the last assertion it is enough to notice that d(M2) = 2,
d(M3) = 3 and if g ∈ Ω1(A) \ ζ(G), then

CG(g) =

{
M2 if |G| = 22k+3,

M3 if |G| = 22k+2.

All other elements of A have centralizers equal to Hi for some i, 1 � i � 4,
or to G. All these groups are 2-generated. �

Lemma 5.6. Let G ∈ Fam 7 and let x ∈ M2 \ H.

(a) If |G| = 22k+3, then CG(x) = 〈x, Ω1(A)〉 and |Cx| = 2k+1. Moreover,

|ClG(M2 \ H)| = 2k and RG(M2 \ H) = 2k+1.

(b) If |G| = 22k+2, then CG(x) = 〈x〉 and |Cx| = 2k+1. Moreover,

|ClG(M2 \ H)| = 2k−1 = RG(M2 \ H).

Proof. Since M2 \H = x1A∪ y2x1A and (x1A)y = y2x1A, it suffices
to count |Cx| for x ∈ x1A. Put x = x1x

2r
1 xs

2 ∈ x1A. If g ∈ G centralizes x

then g = gA centralizes x = xA in G = G/A that is g ∈ 〈y2, x1〉. Now, it
follows from properties of G that g = y2a or g = y2x1a or g ∈ 〈x1, A〉 for
suitable a = x2u

1 xv
2 ∈ A. None of the elements of the form either g = y2a

or g = y2x1a centralizes x. In fact,

xy2a = (x1x
2r
1 xs

2)y2x2u
1 xv

2 = x1x
−2r+2
1 x−s+1+2v

2 a1,
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where a1 ∈ Ω1(A). Similarly,

xy2x1a = (x1x
2r
1 xs

2)y2x1x2u
1 xv

2 = x1x
−2r+2
1 xs−1+2v

2 a1.

So in both cases we obtain x �= xg. Therefore we assume that g ∈ 〈x1, A〉.
In this case we need only to describe CA(x). For x = x1 it was done in the
proof of Lemma 5.5. For the general case the calculations and conclusions
are similar. So for a) we obtain CG(x) = 〈x, Ω1(A)〉 and d(CG(x)) = 2.
Hence |Cx| = 22k+3

2k+2 = 2k+1. This means that |ClG(M2 \H)| = |M2\H|
2k+1 = 2k

and RG(M2 \ H) = 2|ClG(M2 \ H)| = 2k+1.
For b) the proof of Lemma 5.5 yields CG(x) = 〈x〉 (and of course

d(CG(x)) = 1). Thus |ClG(M2 \ H)| = |M2\H|
2k+1 = 2k−1 = RG(M2 \ H). �

For counting the centralizers of elements of M3\H notice that M3\H =
yx−1

1 A∪y3x1A, (yx−1
1 A)x1 = y3x1A and (y3x1A)x1 = yx−1

1 A. So it suffices
to study only these conjugacy classes which are represented by elements
of the form g = yx−1

1 a, where a = x2r
1 xs

2 ∈ A.

Lemma 5.7. Let G ∈ Fam 7 and let A be abelian. If g ∈ yx−1
1 A, then

CA(yx−1
1 a) =

{
〈x2

1x
−1
2 〉 if |G| = 22k+3,

〈x2
1x

−1
2 , z1〉 if |G| = 22k+2.

Proof. For every h = x2u
1 xw

2 ∈ A we obtain from the relations of the
group and the relations (3) that

yh = (x−w
2 x−2u

1 )y(x2u
1 xw

2 ) = yx2w
1 x−u

2 t−u
4 x2u

1 xw
2 = yx

2(u+w)
1 x−u+w

2 t−u
4

(x−1
1 )h = x−w

2 x−1
1 xw

2 = x−1
1 x2w

2 t−w
4 .

Therefore
(yx−1

1 )h = (yx
2(u+w)
1 x−u+w

2 t−u
4 )(x−1

1 x2w
2 t−w

4 )

= yx−1
1 x

2(u+w)
1 xu−w

2 t−2u+w
4 x2w

2 t−w
4 )

= yx−1
1 (x2

1x2)u+w.

(8)

Hence for every a = x2r
1 xs

2 ∈ A, h = x2u
1 xw

2 centralizes yx−1
1 a if and only

if (x2
1x2)u+w = 1. This means for the case |G| = 22k+3 that u + w = 0

(mod 2k) Consequently h = (x−2
1 x2)w and then CA(yx−1

1 a) = 〈(x−2
1 x2)〉. If
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|G| = 22k+2, then we get u + w = 0 (mod 2k−1) or equivalently u + w = 0
or 2k−1 (mod 2k). Hence h = (x−2

1 x2)w or h = (x−2
1 x2)wz1. Finally

CA(yx−1
1 a) = 〈x−2

1 x2, z1〉. �

The centralizer of the image of g = yx−1
1 a in the factor group G = G/A

is equal to 〈g, y2〉. So we need also to check for which g ∈ yx−1
1 A there

exist elements in y2A centralizing g.

Lemma 5.8. Let G = Gn ∈ Fam 7 and let A be abelian.

(a) If n ∈ {28, 29, 30, 31} and g ∈{yx−1
1 , yx−1

1 x2k−1

2 } or n ∈ {32, 33, 34, 35}
and g∈{yx−1

1 x2k−2

2 , yx−1
1 x−2k−2

2 }, then CG(g) = 〈g, y2x−1
2 , x−2

1 x2, x
2k−1

2 〉.
(b) If n ∈ {40, 41, 42, 43} and g ∈ {yx−1

1 , yx−1
1 x2k−1

2 }, then CG(g) =
〈g, y2x−1

2 , x−2
1 x2〉.

(c) If g ∈ yx−1
1 A is not conjugated to elements distinguished in (a) and

(b) then CG(g) = 〈g, x−2
1 x2, ζ(G)〉.

(d) ClG(M3 \ A) = 2k−1 + 1.

Proof. It follows from Lemma 5.7 that in all the cases |CA(g)| = 2k

for all g ∈ yx−1
1 A. It is also easily seen that g2 ∈ CA(g) and for every h ∈ A,

(y2h)2 ∈ CA(g). Thus if CG(g) = 〈g, y2h,CA(g)〉, then |CG(g)| = 2k+2 and
so

|Cg| =

{
2k for |G| = 22k+2,

2k+1 for |G| = 22k+3.

All other conjugacy classes have 2k+1 and 2k+2 elements in the cases |G| =
22k+2 and |G| = 22k+3 respectively.

Now let h = x2u
1 xw

2 and a = x2r
1 xs

2 be arbitrary elements of A. As it
was seen in the proof of Lemma 5.7

yy2h = yh = yx
2(u+w)
1 x−u+w

2 t−u
4 .

Moreover

(x−1
1 )y2h = (x−1

1 )y2x2u
1 xw

2 = (t1x−1
2 x1)x2u

1 xw
2 = (t1x−1

2 x1)xw
2

= x−w
2 (t1x−1

2 x1)xw
2 = x1t

−w
4 xw

2 (t1t−1
4 x2)xw

2

= x1x
2w+1
2 (t1t−1−w

4 )
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and
ay2h = (x2r

1 xs
2)y2

= x−2r
1 x−s

2 tr+s
4 = a−1tr+s

4 .

Hence

(yx−1
1 a)y2x2u

1 xw
2 = (yx

2(u+w)
1 x−u+w

2 t−u
4 )(x1x

2w+1
2 (t1t−1−w

4 ))(a−1tr+s
4 )

= yx−1
1 (x2

1x2)u+w+1t−1
4 (a−1tr+s

4 )

= yx−1
1 a(x2

1x2)u+w+1a−2(t1tr+s−1
4 ).

(9)

Since t1, t4 ∈ ζ(G), we obtain that if y2h ∈ CG(yx−1
1 a), then

a2 ∈ 〈x2
1x2, ζ(G)〉. If |G| = 22k+3, then the subgroup 〈x2

1x2, ζ(G)〉 is
cyclic of order 2k. Therefore for every a ∈ A satisfying a2 ∈ 〈x2

1x2, ζ(G)〉
we can find u and w such that y2(x2u

1 xw
2 ) ∈ CG(yx−1

1 a). There exists
exactly 2k+1 possible values for a, because a can be an arbitrary element
of 〈x2

1x2, Ω1(A)〉. It is an easy task to show that for g = yx−1
1 ,

Cg = {yx−1
1 (x2

1x2)r : r = 0, 1, . . . , 2k − 1}
∪ {y3x−1

1 (x−2
1 x2)r : r = 0, 1, . . . , 2k − 1}

and for g = yx−1
1 x2k−1

2 ,

Cg = {yx−1
1 (x2

1x2)rx2k−1

2 : r = 0, 1, . . . , 2k − 1}
∪ {y3x−1

1 (x−2
1 x2)rx2k−1

2 : r = 0, 1, . . . , 2k − 1}.

Both classes contain obviously all elements of yx−1
1 A having centralizer

of order 2k+2. All other elements g ∈ M3 \H have centralizers of the form
〈g, x−2

1 x2〉, because no element from the coset y2A centralizes g.
Now assume that |G| = 22k+2. Then 〈x2

1x2, ζ(G)〉 = 〈x2
1x2, z1〉 is not

cyclic and if for a = x2r
1 xs

2 we have a2 ∈ 〈x2
1x2, z1〉, then a ∈ 〈x2

1x2, Ω2(A)〉.
Since we assumed in the beginning of this section that |G| � 27 we have
k > 2 and then in (9) we obtain r + s ≡ 0 (mod 2). If t1t4 = 1 then y2h ∈
CG(g), g = yx−1

1 a, if and only if a belongs to 〈x2
1x2, Ω1(A)〉 which is of

order 2k. So there exist in yx−1
1 A exactly 2k elements with the centralizers

of order 2k+2. It is clear that they are divided into two conjugacy classes
as for such g we have |Cg ∩ yx−1

1 A| = 2k−1. It is also clear that the
elements yx−1

1 and yx−1
1 z1 are not conjugated and if g is one of them then
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CG(g) = 〈g, y2x−1
2 , Ω1(A)〉. All other elements have the centralizers of the

form 〈g,CA(g)〉 that is of order 2k+1.
If t1t4 = z1, then y2h ∈ CG(g), g = yx−1

1 a, if and only if a belongs to
〈x2

1x2, Ω2(A)〉 and a2 = z1. So there exist again 2k possible values for a.
Let a = x±2k−1

2 , u = 0 and w = −1. Then from (9) we obtain

(yx−1
1 x±2k−2

)y2x−1
2 = yx−1

1 x±2k−2

2 x−2k−1

2 z1 = yx−1
1 x±2k−2

2 .

Since the elements yx−1
1 x2k−2

and yx−1
1 x−2k−2

are not conjugated the
conjugacy classes of them contain all the elements with the centralizers of
order 2k+2. All other elements have the centralizers of the form 〈g,CA(g)〉
that is of order 2k+1.

For the proof of (d) let us notice that if |G| = 22k+3 then we have 2
conjugacy classes having 2k+1 elements. All other classes have twice more
elements. Since |M3 \ H| = 22k+1 we have 2 + 22k+1−2k+2

2k+2 = 2k−1 + 1
conjugacy classes. The calculation for the case |G| = 22k+2 is similar. �

Lemma 5.9. Let G = Gn ∈ Fam 7, |G| = 22k+2+ε, where ε ∈ {0, 1}.
If A is abelian, then

RG(M3 \ H) =


2k + 2k−2 + 5 if n ∈ {28, 30},
2k + 2k−2 + 3 if n ∈ {32, 34},
2k + 4 if n ∈ {29, 31, 33, 35},
2k−1 + 2k−2 + 4 if n ∈ {40, 41, 42, 43}.

Proof. First assume that |G| = 22k+3 i.e. n ∈ {40, 41, 42, 43}. If g =
yx−1

1 or g = yx−1
1 x2k−1

2 then CG(g) = 〈g, y2x−2
1 , x−2

1 x2〉 by Lemma 5.8(b).
Thus d(CG(g)) = 3. Hence it remains to consider conjugacy classes con-
tained in M3 \ H containing neither yx−1

1 nor yx−1
1 x2k−1

2 . Let g be a
representative of such a class. It follows from Lemma 5.8(c) that CG(g) =
〈g, x2

1x2〉. Thus this centralizer is either 2-generated or cyclic. Put g =
yx−1

1 (x2r
1 xs

2). So g2 = (x2
1x

−1
2 )r−st1t4 and then CG(g) is cyclic if and only

if r − s is invertible in Z2k . There are exactly 22k−1 such elements. Since
they split into conjugacy classes, each having 2k+1 elements in yx−1

1 A,
we have 2k−2 such classes that their representatives have cyclic centraliz-
ers. Representatives of other classes contained in M3 \H have 2-generated
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centralizers. Therefore by Lemma 5.8(d)

RG(M3 \ H) = 6 + 2k−2 + 2 · (2k−2 − 1) = 2k−1 + 2k−2 + 4.

Now assume that |G| = 22k+2. If g is one of the elements distinguished
in Lemma 5.8(a) then CG(g) = 〈g, y2x−1

2 , x2
1x2, z1〉 and then d(CG(g)) = 4

if and only if o(g) = o(y2x−1
2 ) = 2. It follows from Table 12 that this

happens for the groups G28 and G30 only. In all other cases we have
d(CG(g)) = 3. So it remains to consider conjugacy classes contained in
M3 \H not containing elements distinguished in Lemma 5.8(a). It follows
from Lemma 5.8(c) that CG(g) = 〈g, x−2

1 x2, z1〉. Thus this centralizer
is either 2-generated or 3-generated. Put g = yx−1

1 (x2r
1 xs

2). So g2 =
t1t2t4(x−2

1 x2)s−r, and then CG(g) is 2-generated if and only if t1t2t4 = z1

or t1t2t4 = 1 and s − r is invertible in Z2k−1. By Table 5 t1t2t4 = z1 in
Gm if m ∈ {29, 31, 33, 35} only. So in these groups d(CG(g)) = 2. If m ∈
{28, 30, 32, 34}, then t1t2t4 = 1 and we have exactly 22k−2 such elements g

that r − s is invertible. Since they split into conjugacy classes having 2k

elements from yx−1
1 A we have 2k−2 such classes that their representatives

have 2-generated centralizers. Representatives of other classes contained in
M3 \H have 3-generated centralizers. Therefore the Roggenkamp number
of M3 \ H is equal to

RG(M3 \ H) =


2 · 2k−2 + 3 · (2k−2 − 1) + 8

2 · 2k−2 + 3 · (2k−2 − 1) + 6

2 · (2k−1 − 1) + 6

=


2k + 2k−2 + 5 if m ∈ {28, 30},
2k + 2k−2 + 3 if m ∈ {32, 34},
2k + 4 if m ∈ {29, 31, 33, 35}. �

Proposition 5.2. If G is a group of Fam 7 with A abelian then

|Cl(G)| =

{
22k−4 + 3 · 2k−1 + 6 if |G| = 22k+2,

22k−3 + 9 · 2k−2 + 6 if |G| = 22k+3.
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Proof. For the proof it is enough to count the conjugacy classes
described in Lemmas 5.3–5.8. We gather this information in Table 19.

Subset |G| = 22k+2 |G| = 22k+3

A 22k−4 + 2k−1 + 1 22k−3 + 2k−1 + 2k−2 + 1
H \ A 2 2

M1 \ H 2 2
M2 \ H 2k−1 2k

M3 \ H 2k−1 + 1 2k−1 + 1∑
22k−4 + 2k + 2k−1 + 6 22k−3 + 2k+1 + 2k−2 + 6

Table 19 �

Proposition 5.3. Let G = Gn be a group of Fam 7 and let A be

abelian. Then

R(G) =


22k−3 + 11 · 2k−2 + rn if n ∈ {28, 30, 32, 34},
22k−3 + 5 · 2k−1 + rn if n ∈ {29, 31, 33, 35},
22k−2 + 17 · 2k−2 + rn if n ∈ {40, 41, 42, 43},

where rn for all the groups is given in the following table:

G28 G29 G30 G31 G32 G33 G34 G35 G40 G41 G42 G43

18 16 16 14 14 15 12 13 15 13 15 13

Table 20

Proof. For centralizers of representatives of conjugacy classes we
need to count numbers of generators in minimal generating sets. First
we list centralizers of representatives of conjugacy classes contained in
M2 \A = (M2 \H) ∪ (H \A). The element g appearing in the centralizer
of y2x−1

2 is one of the elements defined in Lemma 5.8

g CG(g) G28 G29 G30 G31 G32 G33

y2 〈y, Ω1(A)〉 2 2 2 2 2 2
y2x−1

2 〈y2x−1
2 , g, Ω1(A)〉 4 3 4 3 3 2

y 〈y, z1〉 2 2 1 1 2 2
y3 〈y, z1〉 2 2 1 1 2 2∑

10 9 8 7 9 8

Table 21
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g CG(g) G33, G34 G40, G42 G41, G43

y2 〈y, Ω1(A)〉 2 2 2

y2x−1
2 〈y2x−1

2 , g, Ω1(A)〉 2 3 3
y 〈y, z1〉 1 2 1
y3 〈y, z1〉 1 2 1∑

6 9 7

Table 22

Now the sum of numbers from the appropriate columns of the above
tables and formulas counted for RG(A), RG(M2 \ H) and RG(M3 \ H) in
Lemmas 5.5, 5.6 and 5.9 gives the formulas of the proposition. �

Lemma 5.10. Let |G| = 22k+2 and let A be nonabelian.

(a) If either g = yx−1
1 or g = yx−1

1 x2k−1

2 then

CG(g) = 〈g, x2
1x

−1
2 , y2x−2

1 , Ω1(A)〉 and |Cg| = 2k.

(b) If g ∈ M3 \H is not conjugated neither to yx−1
1 nor to yx−1

1 x2k−1

2 then

CG(g) = 〈g, x2
1x

−1
2 , z1〉 and |Cg| = 2k+1.

(c) |ClG(M3 \ H)| = 2k−2 + 2k−3 + 1.

Proof. Because of similar reasons as in the proof of Lemma 5.8 we
study classes represented by elements of the form g = yx−1

1 x2r
1 xs

2 only.
Since CG(g)/ζ(G) ≤ CG/ζ(G)(gζ(G)) by Lemma 5.8(b) there are no ele-
ments centralizing g in (M1 \ H) ∪ (M2 \ H). Let h = x2u

1 xw
2 ∈ A be an

arbitrary element. Then by straightforward computations

gh = g(x2(u+w)
1 xu+w

2 zur+ws+u
1 tu+w

3 ). (10)

Hence h ∈ CG(g) if and only if

u + w ≡ 0 (mod 2k) or u + w ≡ 2k−1 (mod 2k) (11)

and
ur + ws + u ≡ 0 (mod 2). (12)

If r and s are of different parity then each solution of (11) is also a solution
of (12). In this case there are no elements centralizing g in H\A. Otherwise
the image of g in G̃ = G/ζ(G) would have such a centralizer which is
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not possible by Lemma 5.8(b). The number of elements of yx−1
1 A of the

form g = yx−1
1 x2r

1 xs
2 such that r and s are of different parity is equal to

22k−2. The centralizer of such g has order 2k+1, so |Cg| = 2k+1. Half
of elements of Cg lie in yx−1

1 A. Thus we have just 22k−2

2k = 2k−2 of such
classes. Note that in this case Cg �= Cgz1 (g and gz1 are not conjugated),
the images of Cg and Cgz1 in G̃ are equal and have the same size as Cg.
Hence there are 2k−3 conjugacy classes in G̃ which are images of classes
just considered. In M̃3 \ Ã there are 2k−2 + 1 classes. So we have to fix
images of which classes of M3 \ A are the remaining classes. If r and s

are of the same parity, then odd solutions of (11) does not satisfy (12).
Moreover in this case g is conjugated to gz1 (gx2

1x2 = gz1). So images in
G̃ of different such classes are different but they have twice less elements.
Hence we have just 2k−2 + 1 − 2k−3 = 2k−3 + 1 of such classes. Therefore
ClG(M3 \ A) = 2k−2 + 2k−3 + 1. �

Lemma 5.11. Let |G| = 22k+2 and let A be nonabelian. If k > 3,

then

RG(M3 \ H) =

{
2k−1 + 2k−2 + 2k−4 + 4 if G ∈ {G36, G38},
2k−1 + 2k−2 + 4 if G ∈ {G37, G39}.

If k = 3, then for G ∈ {G36, G38}, RG(M3 \ H) = 10 and

for G ∈ {G37, G39}, RG(M3 \ H) = 8.

Proof. We consider only the case k > 3. We give only sketch argu-
ments because detail calculations are similar as in previous proofs. First
let g be one of the elements yx−1

1 and yx−1
1 x2k−2

2 . The images of the
classes represented by these elements in G̃ = G/ζ(G) are different by
Lemma 5.8(b) and have centralizers of the form 〈g̃, CÃ(g̃), ỹ2h̃〉, where
h ∈ A. So the centralizer of g is also of this form. If n ∈ {37, 39},
then both elements have 3-generated centralizers. If n ∈ {36, 38}, then
one element have 3-generated centralizer and the other one 4-generated
centralizer.

Now let g = yx−1x2r
1 xs

2 ∈ yx−1A be an arbitrary element with r,
s of different parity. Accordingly to the proof of Lemma 5.5 there ex-
ist 2k−2 classes represented by elements of this form. By (10), CG(g) =
〈g, x−2u

1 xu
2 , z1〉, so by (7) it is 2-generated, since x−2u

1 xu
2 ∈ 〈g, z1〉.
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We have still to consider the remaining 2k−3−1 classes. If n ∈ {37, 39}
then all representatives of these conjugacy classes are 2-generated. So
assume that n ∈ {36, 38}. Let g = yx−1x2r

1 xs
2 ∈ yx−1A be an arbitrary

element with r, s of the same parity. If s−r is divisible by 4 then CG(g) =
〈g, x−4

1 x2
2, z1〉 is 3-generated. There exist 2k−4 − 1 such classes. If s − r

is not divisible by 4 then CG(g) is 2-generated and there exist 2k−4 such
classes.

Summarizing, if n ∈ {37, 39} then RG(M3 \ H) = 6 + 2 · 2k−2 +
2 · (2k−3 − 1) = 2k−1 + 2k−2 + 4. If n ∈ {36, 38} then RG(M3 \ H) =
7 + 2 · 2k−2 + 3 · (2k−4 − 1) + 2 · 2k−4 = 2k−1 + 2k−2 + 2k−4 + 4. �

Proposition 5.4. Let G be a group of Fam 7, |G| = 22k+2. If A is

nonabelian then |Cl(G)| = 5 · 22k−7 + 21 · 2k−4 + 6.

Proof. It follows from Lemmas 5.3, 5.5, 5.6 and 5.10 that

|Cl(G)| = |ClG(A)| + |ClG(H \ A)| +
3∑

i=1

|ClG(Mi \ H)|

= (22k−5 + 22k−7 + 2k−1 + 2k−2 + 2k−3 + 2k−4 + 1)

+ 2 + (2 + 2k−1 + 2k−2 + 2k−3 + 1)

which is equal to the formula given in the proposition. �
Proposition 5.5. Let G = Gm be a group of Fam 7, |G| = 22k+2. If

A is nonabelian and k > 3, then

R(Gm) =

{
5 · 22k−6 + 35 · 2k−4 + rm if m ∈ {36, 38},
5 · 22k−6 + 17 · 2k−3 + rm if m ∈ {37, 39},

where r36 = 16, r37 = 15, r38 = 14 and r39 = 13. For k = 3 we have

R(G36) = 38, R(G37) = 35, R(G38) = 36, R(G39) = 33.

Proof. Note that if n ∈ {36, 38}, then RG(H\A) = 5. If n ∈ {37, 39}
then RG(H \ A) = 4. We have also RG(M1 \ H) = 4 for n ∈ {36, 37} and
RG(M1 \ H) = 2 for n ∈ {38, 39}. Now using the formulas obtained in
Lemmas 5.5, 5.6 and 5.9 we get the formulas of the proposition. �
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